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INTRODUCTION

The theory of elliptic complexes of linear partial differential operators is closely
interwoven with complex analysis. In particular, the Dolbeault complex is at the
same time an important example of an elliptic complex and a tool for investigating
the properties of more general ones. Although several results of complex analysis
do not extend to arbitrary elliptic complexes, it is worthwhile to pursue those ideas
and methods that have suitable extensions to the general theory.

This thesis is mainly concerned with integral representations. They were in-
troduced and successfully used to study several problems in complex analysis (see
[AYu], [He]), like obtaining homotopy formulae for ∂-complex, sharp estimates for
the ∂-Neumann-Spencer problem, results on the theory of CR-functions, approx-
imation theorems and removability of singularities of holomorphic functions and
had also applications to complex integral geometry and to other subjects.

The formula of Martinelli-Bochner (see, for example, [AYu], [Ky]) provides one of
the simplest integral representations for holomorphic functions defined in a bounded
domain D of the n-dimensional complex space Cn. The values of a holomorphic
function in D are expressed by integrating its values on ∂D against a kernel which
is relatively simple and has a general expression, independent of the domain. This
kernel coincides with the Cauchy kernel in the case of one complex variable, but
is not holomorphic with respect to the ”exterior” variables in Cn: this fact can be
taken as one of the reasons of the deep difference between complex analysis in one
and several complex variables.

The Martinelli-Bochner formula was employed to study properties of the CR-
functions and the ∂-Neumann problem for functions (see [Ky]), the Cauchy problem
for the Cauchy-Riemann system (see [AKy], [ShT4]) and the solvability of inhomo-
geneous Cauchy-Rie- mann system (see [Rom2]).

In the theory of partial differential equations the method of integral representa-
tions is mainly related to the construction and use of parametrices (see [T5]). In
this research I am concerned with elliptic systems , both determined and overdeter-
mined. They admit, at least locally, left fundamental solutions. Green’s integrals
associated to them (see, for instance, [T5]) are natural analogues of the Martinelli-
Bochner integral of complex analysis.

In this dissertation I apply Green’s integrals to the Cauchy problem for elliptic
systems and to the question of the validity of the Poincaré Lemma for elliptic
differential complexes.

Let me describe more precisely the contents of the thesis.
Let X be an open set of the Eucledian space Rn and E = X×Ck and F = X×Cl

be (trivial) C-vector bundles over X . If C is a class of distributions, the space
C(E|σ) of sections of E over an open subset σ of X is naturally identified with

Typeset by AMS-TEX
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the space [C(σ)]k of k-columns of objects from C(σ), and similarly for F . For
every element P of the space dop(E → F ) of the linear differential operators with
(C∞−) smooth coefficients and of order ≤ p between the vector bundles E and
F , we have an expression P (x,D) =

∑
|α|≤p Pα(x)Dα, where Pα(x) are (l × k)-

matrices of (infinitely) differentiable functions on X . The expression σ(P )(x, ζ) =∑
|α|=p Pα(x)ζα (for x ∈ X , ζ ∈ Cn) is called the principal symbol of P ∈ dop(E →

F ). We say that P has an injective symbol if the matrix σ(P )(x, ζ) has rank k for
every (x, ζ) ∈ X × Rn\{0}.

An important class of operators with injective symbols is the class of determined
elliptic differential operators of order p (corresponding to the case l = k). The
classic examples of overdetermined systems with injective symbol are the gradient
operator in Rn and the Cauchy-Riemann system in Cn, if n > 1.

As in the classic examples, under not too restrictive assumptions on P , it is pos-
sible to include it into some elliptic complex of linear partial differential operators
on X , say, {Ei, P i} where Ei = X×Cki are (trivial) C-vector bundles over X with
ki 6= 0 only for finitely many indexes i, P i ∈ dopi

(Ei → Ei+1) and P 0 = P (see
Samborskii [Sa]). I shall often use this identification, assuming therefore that P
satisfies suitable addition assumptions in [Sa].

If the differential operator P has injective symbol then P is hypoelliptic: for every
distribution u ∈ D′(E) the singular supports of u and Pu coincide. In particular,
all solutions of the system Pu = 0 on an open subset σ of X , belonging to D′(E|σ)
agree in the sense of distributions with sections from C∞(E|σ).

The Cauchy problem for solutions of the system Pu = 0 in a relatively compact
domain D in X with a sufficiently smooth boundary, and data on a set S of posi-
tive ((n− 1)-dimensional) measure on the boundary, can be roughly formulated as
follows.

Problem 1. Let uα (|α| ≤ p − 1) be given sections of E over S. It is required
to find a solution u of the equation Pu = 0 in D whose derivatives Dαu up to
order (p − 1) have, in a suitable sense, boundary values (Dαu)|S on S satisfying
(Dαu)|S = uα (|α| ≤ p− 1).

Since the time of Hadamard, this problem has been known as a classic example
of an ill-posed problem (see Hadamard [Hd], p.39). However, it naturally arises in
the applications (see Hadamard [Hd], p.38). For example, the Cauchy problem for
the Laplace operator naturally arises in problems of the interpretation of electrical
prospecting data.

The Cauchy problem for the Laplace operator, in various formulations, has been
studied by Mergeljan [Me], Lavrent’ev [Lv1],[Lv3], Ivanov [Iv], Newman [Ne], Ko-
roljuk [Kor], Maz’ya and Havin [MzHa], Jarmuhamedov [Ja], Shlapunov [Sh1],
[Sh5], and others. For holomorphic functions of one variable the Cauchy problem
was considered in the papers of Carleman [Ca], Zin [Zin], Fok and Kuny [FKun],
Patil [Pa], Krein and Nudelman [KrNu], Steiner [Str], and of other mathematicians.
The Cauchy problem for the overdetermined Cauchy-Riemann system was studied
by Tarkhanov [T2], Znamenskaya [Zn], Aizenberg and Kytmanov [AKy], Karepov
and Tarkhanov [KT1], Karepov [K], Shlapunov and Tarkhanov [ShT4], and others.
The Cauchy problem for the Lamé system (related to the theory of linear elasticity)
was studied by Mahmudov [Ma] and Shlapunov [Sh4], [Sh5]. The Cauchy problem
for general systems of linear partial differential equations with injective symbols
has been investigated by Tarkhanov [T1]-[T4], Nacinovich [Na], and others.
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The present research is an attempt to elucidate how the use of bases with double
orthogonality (see Slepian and Pollak [SlPo], Landau and Pollak [LPo1], [LPo2],
Slepian [Sl]) and of Green’s integrals gives new insight into the Cauchy problem for
general systems of linear partial differential equations with injective symbols. More
precisely, in terms of the bases with double orthogonality, we obtained solvability
conditions for the ill-posed Cauchy problem which are constructive, and simpler
and more convenient than those previously known (see Tarkhanov [T2]). Essentialy
these conditions consist of the convergence of a Fourier series of a potential (Green’s
integral), associated with the Cauchy data, with respect to a basis with the double
orthogonality property. Moreover, a constructive formula for the regularization
(approximate solution) of the Cauchy problem for general systems of differential
equations with injective symbols has been devised. Earlier it was proved that
such a regularization (Carleman’s type formula) existed (see Tarkhanov [T1])).
But the possibility of a constructive approach was devised only for the Cauchy-
Riemann system, or, more generally, for systems factorizing the Laplace operator
(see Aizenberg [A], Jarmuhamedov [Ja], Mahmudov [Ma], and others).

The results on the Cauchy problem are described in Chapter 2; they are es-
sentially due to Shlapunov and Tarkhanov (see [Sh1], [Sh4], [Sh5], [ShT2], [ShT3],
[ShT4]).

In order to study the Cauchy problem we need to obtain informations on the
boundary behaviour of solutions of elliptic systems. These are provided by theorems
on the jump of Green’s type integrals. They imply that the regularity of a solution
u of Problem 1 near S is completely determined by the smoothness of the Cauchy

data uα (|α| ≤ p− 1). In particular, if uα ∈ Cp−1−|α|(E
|
◦
S
) (where

◦
S is the interior

of S in ∂D) then u ∈ Cp−1
loc (S ∪D) (see §1.3 below). The regularity of u near the

points of ∂D\S is determined by that class of functions (sections) in which we seek
the solution of the Cauchy problem. These topics are discussed in Chapter 1, where
also the background material and the relevant definitions are collected.

The last part of this thesis is centered on the question of the validity of the
Poincaré lemma, i.e. local acyclicity, for elliptic complexes of linear partial differ-
ential operators with smooth coefficients. This is a long standing problem of the
theory of overdetermined systems (see [T5], [AnNa]). For (not necessarily elliptic)
complexes with constant coefficients the Poincaré lemma is always valid (see [Pal]
and [Ml1], [Ml2]); it also holds for elliptic complexes with real analytic coefficients
(see [AnNa]).

Although we are still not able to settle the question whether the Poincaré lemma
is valid, we succeed in Chapter 3 in proving a representation formula for solutions
of the system Pu = f for an operator P with injective symbol whenever they exist.

This representation involves the sum of a series whose terms are iterations of
integro- differential operators (in particular, Green’s integrals), while solvability of
the equation Pu = f is equivalent to the convergence of the series together with the
orthogonality to a harmonic space (the last one is a trivial necessary condition).

For the Dolbeault complex, these integro-differential operators are related to the
Mar- tinelli-Bochner integral. In this case, results similar to ours were obtained by
Romanov [Rom2]. In the general situation these results are obtained by Nacinovich
and Shlapunov (see [NaSh]). In fact this approach is more fit to study the global
solvability of the system Pu = f (cf. [Sh3], [Sh6]). æ
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CHAPTER I

GREEN’S INTEGRALS AND BOUNDARY

BEHAVIOUR OF SOLUTIONS OF ELLIPTIC SYSTEMS

§1.0. Introduction

In this chapter we use Green’s integrals to study the boundary behaviour of solu-
tions of elliptic systems. Theorems on the jump of an integral of Green’s type with
density in various classes of distributions are extremely useful for this purpose. In
fact, theorems of this kind are to some extent analogues of the Sokhotsky formulae
for the Cauchy integral.

§1.1 consists of preliminary information about Green’s integrals (such as impor-
tant notions, definitions and simple properties).

As an example of dealing with Green’s integrals, in §1.2 we investigate the jump
behaviour of the Martinelli-Bochner integral. In particular, we discuss Privalov’s
Principal Lemma for the Martinelli-Bochner integral (see [Ky]) and a ”delicate”
theorem on the jump behaviour of this integral at special generalized Lebesgue
points of a summable density (cf. [Sh4]).

§1.3 is devoted to the investigation of the weak boundary values of solutions of an
elliptic system which have finite order of growth near the boundary. In particular,
we prove the theorem on the (weak) jump of Green’s integrals for general elliptic
systems (see also [ShT2]). This theorem is one of the principal tools of the present
approach.

The application of bases with double orthogonality to the Cauchy problem (see
Chapter 2 below) dictates to which class a solution belongs. This turns out to one
of the Sobolev spaces Wm,2. In §1.4 we investigate weak boundary values of the
solutions in the Sobolev class Wm,q(E|D) (cf. [ShT2]). Essentially these results are
due to Rojtberg [Roj]. Our slight modifications concern overdetermined systems.

æ

§1.1. Green’s operators and Green’s integrals

Let X ⊂ Rn be an open set, E = X × Ck and F = X × Cl be (trivial) vector
bundles over X . Sections of E and F of a class C on an open set σ ⊂ X can be
interpreted as columns of complex valued functions from C(σ), that is, C(E|σ) ∼=
[C(σ)]k , and similarly for F . Throughout the thesis we will mostly use the letters
u, v for sections of E, and the letters f , g for sections of F .

We denote by Cmloc(E|σ) (m ≥ 0) the vector space of m times continuously differ-
entiable functions on σ, endowed with the usual topology (of uniform convergence
on compact subsets of σ together with all the derivatives up to order m). We denote

Typeset by AMS-TEX
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also by C∞
loc(E|σ) (= E(E|σ) ) the space of infinitely differentiable functions on σ, en-

dowed with the usual
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Frechet-Swartz topology and by C∞
◦ (E|σ) (= D(E|σ)) the space of infinitely

differentiable functions with compact supports on σ, topologized in the usual way.
The spaces Cmloc(E|σ) and E(E|σ) are well known to be Frechet space. Sometimes
we will write simple Cm(E|σ) for Cmloc(E|σ).

We will say that u ∈ Cm(E|Ω), with a (not necessary open) set Ω ⊂ Rn, if
u ∈ Cmloc(E|

◦
Ω
) continuously extends together with its derivatives up to order m to

Ω. Then Cm(E|Ω) is a Frechet space too (end even Banach space, if Ω ⊂ Rn is a
compact and m <∞).

As usual, D′(E|σ) is the space of distributions and E ′(E|σ) is the space of distri-
butions with compact supports on σ.

Further, let E∗ be the dual bundle of E, and let (., .)x be a Hermitian metric in
the fibers of E. Then ∗E : E → E∗ is defined by < ∗Ev, u >x= (u, v)x (where u, v

are sections of E and < w, u >x=
∑k

j wj(x)uj(x) is the natural pairing E∗ ⊗E →
C). Let Λr be the bundle of complex valued exterior forms of degree r (r = 0, 1, . . . )
over X , and dx the usual volume form on X .

Let Lq(E|D) (with 1 ≤ q <∞) be the Banach space of all measurable functions
defined on D, for which

‖u‖Lq(E|D) =

(∫

D

(u, u)q/2x dx

)1/q

<∞.

We also will denote by Wm,q(E|D) the Sobolev space of distribution sections of E
over D having weak derivatives in the Lebesgue space Lq(E|D) up to order m. The
space Wm,q(E|D) is the Banach space with the norm

‖u‖Wm,q(E|D) =


 ∑

|α|≤m

∫

D

(Dαu,Dαu)q/2x dx




1/q

.

As usual, the sign Wm,q
loc (E|D) we will use for the Sobolev space of functions be-

longing to Wm,q(E|K) for any compact set K b D (Lqloc(E|D) = W 0,q
loc (E|D)).

Let dop(E → F ) be the vector space of smooth linear partial differential opera-
tors of order ≤ p between the vector bundles E and F . Then P ∈ dop(E → F ) is
an (l × k) matrix of scalar linear partial differential operators, i.e. we have

P (x,D) =
∑

|α|≤p
Pα(x)Dα

where Pα(x) are (l × k)-matrices of smooth functions on X . We will denote by
σ(P ) its principal symbol

σ(P )(x, ζ) =
∑

α=p

Pα(x)ζα (x ∈ X, ζ ∈ R
n).

An open set is the natural domain of the system Pf = 0. However some problems
require the consideration of solutions on sets σ ⊂ X which are not open. Here we
are interested not simply in restrictions of solutions to the given set, but also in the
so-called local solutions of the system Pu = 0 on σ, that is, solutions of this system
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in a neighbourhood of σ. The space of local solutions of the system Pu = 0 on
σ will be denoted by SP (σ) and let Sm,qP (D) = Wm,q(E|D) ∩ SP (D) be the closed
linear subspace of Wm,q(E|D) of weak solutions of the equation Pu = 0 in D.

We will denote by tP ∈ dop(F
∗ → E∗) (or by P ′ where it is more convenient)

the transposed operator

P ′(x,D) =
∑

|α|≤p
(−1)|α|Dα(tPα(x) × ·),

and by P ∗ = (∗−1
E P ′∗F ) ∈ dop(F → E) the (formal) adjoint operator of P ∈

dop(E → F ). In the standard case, (u, v)x =
∑k
j=1 uj(x)vj(x), (f, g)x =

∑l
j=1 fj(x)gj(x),

we have
P ∗(x,D) =

∑

|α|≤p
(−1)|α|Dα(P ∗

α(x) × ·),

where P ∗
α(x) is the conjugate matrix of Pα(x).

Definition 1.1.1. A differential bilinear operator GP (., .) ∈ dop−1((F
∗, E) →

Λn−1) is said to be Green’s operator for P ∈ dop(E → F ) if the following formula
holds:

dGP (g, v) =< g, Pv >x dx− < tPg, v >x dx (g ∈ C∞(F ∗), v ∈ C∞(E)).

For the proof of the following properties of Green’s operators we refer readers to
the book of Tarkhanov [T5] (pp. 82-83).

Proposition 1.1.2. Green’s operator for a differential operator P ∈ dop(E →
F ) always exist. Moreover, if G1 and G2 are two Green’s operators for P then there
exists a bidifferential operator T ∈ dop−2((F

∗, E) → Λn−2) that G2 −G1 = dT .

Proposition 1.1.3. If P ∈ dop(E → F ) and Q ∈ doq(F → G) with a trivial
vector bundle G = X × Cm then

GtP (v, g) = GP ∗(∗v, ∗−1g) = −GP (g, v),

GQP (g, v) = GQ(g, Pv) +GP (tQg, v).

For instance, Green’s operator GP can be written in the form

(1.1.1) GP (g, v) =
∑′

|β+γ+1j |≤p
(−1)|β|Dβ(gPβ+γ+1j

)Dγv(∗dxj)

where
∑′

indicate that an order has been selected with respect to the multi-indexes
β, γ, 1j, and ∗ is the Hodge operator defined for differential forms (see [T5], p.82). In
particular,
there exists the only one Green’s operator GP for a first order differential oper-
ator P ; this operator is given by the following formula:

GP (g, v) = g

[
σ(P )

(
x,

∗∂x√
−1

)]
v,

where ∗∂ = (∗dx1, . . . , ∗dxn).
For the purposes of this research it is more convenient to write Green’s operators

in other form. However for this we need the so-called Dirichlet systems of boundary
operators.

Let D be a relatively compact domain in X with smooth boundary, let U be a
neighbourhood of ∂D in X , and Fj = U × Ck (0 ≤ j ≤ r < ∞) be (trivial) vector
bundles over the neighbourhood U .
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Definition 1.1.4. A system {Bj}rj=0 of differential operators Bj ∈ dobj
E|U →

Fj) is said to be a Dirichlet system of order r on ∂D if 1) 0 ≤ bj ≤ r; 2) bj 6= bi for
j 6= i; 3) rankCσ(Bj)(y, dρ) = k (0 ≤ j ≤ r), y ∈ U , where σ(Bj) is the principal
symbol of the operator Bj, and ρ belongs to the class of functions defining the
domain D (D = {x ∈ X : ρ(x) < 0, |dρ| 6= 0 in U}).

The following proposition shows how important for various boundary value prob-
lems the Dirichlet systems are. One can find similar statement, for example, in the
books [Bz] and [T4] (Lemma 28.2).

Proposition 1.1.5. Let ∂D ∈ Cs, s ≥ r, and {Bj}rj=0 is a Dirichlet system of

order r in U . Then for any system of sections uj ∈ Cs−bj (Fj|∂D), 0 ≤ j ≤ r, there
is a section u ∈ Cs(E|D) such that Bju|∂D = uj for 0 ≤ j ≤ r.

The following lemma was proved in [T4] (p.280, Lemma 28.3).

Lemma 1.1.6. Suppose that the boundary ∂D of D is non characteristic for
P ∈ dop(E → F ) (l ≥ k). Then, given Dirichlet system {Bj}p−1

j=0 , one can find a
neighbourhood U of ∂D, and Green’s operator GP such that

GP (g, v) =

p−1∑

j=0

< Cjg, Bjv >x ds +
dρ

|dρ| ∧Gν(g, v) (g ∈ C∞(F ∗
|U ), v ∈ C∞(E|U ))

where {Cj}p−1
j=0 is a Dirichlet system of order (p − 1) on ∂D such that Cj ∈

dop−bj−1(F
∗
|U → F ∗

j ) (0 ≤ j ≤ p− 1), and Gν ∈ dop−1((F
∗, E)|U → Λn−2).

Using Green’s operators one obtains integral representations for solutions of the
system Pu = 0.

A matrix L(x, y) is said to be a left fundamental solution of the operator P ∈
dop(E → F ) on X if

∫

X

< L(x, y), P (y)v(y)>y dy = v(x) for every v ∈ C∞
◦ (E);

and a matrix R(x, y) is said to be a right fundamental solution of the operator
P ∈ dop(E → F ) on X if

P (x)

∫

X

< R(x, y), g(y) >y dy = g(x) for every g ∈ C∞
◦ (F ).

We say that the linear partial differential operator P ∈ dop(E → F ) is elliptic if
its principal symbol

σ(P )(x, ζ) : C
k → C

l

is injective for every x ∈ X and ζ ∈ Rn\{0}. In particular l ≥ k; we say that
P is determined elliptic if l = k and overdetermined elliptic if l > k. Every
determined elliptic operator with smooth coefficients has locally a bilateral (i.e. left
and right) fundamental solution, and hence every overdetermined elliptic operator
with smooth coefficients has locally a left fundamental solution. If the coefficients
of the operator P are real analytic, there exist global fundamental solutions of the
operator P on X (cf., for example, [T5], §8). In fact, for the existence of left (right)
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fundamental solutions of the operator P , the so-called Uniqueness Condition (U)S
for the Cauchy problem in small on X for the operator P (P ′) is important (see
[T4], Corollary 27.8):

(U)S if for a domain O ⊂ X we have Pu = 0 in O, and u = 0 on a non-empty
open subset of O then u ≡ 0 in O.

From now on we will assume that the operator P is elliptic.

Theorem 1.1.7 (Green’s formula). Let L is a (left) fundamental solution
of the operator P on X. For every u ∈W p,2(E|D) the following formula holds:

(1.1.2) −
∫

∂D

GP (L(x, y), u(y)) +

∫

D

< L(x, y), Pu(y) >y dy =

{
u(x), x ∈ D,

0, x ∈ X\D.

Proof. If u ∈ Cp(E|D) (that is, u is p times continuously differentiable in a

neighbourhoud of D) then (1.2) follows from the Stokes’ formula and Definition 1.1.
Since the boundary of D smooth, there exists a sequence of functions {uN}∞N=1 ∈
Cp(E|D) approximating u in W p,2(E|D). Then, for every number N ∈ N,

(1.1.3)

−
∫

∂D

GP (L(x, y), uN(y)) +

∫

D

< L(x, y), PuN(y) >y dy =

{
uN (x), x ∈ D,

0, x ∈ X\D.

Using the boundedness theorem for pseudo-differential operators (see [ReSz],
1.2.3.5) we conclude that the second integral in the left hand side of (1.1.2) is a
bounded linear operator from W p,2(E|D) to W p,2(E|D).

Thus, to obtain (1.1.2) it suffices to pass to the limit in (1.1.3) for N → ∞ . �

The integrals of the type:

−
∫

∂D

GP (L(x, y), u(y))

we will call Green’s integrals associated to the operator P and denote by Gu.
Similar (to Theorem 1.1.7)) results could be obtained for various classes of func-

tions. For example, see Corollary 10.1 in the book [T5], or Theorem 1.3.2 below.

Remark 1.1.8. The boundary integral in the left hand side of (1.1.2) does not
depend on the choice of Green’s operator GP (see Proposition 1.1.2).

Corollary 1.1.9. Let L be a bilateral fundamental solution of the operator
P on X. Then the boundary integral in (1.2) is a (bounded) projection from

Wm,2(E|D) onto Sm,2P (D); and for every f ∈ Wm−p,2(F|D) (m ≥ p) the inte-

gral
∫
D
< L(x, y), f(y) >y dy is a Wm,2(E|D)-solution of the equation Pu = f in

D.

Proof. Since the derivatives Dαu (|α| ≤ p − 1) have natural boundary values
Dαu|∂D ∈ Wm−|α|−1/2,2(E|∂D) (see [EgSb], p.120), it is easy to see from Propo-
sition 1.1.2 that the boundary integral in (1.2) does not depend on the choice of
Green’s operator GP . Therefore, choosing as GP Green’s operator provided by
Lemma 1.6.6, and using boundedness theorem for potential (co-boundary) oper-
ators on a manifold with boundary ([ReSz], 2.3.2.5) one can conclude that the
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boundary integral in (1.1.2) defines a bounded linear operator from Wm,2(E|D) to

Wm,2(E|D). Hence the statement follows from the properties of bilateral funda-
mental solutions of elliptic differential operators. �

Remark 1.1.10. All the discussion above we can repeat with small technical
changes under weaker smoothness assumption on ∂D. Namely, according to the
usual understanding, differential operators onX must have (infinitely) differentiable
coefficients, however the smoothness of the coefficients of the differential operators
{Cj} and Gν (in Lemma 1.1.6) is finite if the smoothness of boundary is finite (see
[T4], p.280). One may check what smoothness requirements for the coefficients of
{Cj} are satisfied as a consequence of the supposed smoothness of the boundary
of D (and coefficients of the initial expressions {Bj}). Certainly, these difficulties
are removed if ∂D ∈ C∞. For our purposes it is sufficient that the coefficients of

every differential operator Bj belong to the class C
p−1−bj

loc , and the coefficients of

each differential operator Cj belong to the class Cbj in the neighbourhood U .

Without loss of a generality we assume that bj = j. For example, we can set

Bj = Ik
∂j

∂nj , where ∂j

∂nj is the j-th normal derivative with respect to ∂D and Ik is
the unit (k × k)-matrix.

If the operator P is overdetermined, it may happen that there are no right (in
particular bilateral) fundamental solutions.

Example 1.1.11. If P is the Laplace operator ∆n in Rn, then there is a (bilat-
eral) fundamental solution of P , for example, the standard fundamental solution
ϕn of the convolution type. In this case (1.1.2) is Green’s formula for harmonic
functions and the boundary integral in (1.1.2) is the well-known Green’s integral.

Example 1.1.12. If P is the Cauchy-Riemann system d
dz in C1 (∼= R2), then

there is a (bilateral) fundamental solution L(ζ, z) = 1
πζ−z) of P . In this case (1.1.2)

is the Cauchy-Green formula (see [He]) and the boundary integral in (1.1.2) is the
well-known Cauchy integral.

Example 1.1.13. If P is the Cauchy-Riemann system ∂ in C
n (∼= R

2n), n >
1, then there are no right fundamental solutions of P (due to the theorem on
removability of compact singularities of holomorphic functions in Cn of dimension
n > 1). As a left fundamental solution of the Cauchy-Riemann system we can take
L(ζ, z) = tP ∗(ζ)ϕ2n(ζ, z) where ϕ2n is the standart fundamental solution of the
Laplace operator in R2n and ζ, z ∈ Cn. In this case (1.1.2) is the Martinelli-Bochner
formula (see [AYu]) and the boundary integral in (1.1.2) is the Martinelli-Bochner
integral. It is known that the Martinelli-Bochner integral is only harmonic (but, in
general, not holomorphic) everywhere outside of ∂D. Hence it is not a projection

from Wm,2(E|D) onto Sm,2
∂

(D). Moreover, the integral
∫
D
< L(x, y), f(y) >y dy is

not a solution of the equation ∂u = f in the domain D.

Romanov [Rom2] proved that, if D is a bounded domain in Cn, the limit
limν→∞Mν of iterations of the Martinelli-Bochner integral M in the Sobolev space
W 1,2(D) exists; and that this limit is a projection from W 1,2(D) onto the space of

holomorphic W 1,2(D) - functions (i.e. onto S1,2

∂
(D)). Using the iterations he also

obtained a multi-dimensional analogue of the Cauchy-Green formula in the plane,
and, as a corollary, an explicit formula for solutions of the equation ∂u = f in
pseudo-convex domains in Cn.
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Fortunately, the phenomenon of convergence of iterations of the boundary inte-
gral in (1.1.2) is more general than a particular property of the Martinelli-Bochner
integral. For example, in [Sh3] the theorem on iterations was proved for special
Green’s integrals of matrix factorizations of the Laplace operator in R

n and in
[NaSh] for special Green’s integrals associated to operators with injective symbols
(see also Chapter 3 below). æ

§1.2. On the jump behaviour of the Martinelli-Bochner integral

As we have seen in Example 1.1.13, the Martinelli-Bochner integral is nothing
but a Green integral associated with the Cauchy-Riemann system. In this section
we will illustrate on the example of the Martinelli-Bochner integral how to deal
with Green’s integrals for general elliptic systems.

The classical notions of maximum function and Lebesgue point for summable
functions are very important in modern theory of functions (see, for example,
[St]). Information on the boundary behaviour of the Martinelli-Bochner integral in
Lebesgue points of a summable density one can extract from Privalov’s Principal
Lemma (see 1.2.1 below).

Also in this section we consider ”delicate” theorems on the jump of the Martinelli-
Bochner integral at generalized Lebesgue points of a summable function.

In 1.2.2 we give some definitions and lemmata concerned with one of possible
generalization of the classical notions of maximum function and Lebesgue point
of a locally summable function. It seems that these results are known and rather
trivial. However we could not find an appropriate reference.

In 1.2.3 we investigate some properties of the Poisson integral of a summable
function at the generalized Lebesgue points. For the usual Lebesgue points one can
find some of the properties in [St], some results, for example Theorem 1.2.3.2, were
mentioned (without a reference) in a paper of Rudin [Ru].

We use the result of 1.2.2 and 1.2.3 to study in 1.2.4 the behaviour of Martinelli-
Bochner integral with a density while the exterior variables of the integral crosses
a smooth integration hypersurface. In particular, for generalized Lebesgue points
we prove a theorem on the jump of the Martinelli-Bochner integral with bounded
density. It is an analogue of the theorem for the usual Lebesgue points of summable
functions (see 1.2.1 below and [Ky]). Also we study the jump behaviour of the
Martinelli-Bochner integral with a continuous density given on a measurable subset
S of a smooth closed hypersurface H (cf. [Sh2]).

1.2.1. The Privalov’s Principal Lemma.
Let D be a domain in Cn (n ≥ 1) and H be a piece-wise smooth closed hyper-

surface dividing D onto two domains D+ and D−. We choose on H the orientation
of ∂D−. As usual, by ”piece-wise smooth” we mean that H is the union of a finite
number of pieces of smooth hypersurfaces Hk, which intersect transversally. To each
point z0 ∈ H we associate two nondegenerate tangential cones T (D±, z0). They
are supplementary whose boundaries are contained in the tangent hyperplanes to
the Hk at z0.

We denote by B(z0, r) the ball of radius r in R
2n (∼= C

n) centered at the point
z0, and by m(B(z0, r)) its Lebsgue measure. Sometimes we will simply write B(r)
for the ball with centre at zero.

Also we denote by α(D±, z0) the ratio of the measure of the solid angle of the
tangential cone T (D±, z0) on the (2n−1)-dimensional measure of the unit (2n−1)-
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sphere in Cn:

α(D±, z0) = lim
r→0

(∫

∂B(z0,r)∩D±

ds

)
/

(∫

∂B(z0,r)

ds

)
(z0 ∈ H),

and by K±(z0) cones with tip at z0 belonging respectively to T (D±, z0) and only
intersecting at the tip z0.

Let us rehearse some known definitions and facts to be compared with their
generalizations in 1.2.2 below.

Definition 1.2.1.1. A point x ∈ Rn is said to be a Lebesgue point of a locally
summable function f ∈ L1

loc(R
n) if

lim
r→0

1

m(B(x, r))

∫

B(x,r)

|f(y)− f(x)|dy = 0.

Definition 1.2.1.2. Let f ∈ L1(Rn). Then we will say that the function

mf(x) = sup
r>0

1

m(B(x, r))

∫

B(x,r)

|f(y)|dy

is the maximum function of the function f .

Let now

U(z, ζ) =
(n− 1)!

(2π
√
−1)n

n∑

k=1

(−1)k−1 ζk − zk
|ζ − z|2n dζ ∧ dζ

be the Martinelli-Bocner kernel in Cn, and

Mf(z) =

∫

H

U(z, ζ)f(ζ)

be the Martinelli-Bochner integral with a summable density f ∈ L1(H). In general,
at a point z ∈ H this integral with density of such a class does not exist as singular
integral,
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because the integrand has a point-wise singularity of order which is equal to the
dimension of H. Moreover, even if f is continuous, this integral may not exist as
the limit

V.P. Mf(z0) = lim
ε→0

∫

H\B(z0,ε)

U(z0, ζ)f(ζ).

We will study in this section the behaviour of the integral M near the hypersur-
face H.

Lemma 1.2.1.3. For every point z0 ∈ H

V.P.

∫

∂D−

U(z0, ζ) = α(D−, z0).

Proof. See, for example, book [Ky]. �

The following result was obtained by Kytmanov [Ky]. We omit its proof because
in 1.2.4 we will use similar arguments in order to prove a more ”delicate” theorem
on the jump behaviour of Martinelli-Bochner integral.

Theorem 1.2.1.4 (Privalov’s Principal Lemma). Let f ∈ L1(H) and z0 ∈
H be a Lebesgue point of the function f . Then
(1.2.1.1)

Mf(z) = ∓α(D∓, z0)f(z0) +

∫

H\B(z0,|z−z0|)
U(z, ζ)f(ζ) + r(z, z0) (z ∈ D),

where r(z, z0) → 0 if z → z0 in the cone K±(z0). Moreover, for every compact set
K ⊂ H there is a constant C > 0 such that |r(z, z0)| ≤ Cmf(z0) for all z0 ∈ K
and z ∈ K±(z0).

The following formula for the jump of the Martinelli-Bochner integral at Lebesque
points of the density f follows immediately from Theorem 1.2.1.4.

Corollary 1.2.1.5. Let f ∈ L1(H) and z0 ∈ H be a Lebesgue point of the
function f . Then

lim
z+,z−→z0

(Mf(z−) −Mf(z+)) = f(z0),

where z± ∈ K±(z0) and the limit is uniform on compact subsets of H.

We will discuss in 1.2.4 formulae of this type for the Martinelli-Bochner integral
at generalized Lebesque point of the density f .

The jump behavior of Green’s integrals with smooth densities and distribution
densities will be discussed in §1.3. For the jump behavior of Green’s integrals with
summable densities we refer the readers to the book [T4] (see Lemma 28.11 and
Remark 28.12).

Let us show how to use the Privalov’s Principal Lemma in order to obtain more
detail information about boundary behaviour of Martinelli-Bochner integral.

We assume that D− is a bounded domain in Cn with boundary ∂D− = H in
C1. Then Theorem 1.2.1.4 implies that, for all the Lebesgue points z0 ∈ ∂D− of
the function f for which there exists the singular integral (see [St], p.52)

V.P.

∫

∂D−

U(z0, ζ)f(ζ)
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(i.e. almost every where on ∂D− ) the integral Mf(z) (z ∈ D±) has non tangential
limit values Mbf

± on H:

(1.2.1.2) Mbf
±(z0) = ∓f(z0)/2 + V.P.

∫

∂D−

U(z0, ζ)f(ζ) (z0 ∈ H).

If f ∈ Lq(H) (1 < q <∞) then, using boundedness theorem for singular integral
operators in these spaces (see [St], p.52) and (1.2.1.2), we conclude that Mbf

± ∈
Lq(H).

The following corollary clarify the character of the convergence of Mf± to its
boundary limit values Mbf

± on H (cf. [ShT4]).

Corollary 1.2.1.6. Let f ∈ Lq(H) (1 < q <∞). Then

(1.2.1.3) lim
ε→0

(∫

H

|Mf(z ± εν(z)) −Mbf
±(z)|qds(z)

)1/q

= 0.

Proof. Let us prove the convergence ofMf(z−εν(z)) (another proof is similar).
Using formulae (1.2.1.1) and (1.2.1.2) for z ∈ H and ε > 0 we obtain

Mf(z − εν(z)) −Mbf
±(z) =

=

∫

H\B(z0,ε)

U(z, ζ)f(ζ) − V.P.

∫

H

U(z, ζ)f(ζ) + r(z, z − εν(z)).

It is known in Theory of singular integral operators (see [St], p.52) that
(1.2.1.4)

lim
ε→0

(∫

∂D−

∣∣∣∣∣

∫

H\B(z0,ε)

U(z, ζ)f(ζ) − V.P.

∫

H

U(z, ζ)f(ζ)

∣∣∣∣∣

q

ds(z)

)1/q

= 0.

On the other hand, by Theorem 1.2.1.4, for the compact set H = ∂D− there is
a constant C > 0 that

|r(z, z − εν(z))| ≤ Cmf(z)

for all z ∈ H and sufficiently small ε > 0. Since the maximum operator is continuous
as a map from Lq(H) to Lq(H) for 1 < q < ∞, then using the Lebesgue theorem
on the possibility to change the sign of the limit passage and the sign of integral
we conclude that

(1.2.1.5) lim
ε→0

(∫

∂D−

|r(z, z − εν(z))|q ds(z)
)1/q

= 0.

In order to obtain (1.2.1.3) from (1.2.1.4) and (1.2.1.5) it is sufficient to use the
triangle inequality for the norm in Lq(H), which was to be proved. �

In conclusion of this section we will formulate one more interesting (from the
author’s point of view) corollary. With this purpose for 1 ≤ q ≤ ∞ we denote by
Hq(D±) the Hardy classes of harmonic functions in the domain D± (see [PKuz]),
i.e. the set of such harmonic functions g(z) that

(1.2.1.6) lim sup
ε→0

∫

∂D−

|g(z ± εν(z))|q <∞.
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Corollary 1.2.1.7. Let ∂D− ∈ C2 and f ∈ Lq(∂D−) with 1 < q < ∞. Then
Mf± ∈ Hq(D±).

Proof. It is known that Mf is a harmonic function everywhere outside of the
hypersurface H = ∂D−. As for inequality (1.2.1.6) for the integral Mf , it follows
from Corollary 1.2.1.6 because every convergent sequence is bounded. �

1.2.2. Generalized Lebesgue points.
In this subsection we will try to generalize the notions of the Lebesque points of

a density f in order to extend the set of boundary points where the jump formula
for the Martinelli-Bochner integral still holds.

We will consider a locally summable function f in Rn given everywhere. Let us
formulate at first some definitions.

Definition 1.2.2.1. A point x ∈ R
n is said to be a generalized Lebesgue point

of a locally summable function f if

lim
r→0

1

m(B(x, r))

∫

B(x,r)

f(y)dy = f(x).

Of course, a Lebesgue point of the function f (see Definition 1.2.1.1) is a gener-
alized Lebesgue point, but the opposite statement is wrong.

It would be natural to use in the definition above not only the system of balls
but also a suitable system of ”contracting” sets. It is known that it is possible for
the usual Lebesgue points. The generalized Lebesgue points are more ”delicate”
objects. For them it is possible too, but only for bounded functions and special
type of set’s systems.

Let F be a family of measurable sets in Rn. We will say that the family is regular
if for every set σ ⊂ F there is an (open) ball B ⊃ σ with centre at the origin such
that m(σ) ≥ cm(B) with a positive constant c tending to 1 for m(σ) → 0.

Definition 1.2.2.2. A point x ∈ Rn is said to be a generalized Lebesgue point
of the function f with respect to the family F if

lim
σ∈F,m(σ)→0

1

m(σ)

∫

σ

f(x− y)dy = f(x).

Lemma 1.2.2.3. If x ∈ Rn is a generalized Lebesgue point of a locally bounded
function f then it is a generalized Lebesgue point of the function f with respect to
any regular family F.

Proof. Let {σ(r)} be a sequence in a regular family F such that limr→0(m(σ(r)) =
0 and let B(r) be the corresponding family of balls (as in the definition of regular
family F). Then

lim
r→0

1

m(σ(r))

∫

σ(r)

f(x− y)dy =

= lim
r→0

∫
B(r)

f(x− y)dy −
∫
B(r)\σ(r)

f(x− y)dy
∫
B(r)

dy −
∫
B(r)\σ(r)

dy
=
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(1.2.2.1) = lim
r→0

1
m(B(r))

(
∫
B(r)

f(x− y)dy −
∫
B(r)\σ(r)

f(x− y)dy)

1 − 1
m(B(r))

∫
B(r)\σ(r)

dy

Since the family F is regular we have:

lim
r→0

1

m(B(r))

∫

B(r)\σ(r)

dy = lim
r→0

m(B(r) −m(σ(r))

m(B(r)
≤

≤ lim
r→0

m(B(r) − cm(B(r))

m(B(r)
= 0.

Therefore, using the local boundedness of the function f and equality (1.4.1) we
conclude that

lim
r→0

1

m(σ(r))

∫

σ(r)

f(x− y)dy = f(x)

if x is a generalized Lebesgue point of the function f . The lemma is proved. �

Let us try to extend the definition of generalized Lebesgue points for summable
functions given on a smooth closed hypersurface H ⊂ R

n in the same way as for the
usual Lebesgue points. The definition depends on the choice of the volume form ds
on H. Of course, there is the natural choice of a volume form as induced by the
volume form dy in Rn. However, if H is a hypersurface on a manifold, it is not so.

Definition 1.2.2.4. A point x ∈ H is said to be a generalized Lebesgue point
of a summable function f ∈ L1

loc(H) if

lim
r→0

∫
B(x,r)∩H f(y)ds
∫
B(x,r)∩H ds

= f(x).

Lemma 1.2.2.5. If the function f is locally bounded (∈ L∞
loc(H)) then Definition

1.2.2.4 is invariant with respect to a volume form on H.

Proof. Let x ∈ H be a generalized Lebesgue point with respect to a volume
form ds on H. Any other volume form ds1 on H has the form ds1 = wds where w
is a positive continuous function on H. Therefore

lim
r→0

∫
B(x,r)∩H f(y)ds1∫
B(x,r)∩H ds1

=

= lim
r→0

∫
B(x,r)∩H f(y)(w(y)− w(x))ds+

∫
B(x,r)∩H f(y)w(x)ds

∫
B(x,r)∩H(w(y) − w(x))ds+

∫
B(x,r)∩H w(x)ds

=

= lim
r→0

(
∫
B(x,r)∩H f(y)(w(y)− w(x))ds)/(w(x)

∫
B(x,r)∩H ds)

(
∫
B(x,r)∩H f(y)(w(y)− w(x))ds)/(w(x)

∫
B(x,r)∩H ds) + 1

+

+ lim
r→0

(
∫
B(x,r)∩H f(y))ds)/(

∫
B(x,r)∩H)

ds)

(
∫
B(x,r)∩H f(y)(w(y)− w(x))ds)/(w(x)

∫
B(x,r)∩H ds) + 1

= f(x)

because of the continuity of the function w and local boundedness of f . �

For summable functions it is easy to find counter-examples.
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Example 1.2.2.6. Let H = R1, and f ∈ L1
loc(H) equal to y−1/3 in a neigh-

bourhood of the point x = 0 (for y 6= 0) and equals to zero if y = 0. Then x = 0
is a generalized Lebesgue point of the function f with respect to the volume form
dy, but it is not with respect to the value form w(y)dy where w(y) = y1/3 + 1 in a
neighbourhood of y = 0. �

We note that for the usual Lebesgue points Lemmata 1.2.2.3 and 1.2.2.5 hold
true for summable functions.

There is another natural approach to the definition of generalized Lebesgue
points of functions given on a smooth hypersurface. Namely, since H ∈ C1, in
a sufficiently small neighbourhood of a point x ∈ H we can represent the hyper-
surface H as a graph of a smooth function ϕ, given on the tangential plane of H
in the point x. In this plane there is the volume form dŝ induced from Rn. Then,

to a function f ∈ L1
loc(H), we can naturally associate the function f̂ given on the

tangential plane and we can consider x ∈ H as a Lebesgue point of f if it is a

Lebesgue point of f̂ with respect to the volume form dŝ. Using Lemmata 1.2.2.3
and 1.2.2.5 one can show that these 2 approaches (to the definition of the Lebesgue
points of functions given on a smooth hypersurface) are equivalent if the function
is locally bounded.

Let us give some more close definitions.
Let S be a set of positive ((n− 1)-dimensional) Lebesgue measure on a smooth

closed hypersurface H in Rn.
For points x ∈ Rn we denote by α(x, S) the following limit (if it exists):

(1.2.2.2) α(x, S) = lim
r→0

∫
B(x,r)∩S ds∫
B(x,r)∩H ds

.

If x is an interior point of S then α(x, S) = 1. For boundary points of S it is
not so. For example, if the boundary of S is piece-wise smooth then such a limit
exists and equals to the value of relative bodily angle of the tangential cone of ∂S
in the point x

Definition 1.2.2.7. A point x ∈ S is said to be a regular point of S if in this
point limit (1.2.2.2) exists.

Similar characteristic of the point x we can introduce for the projection ST of
the set S to the tangential plane T in the point x. Namely

α(x, ST ) = lim
r→0

∫
B(x,r)∩ST

dŝ
∫
B(x,r)∩T dŝ

.

Lemma 1.2.2.8. α(x, ST ) = α(x, S), if one of these limits exists.

Proof. Without loss of a generality we can consider the situation where x =
0 and T = {xn = 0} is the tangential plane to H in this point. Then, in a
neighbourhood of zero, the hypersurface H is given by the equality ρ(y) = yn −
ϕ(y′) = 0, where ϕ is a smooth function given in a neighbourhood U of zero in
T and satisfies ϕ(0) = 0, ϕ(y′) = o(|y′|) for |y′| → 0, and y′ = (y1, ..., yn−1) are

coordinates in T . It is clear that ∂ϕ
∂yk

∈ C(U) and ∂ϕ
∂yk

(0) = 0 (1 ≤ k ≤ n − 1).

Then the volume form of H is given in the form:

ds(y) = ∗ dρ(y)|dρ(y)| =
(−1)n−1dy[n] −∑n−1

k=1(−1)k−1 ∂ϕ
∂yk

(y′)dy[k]

(1 +
∑n−1
k=1( ∂ϕ

∂yk
(y′))2)1/2
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Since dyn = dϕ(y′) on the hypersurface H, we have

ds(y) = −
(−1)n−1dy[n]−∑n−1

k=1(−1)n−2( ∂ϕ
∂yk

(y′))2dy[n]

(1 +
∑n−1
k=1 ( ∂ϕ

∂yk
(y′))2)1/2

=

(1.2.2.3) = (−1)n−1

(
1 +

n−1∑

k=1

(
∂ϕ

∂yk
(y′)

)2
)1/2

dy′ = (−1)n−1b(y′)dy′.

For sufficiently small r > 0 we denote by P1(r) and P2(r) the projections to
the plane T of the sets B(1) ∩H/r and B(1) ∩ S/r correspondingly. It is easy to
see that P1(r) ⊂ B(1) ∩ T , P2(r) ⊂ B(1) ∩ ST /r. Moreover, P1(r) = {y ∈ T :
(y2

1 + ...+ y2
n−1 + ϕ2(ry)/r2)1/2 ≤ 1}, and P2 = P1(r) ∩ ST /r.

We note that the set P1(r) contains the ballB(d(r)) where d(r) = (1−max(ϕ2(ry)/r2).
Therefore using the above mentioned properties of the function ϕ and formula
(1.2.2.3) we obtain

lim
r→0

1

rn−1

∣∣∣∣∣

∫

B(r)∩H
ds−

∫

B(r)∩T
dŝ

∣∣∣∣∣ ≤ lim
r→0

∣∣∣∣∣(−1)n−1

(∫

P1(r)

b(y′)dy′ −
∫

P1(r)

dy′
)∣∣∣∣∣+

+ lim
r→0

∣∣∣∣∣(−1)n−1

∫

(B(1)∩T )\P1(r)

dy′

∣∣∣∣∣ ≤ lim
r→0

Vn−1(1 − (d(r))n−1) = 0,

where Vn−1 is the volume of the unit ball in Rn−1. Hence

(1.2.2.4) lim
r→0

1

rn−1

∣∣∣∣∣

∫

B(r)∩H
ds−

∫

B(r)∩T
dŝ

∣∣∣∣∣ = 0.

Arguing similarly we see that

(1.2.2.5) lim
r→0

1

rn−1

∣∣∣∣∣

∫

B(r)∩S
ds−

∫

B(r)∩ST

dŝ

∣∣∣∣∣ = 0.

However 1
rn−1

∫
B(r)∩T dŝ = Vn−1, and hence the limits in (1.4) always exists. Now

using formula (1.5) we conclude that the existence of the limit α(x, S) implies the
existence of the limit α(x, ST ) and contrary. Therefore (1.2.2.4) and (1.2.2.5) imply
that α(x, S) = α(x, ST ). The proof is complete. �

At the end of this section let us give one more useful definition.

Definition 1.2.2.9. Let f ∈ L1(Rn). Then we will say that the function

m̃f(x) = sup
r>0

1

m(B(x, r))

∣∣∣∣∣

∫

B(x,r)

f(y)dy

∣∣∣∣∣

is the generalized maximum function of the function f .

It is clear that m̃f(x) ≤ mf(x). Moreover, it is possible that m̃f(x) = 0, but
mf(x) = ∞.
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1.2.3. Some properties of the Poisson integral.
Let Rn be a boundary hyperplane of the upper half-space R

n+1
+ = {(x, ε) : x ∈

Rn, ε > 0}. We denote by Pf(x, ε) the Poisson integral of a summable function f :

Pf(x, ε) =

∫

Rn

P(|x− y|, ε)f(y)dy =

∫

Rn

P(|y|, ε)f(x− y)dy,

where P(r, ε) = 2ε
σn+1(r2+ε2)(n+1)/2 is the Poisson kernel for the half-space R

n+1
+ and

σn+1 is the area of the unit sphere in R
n+1.

For the further discussion we need the following (known) properties of the Poisson
kernel.

Property A. The kernel P(r, ε) is homogeneous of degree −n, i.e. P(λr, λε) =
λ−nP(r, ε) for λ > 0.

Property B.
∫

Rn P(|y|, ε)dy =
∫

Rn P(|z|, 1)dz = 1.

Property C. limr→0 r
nP(r, 1) = 0, limr→∞ rnP(r, 1) = 0.

Lemma 1.2.3.1. Let f ∈ L1(Rn) then for all x ∈ Rn we have:

sup
ε>0

|Pf(x, ε)| ≤ m̃f(x).

Proof. The proof is similar to the proof of theorem 2 (a) in the book of Stein
[St] (p. 77).

We fix a point x ∈ Rn and an arbitrary number ε > 0 and set g(y) = f(x− εy).
Then

Pf(x, ε) =

∫

Rn

P(|y|, 1)f(x− εy)dy =

∫

Rn

P(|y|, 1)g(y)dy = Pg(0, 1),

m̃f(x) = sup
r>0

1

m(B(r))

∣∣∣∣∣

∫

B(r)

f(x− y)dy

∣∣∣∣∣ = sup
r>0

εn

m(B(r))

∣∣∣∣∣

∫

B(r/ε)

f(x− εy)dy

∣∣∣∣∣ =

= sup
r>0

1

m(B(r/ε))

∣∣∣∣∣

∫

B(r/ε)

g(y)dy

∣∣∣∣∣ = m̃g(0).

Thus, it is sufficient to prove that Pg(0, 1) ≤ m̃g(0).
If m̃g)(0) = ∞ the statement is true. Let us suppose then that m̃g(0) <∞.
Let λ(r) =

∫
∂B(1)

g(ry)dσ(y) where dσ is the volume form of the sphere ∂B(1).

Then

Λ(r) =

∫

B(r)

g(y)dy =

∫ r

0

dt

∫

∂B(t)

g(y)dσ(y) =

∫ r

0

tn−1λ(t)dt.

We note that the function tn−1λ(t) is summable on the interval [0, R] where
R > 0, because g ∈ L1(Rn) and

∫ R

0

|tn−1λ(t)|dt ≤
∫

B(R)

|g(y)|dy ≤ ∞.
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Therefore almost everywhere on [0, R] there is the equality

dΛ(r)

dr
=

d

dr

[∫ r

0

tn−1λ(t)dt

]
= rn−1λ(r).

Moreover, since the function λ(r) is absolutely continuous (see [RS-N], p.395), we
can use the integration by parts.

∫

Rn

P(|y|, 1)g(y)dy =

∫ ∞

0

P(r, 1)rn−1λ(r)dr = lim
δ→0,N→∞

∫ N

δ

P(r, 1)rn−1λ(r)dr =

(1.2.3.1)

= lim
δ→0,N→∞

∫ N

δ

P(r, 1)rn−1dΛ(r) = lim
δ→0,N→∞

[
P(r, 1)Λ(r)|Nδ −

∫ N

δ

Λ(r)dP(r, 1)

]
.

Because

|Λ(r)| =

∣∣∣∣∣

∫

B(r)

g(y)dy

∣∣∣∣∣ ≤ m(B(r))m̃g(0) =
σn
n
rnm̃g(0),

using Property C of the Poisson kernel we obtain

(1.2.3.2) lim
δ→0

P(δ, 1)Λ(δ) ≤ lim
δ→0

σn
n
δnm̃g(0)P(δ, 1) = 0,

(1.2.3.3) lim
N→0

P(N, 1)Λ(N) ≤ lim
N→∞

σn
n
Nnm̃g(0)P(N, 1) = 0.

Now, since −dP(r,1)
dr

> 0 for r > 0, formulae (1.2.3.1), (1.2.3.2), and (1.2.3.3) imply
that

∣∣∣∣
∫

Rn

P(|y|, 1)g(y)dy

∣∣∣∣=
∣∣∣∣
∫ ∞

0

Λ(r)(−dP(r, 1))

∣∣∣∣ ≤
∫ ∞

0

|Λ(r)|d(−P(r, 1)) ≤

≤ σn
n
m̃g(0)

∫ ∞

0

rnd(−P(r, 1)) = m̃g(0).

The proof is complete. �

In the same way as the statement (b) of theorem 1 in [St] (p.237) follows from
the statement (a), Lemma 1.2.3.1 implies the following result, mentioned in the
paper of Rudin [Ru].

Theorem 1.2.3.2. If x ∈ Rn is a generalized Lebesgue point of a function f ∈
Lq(Rn) (1 ≤ q ≤ ∞) then limε→0 Pf(x, ε) = f(x).

Proof. First we note that the Poisson integral is well defined for functions in
Lq(Rn) and that Lq(Rn) ⊂ L1

loc(R
n) (1 ≤ q ≤ ∞).

If x ∈ Rn is a generalized Lebesgue point of the function f then for any E > 0
there is δ > 0 such that for all 0 < r < δ the following inequality holds:

(1.2.3.4)
1

m(B(x, r))

∣∣∣∣∣

∫

B(r)

(f(x− y) − f(x))dy

∣∣∣∣∣ < E.
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We denote by g(y) the function

g(y) =

{
f(y) − fx), |y − x| < δ,

0, |y − x| ≥ δ
.

Obviously, g ∈ L1(Rn). Then

|Pf(x, ε) − f(x)| =

∣∣∣∣
∫

Rn

P(|y|, ε)(f(x− y) − f(x))dy

∣∣∣∣ ≤

(1.2.3.5)

≤
∣∣∣∣∣

∫

|y|<δ
P(|y|, ε)(f(x− y) − f(x))dy

∣∣∣∣∣+
∣∣∣∣∣

∫

|y|≥δ
P(|y|, ε)(f(x− y) − f(x))dy

∣∣∣∣∣ .

For the first summand in (1.2.3.5) the following estimate holds because of Lemma
1.2.3.1 and (1.2.3.4):

∣∣∣∣∣

∫

|y|<δ
P(|y|, ε)(f(x− y) − f(x))dy

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

|y|<δ
P(|y|, ε)g(x− y)dy

∣∣∣∣∣ ≤ m̃g(x) < E.

On the other hand

∣∣∣∣∣

∫

|y|≥δ
P(|y|, ε)(f(x− y) − f(x))dy

∣∣∣∣∣ ≤ ε

∫

|y|≥δ

|f(x− y) − f(x)|dy
(|y|2 + ε2)(n+1)/2

≤

≤ ε

(
‖f‖Lq(Rn)‖|y|−n−1‖Lp(Rn\B(0,δ)) + |f(x)|

∫

|y|≥δ
|y|−n−1dy

)
≤ Cqδ (f)ε

where p is the dual number for q (i.e. 1/p+ 1/q = 1). Therefore limε→0 Pf(x, ε) =
f(x), which was to be proved. �

Remark 1.2.3.3. For the usual Lebesgue points Theorem 1.2.3.2 holds also
in the case where the point (z, ε) tends to the point (x, 0) by any way in a non-
tangential cone K(x). For the generalized Lebesgue point it is not true in general.

Let us consider the situation where the integration set is ”bad” but not the
function f . To formulate the corresponding result we need the notion of the regular
point of a set (see Definition 1.2.2.7).

Theorem 1.2.3.4. Let S be a set of positive measure in Rn, f ∈ C(S)∩Lq(S),
(1 ≤ q ≤ ∞) and x be a regular point of the set S. Then

lim
ε→0

∫

S

P(|x− y|, ε)f(y)dy = α(x, S)f(x).

Proof. Let us denote by χS the characteristic functions of the set S and set

g(y) =

{
χS(y)f(y), y 6= x,

α(x, S)f(x), y = x.
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It is clear that g ∈ L1(Rn). Because of the continuity of f we have

1

m(B(x, r))

∫

B(r)

g(y)dy = lim
r→0

f(x)

m(B(x, r))

∫

B(x,r)

χs(y)dy+

+ lim
r→0

1

m(B(x, r))

∫

B(x,r)∩S
(f(x− y) − f(x))dy = α(x, S)f(x).

Hence x is a generalized Lebesgue point of the function g.
Now Theorem 1.2.3.2 yields that

lim
ε→0

∫

S

P(|x− y|, ε)f(y)dy = lim
ε→0

∫

Rn

P(|x− y|, ε)χS(y)f(y)dy =

lim
ε→0

∫

Rn

P(|x− y|, ε)g(y)dy = α(x, S)f(x).

The proof is complete. �

Theorem 1.2.3.4 implies an interesting (from author’s point of view) property of
the Poisson kernel.

Corollary 1.2.3.5. If x is a regular point of the set S ⊂ Rn then

lim
ε→0

∫

S

P(|x− y|, ε)dy = α(x, S).

1.2.4. Theorems on the jump of the Martinelli-Bochner integral.
Let, as in 1.2.1, D be a bounded domain in Cn and H be a smooth closed

hypersurface in D dividing it onto 2 domains D+ and D−, and oriented as the
boundary of D−, U be the Martielli-Bochner kernel, and Mf be the Martinelli-
Bochner integral with a density f ∈ L1(H).

Theorem 1.2.4.1. If f ∈ L∞(H) and z is a generalized Lebesgue point of f
then

lim
ε→0

[Mf(z − εν(z)) −Mf(z + εν(z))] = f(z),

where ν(z) is the vector of the unit normal to H in z.

Proof. It is known that the Martinelli- Bochner integral does not depend on
unitary transformations (see [Ky]. Hence we can consider only the situation where
z = 0 and the tangential plane T to H at the point z has the form T = {Im ζn = 0}.

Let y′ = (y1, ..., y2n−1) ∈ T and ζ ∈ H. Since H is smooth then it can be
represented in a neighbourhood of z = 0 in the following way: ζk = yk −

√
−1yn+k

(1 ≤ k ≤ n− 1), ζn = yn+
√
−1ϕ(y′) where ϕ is a smooth function in a neighbour-

hood U of zero in the plane T and satisfying the properties mentioned in the proof
of Lemma 1.2.2.8.

We note that, for any ball B(z, R) ⊂ Cn with 0 < R <∞,

lim
ε→0

∫

H\B(z,R)

[U(z − εν(z), ζ) − U(z + εν(z), ζ)] f(ζ) = 0.
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Now we choose R > 0 such that the hypersurface H is represented as above and
denote by f(y′) = f(y′, ϕ(y′)). Then the direct calculations show that

lim
ε→0

[Mf(z − εν(z)) −Mf(z + εν(z))] =

= lim
ε→0

2n−1∑

k=1

c(k)
2

σ2n

∫

B(R)∩T

[
yk

∂ϕ(y′)
∂xk

f(y′)

(|y′|2 + (ϕ− ε)2)n
−

yk
∂ϕ(y′)
∂xk

f(y′)

(|y′|2 + (ϕ+ ε)2)n

]
dy′+

+ lim
ε→0

c(n)
2

σ2n

∫

B(R)∩T

[
ynf(y′)

(|y′|2 + (ϕ− ε)2)n
− ynf(y′)

(|y′|2 + (ϕ+ ε)2)n

]
dy′+

+ lim
ε→0

c(n)
2

σ2n

∫

B(R)∩T

[
ϕ(y′)f(y′)

(|y′|2 + (ϕ− ε)2)n
− ϕ(y′)f(y′)

(|y′|2 + (ϕ+ ε)2)n

]
dy′+

+ lim
ε→0

2n−1∑

k=1

c(k)
2

σ2n

∫

B(R)∩T

[
ϕ(y′)∂ϕ(y′)

∂xk
f(y′)

(|y′|2 + (ϕ− ε)2)n
−

ϕ(y′)∂ϕ(y′)
∂xk

f(y′)

(|y′|2 + (ϕ+ ε)2)n

]
dy′+

+ lim
ε→0

2n−1∑

k=1

c(k)
2

σ2n

∫

B(R)∩T

[
ε∂ϕ(y′)

∂xk
f(y′)

(|y′|2 + (ϕ− ε)2)n
+

ε∂ϕ(y′)
∂xk

f(y′)

(|y′|2 + (ϕ+ ε)2)n

]
dy′+

(1.2.4.1) + lim
ε→0

1

σ2n

∫

B(R)∩T

[
εf(y′)

(|y′|2 + (ϕ− ε)2)n
+

εf(y′)

(|y′|2 + (ϕ+ ε)2)n

]
dy′

To estimate the summands in the right hand side of (1.2.4.1) we note that

(|y′|2 + ε2)1/2 = |y′ ± εν(z)| ≤ |y′ − ζ| + |ζ ± εν(z)| =

= (|y′|2 + (ϕ± ε)2)1/2 + |ϕ(|y′)|.
Because |ϕ(|y′)| = o(|y′|) in B(R) ∩ T we see that there exists a constant C > 0
such that

(1.2.4.2) C(|y′|2 + ε2) ≤ (|y′|2 + (ϕ± ε)2) for all |y′| < R.

Also we need the following identity

(1.2.4.3)
1

an
− 1

bn
=

(
1

a
− 1

b

) n−1∑

k=1

1

akbn−k−1
.

Let us use formulae (1.2.4.2) and (1.2.4.3) to estimate the second limit in the right
hand side of (1.2.4.1). Since the function f is bounded then using properties of the
function ϕ we conclude that

lim
ε→0

c(n)
2

σ2n

∣∣∣∣∣

∫

B(R)∩T

[
ynf(y′)

(|y′|2 + (ϕ− ε)2)n
− ynf(y′)

(|y′|2 + (ϕ+ ε)2)n

]
dy′

∣∣∣∣∣ ≤

≤ lim
ε→0

c(f)
2

σ2n

∫

B(R)∩T

ϕ(y′)ε

|y′|(|y′|2 + ε2)n
dy′ =
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= lim
ε→0

c(f)

∫

B(R)∩T

ϕ(y′)

|y′| P(|y′|, ε)dy′ = 0

Arguing similarly we see that all limits in the right hand side of (1.2.4.1) (except
the last one) equal to zero, i.e.

lim
ε→0

[Mf(z − εν(z)) −Mf(z + εν(z))] =

= lim
ε→0

1

σ2n

∫

B(R)∩T

[
εf(y′)

(|y′|2 + (ϕ− ε)2)n
+

εf(y′)

(|y′|2 + (ϕ+ ε)2)n

]
dy′ =

= lim
ε→0

1

σ2n

∫

B(R)∩T

[
εf(y′)

(|y′|2 + (ϕ− ε)2)n
− εf(y′)

(|y′|2 + ε2)n

]
dy′+

+ lim
ε→0

1

σ2n

∫

B(R)∩T

[
εf(y′)

(|y′|2 + (ϕ+ ε)2)n
− εf(y′)

(|y′|2 + ε2)n

]
dy′+

+ lim
ε→0

∫

B(R)∩T
P(|y′|, ε)f(y′))dy′ = lim

ε→0

∫

B(R)∩T
P(|y′|, ε)f(y′))dy′,

because for the first 2 summands we can apply the arguments above.
Finally we see that the point z = 0 is a generalized Lebesgue point of the function

f(y′) = f(y′, ϕ(y′) (see 1.2.1). Therefore Theorem 1.2.3.2 yelds

lim
ε→0

∫

B(R)∩T
P(|y′|, ε)f(y′))dy′ = f(z),

which was to be proved. �

Corollary 1.2.4.2. Let S be a set of positive (2n − 1)-dimensional measure
on H, z ∈ S be a regular point of the set S, and f ∈ C(S) ∩ L1(S). Then

lim
ε→0

[∫

S

U(z − εν(z), ζ)f(ζ) −
∫

S

U(z + εν(z), ζ)f(ζ)

]
= α(z, S)f(z).

Proof. Since the function f is continuous in z, it is bounded in a neighbourhood
of this point. Therefore Corollary 1.2.4.2 follows from Theorem 1.2.4.1 as Theorem
1.2.3.4 follows from Theorem 1.2.3.2. �

As in Theorem 1.2.3.2, direction of the tending is very important.

Example 1.2.4.3. Let S = [0, 1] be the interval of the real axis, H ⊂ C
1 be a

smooth curve in the upper half-plane, containing S, f = 1 and z = 0. It is clear
that α(z, S) = 1/2. Let the points z− and z+ tend to the point z = 0 by the
lines arg(z−) = β (0 < β < π), arg(z+) = γ (π < γ < 2π) in such a way that
b|z−| = |z+| (b > 0). Then the Martinell- Bochner kernel U in this case is the
Cauchy kernel and

lim
ε→0

[∫ 1

0

U(z − εν(z), ζ)f(ζ) −
∫ 1

0

U(z + εν(z), ζ)f(ζ)

]
= 1 − γ − β

2π
+

ln b

2π
√
−1

.

æ
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§1.3. Green’s integrals and the weak boundary
values of solutions of finite order of growth

Let, as in §1.1, P be an operator with injective symbol on an open set X ⊂ Rn, D
be a bounded domain in X with smooth boundary ∂D and {Bj}rj=0 be a Dirichlet

system of order r ≥ p − 1 on ∂D. As we have seen in §1.1 (Proposition 1.1.5),
it is convenient to formulate boundary value problems in domain D in terms of
{Bj} because in this case we do not need to take care about formal agreements
between the boundary data. In this way in Chapter 2 we will formulate the Cauchy
problem for elliptic systems. For this, however, we need an information on boundary
behaviour of solutions of these systems.

In this section we are interested in the weak limit values of the expressions Bju
(0 ≤ j ≤ p − 1) on ∂D of a section u ∈ SP (D). Let us distinguish the maximal
class of solutions u for which one can speak of these limit values.

We define the function ρ(x) by ±dist(x, ∂D) where the sign ”−” corresponds to
the case x ∈ D, and ”+” to the case x ∈ X\D. Then, if a neighbourhood U of the
boundary ∂D ∈ Cm (2 ≤ m ≤ ∞) is sufficiently small, ρ ∈ Cmloc(U), and |dρ| = 1
in U .

Hence, for small |ε|, the domains Dε = {x ∈ D : ρ(x) < −ε} have boundaries
of the class Cm, and as ε → +0(−0) they approximate D from inside (outside).
Here the unit outward normal vector ν(x) to the surface ∂D at the point x is given
by the gradient ∇ρ(x). The inner product ds = ∇ρcdv provides the volume form
induced by the volume dv(= dx) on X on every surface ∂Dε.

Definition 1.3.1. The space SP,B(D) consists of all solutions u ∈ SP (D) for
which the expressions Bju (0 ≤ j ≤ p − 1) have weak limit values uj ∈ D′(Fj|∂D)
on ∂D in the following sense

lim
ε→0

∫

∂D

< g,Bju(x− εν(x)) > ds =

∫

∂D

< g, uj > ds for all g ∈ C∞
◦ (F ∗

j|∂D).

It is clear that, if u ∈ SP (D) ∩ Cp−1(ED), the weak boundary values of the
expressions Bju (0 ≤ j ≤ p−1) on ∂D exist and coincide with the usual restrictions
(Bju)|∂D. In order to relate the weak limit values of Bju (0 ≤ j ≤ p− 1) on ∂D to
other (radial, non-tangential, in some norm) limits, Green’s formula (as in Theorem
1.1.7) and theorems on the jump of the boundary integral in this formula are usually
used. As before, the construction of Green’s formula is based on Lemma 1.1.6.

We assume that the complex {Ei, P i} has a fundamental solution in degree 0,
say, {Li}, Li ∈ pdo−pi−1

(Ei → Ei−1) where pdom(Ei → Ei−1) is the vector space

of the all pseudo- differential operators of type (Ei → Ei−1) and order m. This
means that Li+1P i + P i−1Li = 1 − Si on C∞

◦ (Ei) where Si ∈ pdo−∞(Ei → Ei)
are smoothing operators, and S0 = 0. In particular, the component L = L1 is a
left fundamental solution of the differential operator P . This condition holds if,
for example, the differential operator P (= P 0) satisfies the Uniqueness Condition
(U)S (see Tarkhanov [T4], Corollary 27.8).

Theorem 1.3.2. For any solution u ∈ SP,B(D) we have Green’s formula

(1.3.1) −
∫

∂D

p−1∑

j=0

< CjL(x, y), Bju >y ds =

{
u(x), x ∈ D,

0, x ∈ X\D.
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Proof. First, the theorem of Banach and Steinhaus implies that, for a solution
u ∈ SP (D), the expressions Bju (0 ≤ j ≤ p − 1) have weak limit values uj ∈
D′(Fj|∂D) on ∂D if and only if

(1.3.2) lim
ε→+0

∫

∂Dε

< g,Bju >x ds =

∫

∂D

< g, uj >x ds for all g ∈ C∞
◦ (F ∗

j ).

We now choose a number ε > 0 so small that ∂Dε ⊂ U . We represent the
solution u ∈ SP (D) in the domain D by Green’s formula, having taken as Green’s
operator of the differential operator P the operator in Lemma 1.1.6. Then, since
the restriction of the differential dρ on the surface ∂Dε is equal to zero, we get
formula (1.3.1) where in place of D we have the domain Dε. Having made the limit
passage by ε→ +0, and having used equality (1.3.2) we obtain the theorem. �

Formula (1.3.1) gives the apparatus for the effective control of the heuristic
consideration that the behaviour of a solution u ∈ SP,B(D) near a point x ∈ ∂D in
the closure of the domain is completely determined by the ”smoothness” property
near x on ∂D of the weak boundary values Bju (0 ≤ j ≤ p − 1). Thus for vj ∈
D′(Fj|∂D) (0 ≤ j ≤ p− 1) we set v = ⊕vj so that v ∈ D′(⊕Fj|∂D), and

Gv(x) = −
∫

∂D

p−1∑

j=0

< Cj(y)L(x, y), vj >y ds (x 6∈ ∂D).

Let N be a relatively compact neighbourhood of the point x in X , and ϕε ∈
C∞

◦ (X) be a function supported in the ε-neighbourhood of N and beying equal to
1 in N . Then, denoting by χD the characteristic function of the domain D, we can
rewrite formula (1.3.1) in the form χDu = G(ϕε(⊕Bju)) + G(1− ϕε)(⊕Bju)). The
first summand in (1.3.1) depends only on the values of Bju (0 ≤ j ≤ p−1) in the ε-
neighbourhood of the set N∩∂D on the boundary, and the second one is an infinitely
differentiable section of E in N . Hence, the character of ”the transition” of the
solution u from N ∩D to its weak limit values on N ∩∂D is completely determined
by the jump behaviour of the surface integral G(ϕε(⊕Bju)) in going across N ∩∂D.
This integral is called Green’s integral of the (vector-value) distribution ϕε(⊕Bju).

As an example, let us consider first the situation where the boundary data Bju
are smooth.

Let x0 ∈ ∂D be a fixed point and K(x0) be a non-tangential circular cone with
top at the point x0. Inside of the cone K(x0) we take 2 points (x+ ∈ X\D and
x− ∈ D) such that a|x+ − x0| ≤ |x− − x0| ≤ b|x+ − x0|, where 0 < a ≤ b <∞ are
constants.

Lemma 1.3.3. Let ∂D ∈ Cp, u ∈ Cp−1(E|D) be a given section. Then for every

multi-index α, with |α| ≤ p− 1, there exists the limit

lim
x+,x−→x0

(∂αG(⊕Bju)(x−) − ∂αG(⊕Bju)(x+)) = ∂αu(x0) (x0 ∈ ∂D).

Moreover, this limit is uniform with respect to x0 ∈ ∂D if the cone K(x0) and
constants a, b are fixed.

Proof. The proof is technically related to the proofs of theorems on the jump
behaviour of the Martinelli-Bochner integral (see §1.2), though, of course, it is much
more cumbersome. So, we refer readers to Lemma 29.5 (Tarkhanov [T4]). �.

We note that results of this type are some analogues of the Sokhotsky formulae
for the Cauchy integral.
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Lemma 1.3.4. Let S = ∂D ∈ Cp (p > 1), or C2 if p = 1, uj ∈ Cp−j−1 be
summable sections on ∂D. Then the function G(⊕uj)+ = G(⊕uj)|X\D continu-

ously extends to X\D together with its derivatives up to order p − 1 if and only
if the function G(⊕uj)− = G(⊕uj)|D continuously extends to D together with its
derivatives up to order p− 1.

Proof. We will use the fact that there exist a smooth function û given in a
neighbourhood of ∂D in X such that Bjû|∂D = uj (see Lemma 1.1.5).

If x0 ∈ S, ν(x0) is the unit normal vector to S at the point x0 and |α| ≤ p − 1
then (see Lemma 1.3.3)

(1.3.3) lim
ε→0

(∂αG(⊕uj)(x0 − εν(x0)) − ∂αG(⊕uj)(x0 + εν(x0))) = ∂αû(x0),

where the limit is uniform on compact subsets in S.
Let, for instance, G(⊕uj)− continuously extends to D together with its deriva-

tives up to order p− 1. We fix a multi-index |α| ≤ p− 1. Then

lim
ε→0

∂αG(⊕uj)(x0 + εν(x0)) = ∂αG(⊕uj)(x0) − ∂αû(x0).

Let us define G(⊕uj)+ in the following way:

∂αG(⊕uj)+(x) =

{
∂αG(⊕uj)+(x), x ∈ X\D,
∂αG(⊕uj)−(x) − ∂αû(x), x ∈ S.

Let us show that ∂αG(⊕uj)+ is continuous in X\D. We fix a point x0 ∈ S and
E > 0. Because ∂αG(⊕uj)+ is continuous on S, there is δ0 > 0 such that, for
x1 ∈ S with |x1 − x0| < δ0, we have

|∂αG(⊕uj)+(x1) − ∂αG(⊕uj)+(x0)| < E/2.

Decreasing δ0 (if it is necessary) we can consider K = B(x0, δ0) ∩ S as a compact
subset of S.

Since the hypersurface S ∈ C2, we can choose 0 < δ < δ0 in such a way that
every point x ∈ (X\D)∩B(x0, δ) is represented in the form x = x1 + εν(x1) where
x1 ∈ S and ε = dist(x, S). Then ε < δ and |x0 − x1| ≤ |x0 − x| + |x − x1|, i.e.
x1 ∈ K.

Using the fact that the limit in (1.3.3) is uniform on compact subsets of S and
decreasing δ (if it is necessary) we obtain that, for x1 ∈ K, 0 < ε < δ the following
inequality holds:

|∂αG(⊕uj)+(x1 + εν(x1)) − ∂αG(⊕uj)+(x1)| < E/2.

Let now x ∈ (X\D) ∩B(x0, δ). Then, for some x1 ∈ K and 0 < ε < δ we have
x = x1 + εν(x1). Hence

|∂αG(⊕uj)+(x0) − ∂αG(⊕uj)+(x)| ≤ |∂αG(⊕uj)+(x0) − ∂αG(⊕uj)+(x1)|+

+|∂αG(⊕uj)+(x1 + εν(x1)) − ∂αG(⊕uj)+(x1)| < E.

Therefore G(⊕uj)+ continuously extends to X\D together with its derivatives

up to order p−1, if G(⊕uj)− continuously extends to D together with its derivatives
up to order p− 1. The proof is complete. �
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Corollary 1.3.5. If for a solution u ∈ SP,B(D) we have Bju ∈ C
p−bj−1
loc (Fj|∂D)

(0 ≤ j ≤ p− 1) then u ∈ Cp−1(E|D).

Proof. According to Lemma 1.1.5, we can find a section û ∈ Cp−1
loc (E) such that

Bj û = Bju (0 ≤ j ≤ p−1) on ∂D. Then Theorem 1.3.2 and Lemma 1.1.6 imply that
χDu = −

∫
∂D

GP (L(x, y), û(y)). In particular, the integral
∫
∂D

GP (L(x, y), û(y)),

being considered for x ∈ X\D, is equal to zero. Therefore it extends continuously
together with its derivatives up to order (p − 1) to the closure of X\D. But
then Lemma 1.3.4 imply that the integral

∫
∂D

GP (L(x, y), û(y)) (x ∈ D) extends
continuously together with its derivatives up to order (p − 1) to the closure of D.
Hence u ∈ Cp−1(E|D), which which was to be proved. �

In Definition 1.3.1 of the space SP,B(D) we used a Dirichlet system {Bj}, and it
seems that the set of elements of SP,B(D) depends essentially on the choice of this
system. The fact that this is not so is unexpected. We shall say that a solution
u ∈ SP (D) has finite order of growth near the boundary (∂D) if for any point
x0 ∈ ∂D there are a ball B(x0, R), and constants c > 0 and γ > 0 such that
|u(x)| ≤ c dist(x, ∂D)γ for all x ∈ B(x0, R) ∩ D. In view of the compactness of
∂D, the constants c and γ can be chosen so that the estimate holds for all x ∈ ∂D.
The following theorem for harmonic functions was proved by Straube [Stra].

Theorem 1.3.6. A solution u ∈ SP (D) belongs to SP,B(D) if and only if it has
finite order of growth near ∂D.

Proof. Necessity. Any distribution on ∂D locally has finite order of singularity,
and the kernel L(x, y) is infinitely differentiable everywhere outside of the diagonal
{x = y}, and on the diagonal this kernel has the same type of singularity as the
well known fundamental solution of (p/2)-th degree of the Laplace operator. So
the necessity of the condition of the theorem follows from formula (1.3.1).

Sufficiency. Let u ∈ SP (D) have finite order of growth, say, γ, near the boundary.
It is clear that together with Pu = 0 we have P ∗Pu = 0 where P ∗ is (formally)
adjoint to the differential operator P . The operator P ∗P is an determined elliptic
operator of order 2p. We can complete the system {Bj}p−1

j=0 to a Dirichlet system

of order (2p − 1) on ∂D, say, {Bj}2p−1
j=0 , and then we can try to prove that any

expression Bju (0 ≤ j ≤ 2p − 1) has a weak limit on ∂D according to Definition
1.3.1. When this is proved, we shall have obtained formally more than we require.
Of course, it comes to the same thing, because the differential operator P and the
system {Bj}p−1

j=0 are arbitrary. So, without loss of a generality, we can require that
the differential operator P is determined elliptic. But we can not assume for P ∗P
the existence of a left fundamental solution (or the condition (U)S on X). Therefore
for P one can only guarantee the existence of a parametrix L ∈ pdo−p(F → E), that
is, in particular, LP = 1 − S0 for some smoothing operator S ∈ pdo−∞(E → E).
We now consider this situation. Rojtberg [Roj] showed that one can naturally
define a regularization û of the solution u as a continuous linear functional on the
space Cs

′

(ED) for a suitable s′ depending on the order of singularity of u near the

boundary (γ). Then û = u in D, and û ∈ W−s,q′(E|D) (= W s,q(E∗
|D)′)), where

s > n
q + (γ − 1), and 1

q + 1
q′ = 1 (q > 1). Further, for the solution u there are limit

values of the expressions Bju (0 ≤ j ≤ p − 1) on ∂D, these being understood in

the following sense. There is a sequence u(ν) ∈ C∞(E|D) such that u(ν) converges
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to û in W−s,q′(E|D), and Pu(ν) converges to zero in W−s−p,q′(F|D). Moreover, for

any such sequence u(ν) the sequences Bju
(ν) (0 ≤ j ≤ p − 1) are fundamental in

the spaces B
−s−p−bj− 1

q′
,q′

(Fj|∂D), and therefore they converge in these spaces to
limits uj . Rojtberg called these sections uj (0 ≤ j ≤ p − 1) the limit values of
the expressions Bjû (or, the same, of Bju) on ∂D. Now we want to show that the
sections uj (0 ≤ j ≤ p− 1) are the weak limits of the expressions Bju in the sense

of Definition 1.3.1. To this end we write for the sections u(ν) Green’s formula in
the domain D, that is,

χDu
(ν) = G(⊕Bju(ν)) + L(χDPu

(ν)) + S0(χDf
(ν))

(see, for example, formula (9.13) in the book of Tarkhanov [T5]). If we calculate
the limits of the left and right hand side of this equality, for example in the weak
topology of the space D′(E|X\∂D), then we obtain

(1.3.4) G(⊕uj) + S0(χDû) =

{
u(x), x ∈ D,

0, x ∈ X\D.

We have convinced ourselves that the solution u is represented by the limit values
on the boundary of the expressions Bju (0 ≤ j ≤ p−1) according to Rojtberg [Roj],
and by the regularization û in D by Green’s formula (1.3.4). The second summand
on the left hand side of this formula is an infinitely differentiable section of E
everywhere on the set X . Therefore the result follows from the following lemma.

Lemma 1.3.7. We suppose that D b X is a domain with an infinitely differ-
entiable boundary, and uj ∈ D′(Fj|∂D) (0 ≤ j ≤ p − 1) are given sections on ∂D.
Then, for all sections gj ∈ D(F ∗

j|∂D) (0 ≤ j ≤ p− 1) we have

lim
ε→+0

∫

∂D

< gj, Bj(G(u))(x− εν(x)) −Bj(G(u))(x+ εν(x)) >x ds =

(1.3.5) =

∫

∂D

< gj , uj >x ds.

Proof. We fix a section gj ∈ D(F ∗
j|∂D) and we find a section g ∈ C∞

loc(F
∗) such

that Cjg = gj, and Cjg = 0 for i 6= j on ∂D. It is not difficult to construct such a
section g, for example, using the formulae for the jumps in crossing ∂D of Green’s
type integral with a smooth density. Then using Lemma 1.1.6 we can write

lim
ε→+0

∫

∂D

< gj , [Bj(G(u))(x− εν(x)) −Bj(G(u))(x+ εν(x))] >x ds =

= lim
ε→+0



∫

∂Dε

p−1∑

j=0

< Cjg, Bj(Gu) >x ds−
∫

∂D−ε

p−1∑

j=0

< Cjg, Bj(Gu) >x ds


 =

= lim
ε→+0

∫

∂(D−ε\Dε)

GP (g,Gu).
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Repeating the arguments given on p.291 in the book of Tarkhanov [T4] we obtain
that the last limit exists, and that it is equal to

∫

∂D

< Cjg, uj >x ds =

∫

∂D

< gj, uj >x ds,

which was to be proved. �

As one can see from the proof of Lemma 1.3.7, it holds also for a domain D with
a boundary of finite, perhaps, very high degree of smoothness. The same can be
applied to the smoothness of the sections gj in (1.3.5). These depend on the orders
of singularity of the given sections uj (0 ≤ j ≤ p − 1) which are finite since the
surface ∂D is compact.

We can now complete the proof of Theorem 1.3.6. In fact, if g ∈ D(F ∗
j|∂D) where

0 ≤ j ≤ p− 1, then, from formula (1.3.4) and Lemma 1.3.7, we obtain

lim
ε→+0

∫

∂D

< g,Bju(x− εν(x)) >x ds =

= lim
ε→+0

∫

∂D

< g,Bj(G(⊕uj))(x− εν(x) −Bj(S
0(χDû)(x− εν(x)) >x ds =

= lim
ε→+0

∫

∂D

< g,Bj(G(⊕uj))(x− εν(x)) −Bj(S
0(χDû)(x+ εν(x)) >x ds =

= lim
ε→+0

∫

∂D

< g,Bj(G(⊕uj))(x− εν(x)) −Bj(G(⊕uj))(x+ εν(x)) >x ds =

=

∫

∂D

< gj , uj >x ds,

that is, u ∈ SP,B(D). Hence Theorem 1.3.6 is completely proved. �

We note that Lemma 1.3.7 is similar to the theorem on the weak jump of the
Bochner - Martinelli integral which was proved by Chirka [Ch].

æ

§1.4. Weak values of solutions in Lq(D) on the boundary of D

Again let P be a differential operator with an injective symbol on X , not neces-
sarily satisfying assumptions of §1.3, and u be a solution of the system Pu = 0 in D
of Lebesgue class Lq(E|D) where 1 ≤ q ≤ ∞. What can one say of the limit values
on ∂D of the expressions Bju (0 ≤ j ≤ p − 1)? Extrapolating the situation for
holomorphic functions one can say that the class of solutions in SP (D) ∩ Lq(E|D)
is wider than the so-called Hardy class Hq

P,B(D) which consists of all solutions

u ∈ SP,B(D) whose weak limit values of the expressions Bju (0 ≤ j ≤ p − 1)
belong to Lq(Fj|∂D). Moreover, a priori it is not clear, whether the solution
u ∈ SP (D) ∩ Lq(E|D) has finite order of growth near ∂D, that is whether the
expressions Bju (0 ≤ j ≤ p − 1) have weak limit values on ∂D. Estimates of
growth near ∂D of solutions u ∈ L2(F|D) could be obtained from the asymptotic
behaviour of the reproducing kernel of the domain D with respect to the Hilbert
space L2(F|D). However even in the case of the Cauchy-Riemann system this as-
ymptotic behaviour is not known for all domains (see Henkin [He], p.68). In this
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section we prove that for any solution SP (D) ∩ L1(E|D) there are weak limit values
of the expressions Bju (0 ≤ j ≤ p − 1) on the boundary. Then the theorem of
Rojtberg [Roj] allows us to know the smoothness of these values on ∂D.

So, we fix u ∈ SP (D) ∩ Lq(E|D), where 1 ≤ q ≤ ∞, and a number j (0 ≤
j ≤ p − 1). Putting aside for the meanwhile the questions of the correctness of
the definition, we associate a vector-valued distribution uj ∈ D′(Fj|∂D) with the

solution u in the following way. Let gj ∈ Cbj+1(F ∗
j|∂D). Using Lemma 1.1.5, we

find a section g ∈ Cploc(F
∗) such that Cjg = gj, and Cig = 0 for i 6= j on ∂D. Then

we set

(1.4.1) < gj, uj >= −
∫

D

< P ′g, u >x dv (gj ∈ Cbj+1(Fj|∂D)

Lemma 1.4.1. Definition (1.4.1) is correct, that is, it does not depend on the
choice of the section g ∈ Cploc(F

∗) for which Cjg = gj, and Cig = 0 for i 6= j on
∂D.

Proof. It is sufficient to show that, if for a section g ∈ Cploc(F
∗) the boundary

values on ∂D of the expressions Cjg (0 ≤ j ≤ p − 1) are equal to zero, then∫
D
< P ′g, u > dv = 0.
First of all we replace the section g by another section with the same differential

P ′g, and with derivatives up to order (p− 1) are equal to zero on ∂D. For this we
represent the section g in D by means of the homotopy formula on a manifold with
boundary (see, for example, Tarkhanov [T5], (9.13)). Bearing in mind the connec-
tion between Green’s operators of the differential operator P and the transposed
of P (see Proposition 1.1.3), and using Lemma 1.1.6 we have

(1.4.2) L′(χDP
′g) + P 1′L′(χDg) + S1′

(χDg) = χDg.

Let v ∈ W 2p,q̃(E2∗

) (where q̃ >> 1) be an extension of the section L(χDg)
from X\D to the whole set X . The number q̃ can be chosen as large as we want,
however for our purposes it is sufficient that q̃ > n, and q̃ ≥ q′ where q′ is dual
to the index q, that is, 1/q + 1/q′ = 1. Then, if we consider the section g̃ =

L(χDP
′g) + P 1′

v + S1′

(χDg), we can say that g ∈ W p,q̃(F ∗), and P ′g̃ = P ′g.
Moreover, from formula (1.4.2), g̃ ≡ 0 outside of D, but since g̃ ∈ Cp−1

loc (F ∗) we
have Dαg̃ = 0 (|α| ≤ p− 1) on ∂D. Then, replacing if necessary g by g̃, we assume
without loss of generality that the derivatives of g up to order (p − 1) vanish on
∂D. In this case there is some loss of smoothness of g, but this is not important
for us. Further, we use the lemma of Bochner which says that for any ε > 0 there
is a function ϕε ∈ D(X) (0 ≤ ϕε ≤ 1) with support in the ε-neighbourhood of the
boundary ∂D which is equal to unit in some smaller neighborhood of ∂D, and for
which |Dαϕε| ≤ cαε

−|α| everywhere in Rn where the constant cα does not depend
on ε (see Hörmander [Hö1], theorem 1.4.1). We have

(1.4.3)

∫

D

< P ′g, u >x dv =

∫

D

< P ′(1− ϕε)g, u >x dv +

∫

D

< P ′(ϕεg), u >x dv

Since the section (1−ϕε) has compact support in D then, from Stokes’ formula,
the first summand on the right hand side of (1.4.3) disappears. As for the second
summand we can write ∫

D

< P ′(ϕεg), u >x dv =
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(1.4.4) =
∑

|α|≤p
(−1)|α|

∑

|β|≤|α|

(
α
β

)∫

D\Dε

< DβϕεD
α−β(PTα g), u >x dv.

We want to prove that the right hand side converges to zero, as ε → +0.
For to do this it is suffices to estimate a typical summand in (1.4.4):

∫
D\Dε

<

DβϕεD
α−β(PTα g), u >x dv (β 6= 0). Having used the Hölder inequality, and taking

into consideration the estimates of the derivatives of the function ϕε we obtain with
a constant c > 0 which does not depend on ε such that

∣∣∣∣∣

∫

D\Dε

< DβϕεD
α−β(PTα g), u >x dv

∣∣∣∣∣ ≤

≤ ‖DβϕεD
α−β(PTα g)‖Lq′(F ∗

|D\Dε
)‖u‖Lq(ED\Dε ) ≤

(1.4.5) ≤ c1ε
−|β|‖Dα−βg‖Lq′(F ∗

|D\Dε
)‖u‖Lq(ED\Dε )

Since g ∈ Cp−1
loc (F ∗), and Dγg = 0 (|γ| ≤ p − 1) on ∂D, using the localization

process and the repeated use of the Newton-Leibniz formula, it is not difficult to
see there is a constant c2 > 0 such that for all sufficiently small δ > 0 we have

(1.4.6) ‖Dα−βg‖Lq′(F ∗
|∂Dδ

) ≤ c2δ
p−1−|α|+|β|+1/q‖g‖W p,q′(F ∗

|D\Dδ
)

Similar considerations can be found in the book of Mihailov [Mi] (p.148). Now
we choose ε > 0 sufficiently small and integrate inequality (1.4.6) with respect to δ
from 0 to ε. Then using the Fubini theorem we obtain the inequality

‖Dα−βg‖Lq′(F ∗
|D\Dε

) ≤ c′2ε
p−|α|+|β|+1/q‖g‖W p,q′(F ∗

|D\Dε
)

where c′2 = c2/((p − 1 − |α| + |β| + 1/q)q′ + 1)1/q
′

. Substituting this estimate in
(1.4.5), we obtain

∣∣∣∣∣

∫

D\Dε

< DβϕεD
α−β(PTα g), u >x dv

∣∣∣∣∣ ≤

≤ c1c
′
2ε
p−|α|+|β|+1/q‖g‖W p−|α|,q′(F ∗

|D\Dε
)‖u‖Lq(ED\Dε ),

So we can find a constant c > 0 depending only on the norms of the coefficients
of the differential operator P in the domain D such that for all sufficiently small
ε > 0 we have

(1.4.7)

∣∣∣∣
∫

D

< P ′g, u >x dv

∣∣∣∣ ≤ c‖g‖W p,q′(E∗
|D\Dε

)‖u‖Lq(ED\Dε )

The property of the absolute continuity of a Lebesgue integral with respect
to a domain of integration implies that for any q in the range 1 ≤ q ≤ ∞ the
expression on the right hand side of (1.4.7) converges to zero as ε→ +0. Therefore∫
D
< P ′g, u >x dv = 0, which proves the lemma. �
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As one can see, if q = 1 in the proof of Lemma 1.4.1 the arguments fail. Thus in
this case the definition (1.4.1) needs some modification. Namely, it is necessary to
change the smoothness of the sections gj in (1.4.1) by ”+0”, that is, we must take,
for example, g ∈ Cbj+1,λ(F ∗

j|∂D), where λ > 0.

The distributions uj ∈ D′(Fj|∂D) (0 ≤ j ≤ p− 1) constructed in (1.4.1) we now
take as the weak limit values of the expressions Bju on ∂D. It is clear that if
u ∈ Cp−1(E|D) then uj is simply the pointwise restriction of Bju on ∂D. However

in the general case the identification of uj (0 ≤ j ≤ p − 1) with the weak limit
values of the expressions Bju (0 ≤ j ≤ p−1) on ∂D by definition (1.4.1) is difficult.
Later on we shall show that this identification is valid, but now we begin with the
justification of the naturality of definition (1.4.1).

Lemma 1.4.2. For any solution u ∈ SP (D) ∩ Lq(E|D) (1 < q ≤ ∞) the follow-
ing Green’s formula holds:

(1.4.8)

∫

∂D

p−1∑

j=0

< Cjg, Bju >x ds = −
∫

D

< P ′g, u >x dv (g ∈ Cp(F ∗
|D)).

Proof. For each number 1 ≤ j ≤ p− 1 we construct a section g(j) ∈ Cploc(F
∗)

such that Cjg
(j) = Cjg, and Cig

(j) = 0 for i 6= j on ∂D. We set g0 = g − g(1) −
... − g(p−1). Then g0 ∈ Cploc(F

∗
D

), C0g
(0) = C0g, and Cig

(0) = 0 for i 6= 0 on ∂D.

Hence, according to definition (1.4.1) we can write

∫

∂D

p−1∑

j=0

< Cjg, Bju >x ds =

p−1∑

j=0

(
−
∫

D

< P ′g(j), u >x dv

)
=

= −
∫

D

< P ′g, u >x dv,

which was to be proved. �

Formula (1.4.8) holds also for solutions u ∈ SP (D) ∩ L1(E|D), however with

sections g whose smoothness is greater than ”+0”, that is, for g ∈ Cp,λ(F ∗) where
λ > 0.

Lemma 1.4.3. For any solution u ∈ SP (D) ∩ L1(E|D) Green’s formula (1.3.1)
holds.

Proof. Let x be a fixed point belonging to X\∂D. We take some function
ϕ ∈ D(X) which is equal to 1 in a neighbourhood of ∂D, and vanishes on some
neighborhood of the point x. It is clear that ϕL ∈ C∞

loc(Ex⊗F ∗), therefore formula
(1.4.8) implies that

(1.4.9)

∫

∂D

p−1∑

j=0

< CjL, Bju >x ds = −
∫

D

< P ′(ϕL, u >x dv.

We choose ε > 0 so small that ϕ ≡ 1 in some neighbourhood of ”the piece”
D\Dε. Since P ′L(x, .) = 0 everywhere outside of the point x, it follows that the
integral on the right hand side of formula (1.4.9) is equal to the similar integral
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taken over the domain Dε. But u ∈ SP (Dε), therefore the last integral is equal to
−
∫
∂Dε

GP (L(x, .), u), that is, (χDu)(x), which was to be proved. �

We can now formulate the principal result of this section. As before, we denote
by Bs,q(Fj|∂D) the usual Besov spaces of sections of the bundles Fj over ∂D (see
Kudrjavtsev and Nikolskii [KdNi]). In particular, if s is not an integer or q = 2
then Bs,q(Fj|∂D) = W s,q(Fj|∂D). If 1 < q <∞ then in definition (4.1) we can take

gj ∈ Bbj+1/q′,q(Fj|∂D) (0 ≤ j ≤ p − 1). Lemma 2.2 from the paper of Rojtberg
[Roj] guarantees existence of a section g ∈ W s,q(F ∗

|∂D) such that Cjg = gj, and

Cig = 0 for i 6= j on ∂D. Then one can substitute g into the right part of
(1.4.1). Moreover, the above-mentioned lemma of Rojtberg [Roj] says that the
mapping gj → g is continuous. Using Hölder’s inequality it is easy to conclude that

Bju ∈ B−bj−1/q′,q′(Fj|∂D) (0 ≤ j ≤ p − 1) (see our paper [ShT4]). However we
obtain a more general result directly from the fundamental theorem of Rojtberg
[Roj].

Theorem 1.4.4. For a solution u ∈ SP (D) ∩ L1(E|D) the limit values of the
expressions Bju (0 ≤ j ≤ p − 1) on ∂D defined by formula (1.4.1) are the weak
limit values. Moreover u ∈ W s,q(E|D) (1 < q < ∞) if and only if Bju ∈
Bs−bj−1/q,q(Fj|∂D) (0 ≤ j ≤ p− 1).

Proof. Again we shall try to reduce the proof to the corresponding fact for
solutions of elliptic systems. We fix a section u ∈ SP (D) ∩ Lq(E|D), q > 1, sat-
isfying Pu = 0 in D. Then u must also satisfy ∆u = 0 where ∆ = P ∗P is an
(determined) elliptic differential operator of type E → E, and of order 2p on X .

The system {Bj}p−1
j=0 can be replaced with a Dirichlet system of order (2p− 1) on

∂D in the following way. We set B̃j = Bj for 0 ≤ j ≤ p− 1, and B̃j = ∗−1Cj−p ∗P
for p ≤ j ≤ 2p − 1. Then {B̃j}2p−1

j=0 is a Dirichlet system of order (2p − 1) on

∂D, and the Dirichlet system {C̃j}2p−1
j=0 corresponding to it by Lemma 1.1.6 (with

P = ∆) has the form C̃j = −Cj ∗ P∗−1 for 0 ≤ j ≤ p − 1, and C̃j = − ∗ Bj−p∗−1

for p ≤ j ≤ 2p − 1. We now use a relation (which is similar to (1.4.1) to define

the limit values of the expressions B̃ju (0 ≤ j ≤ 2p − 1) on ∂D in our new situ-
ation. More precisely, these expressions are only interesting for (0 ≤ j ≤ p − 1).
So, let g ∈ Cbj+1(F ∗

j|∂D) (0 ≤ j ≤ p − 1). Using Lemma 1.1.5 we find a section

G ∈ C2p
loc(E

∗) such that Cj ∗ P ∗−1 G = g, and C̃iG = 0 for i 6= j (0 ≤ i ≤ 2p− 1)
on ∂D. Then we set

(1.4.10) < g,Bju >= −
∫

D

< ∆′G, u >x dv, (gj ∈ Cbj+1(F ∗
j|∂D)).

However, if we define Bju on ∂D by means of formula (1.4.1), the choice of g
in Lemma 1.4.1 is unimportant. In particular, nothing prevents us from taking
g = ∗P ∗−1 G in (1.4.1). Then we obtain equality (1.4.10). Hence the definition of
the limit values of Bju (0 ≤ j ≤ p − 1) on ∂D does not depend on whether u is a
solution of the system Pu = 0 or ∆u = 0. So, replacing the operator P by ∆ we
may suppose without loss of a generality that P is elliptic. But then the first part of
Theorem 1.4.4 follows from Lemmata 1.4.3 and 1.3.7. For, from Lemma 1.4.3, the
solution u is represented by the limit values of the expressions Bju (0 ≤ j ≤ p− 1)
on ∂D which are defined in accordance with equality (1.4.1) by means of Green’s
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formula (1.3.1). And Lemma 1.3.7 asserts that the weak jump in going across ∂D
of the expressions BjG(⊕Biu) (0 ≤ j ≤ p− 1) coincides with Bju. Hence the limit
values of the expressions Bju (0 ≤ j ≤ p− 1) on ∂D exist, and they coincide with
the limit values calculated by the formula (1.4.1). This proves the first part of the
theorem for solutions u ∈ Lq(E|D) (q > 1), and for q = 1 we must make obvious
modifications. To prove the second part of the theorem we assume in addition that
u ∈ SP (D) ∩W s,q(E|D) where 1 < q < ∞. Rojtberg [Roj] proved that there are
limit values of the expressions Bju (0 ≤ j ≤ p − 1) on ∂D in the following sense.

There is a sequence u(ν) ∈ C∞(E|D) such that u(ν) converges to u in W s,q(E|D) and

Pu converges to zero in W s−p,q(F|D). Moreover, for any such a sequence u(ν) the

sequence Bju
(ν) (0 ≤ j ≤ p− 1) is fundamental in Besov space Bs−bj−1/q,q(Fj|∂D),

and therefore it converges in this space to a limit uj . Arguing as in the proof of
Theorem 1.3.6 we see that the solution u is represented by the boundary values uj
by means Green’s formula (1.3.4). Then Lemma 1.3.7 again shows that the sections
uj (0 ≤ j ≤ p− 1) are the limit values on ∂D of the expressions Bju. So the weak
limit values of the expression Bju (0 ≤ j ≤ p−1) on ∂D belong to the Besov space

Bs−bj−1/q,q(Fj|∂D).
Conversely, if such an inclusion holds then formula (1.3.1) and the theorems on

boundedness of potential (or co-boundary) operators on a manifold with boundary
(see Rempel and Schulze [ReSz], 2.3.2.5) imply that u ∈ W s,q(E|D). This proves
Theorem 1.4.4. �

This theorem, in particular, shows that for a solution u ∈ SP (D) ∩ L1(E|D)
definition (1.4.1) of the boundary values Bju (0 ≤ j ≤ p − 1) on ∂D does not
depend on the choice of the differential operator P . æ

æ
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CHAPTER II

GREEN’S INTEGRALS AND BASES WITH

DOUBLE ORTHOGONALITY IN THE CAUCHY

PROBLEM FOR ELLIPTIC SYSTEMS

§2.0. Introduction

We shall consider in this chapter the Cauchy problem for solutions of a differential
equation Pu = 0 where P ∈ dop(E → F ) is a differential operator of order p ≥ 1
with an injective symbol on an open set X ⊂ Rn. As above, here E = X ×Ck and
F = X × C

l are (trivial) vector bundles over X .
In the case of overdetermined elliptic systems (i.e. for l > k), similarly to

the Cauchy-Riemann system in several complex variables, under sufficiently broad
assumptions about the differential operator P , it is possible to include it into some
elliptic complex of differential operators on X , say, {Ei, P i} where Ei = X × Cki

are (trivial) vector bundles over X which are different from zero only for 0 ≤ i ≤ N ,
and P i ∈ dopi

(Ei → Ei+1) where P 0 = P (see Samborskii [Sa]). We shall often
use this identification, assuming that the conditions on P are fulfilled.

Throughout of this chapter we assume that P satisfies the weak unique contin-
uation principle:

(U)S if for a domain O ⊂ X we have Pu = 0 in O, and u = 0 on a non-empty
open subset of O then u ≡ 0 in O.

The Cauchy problem we are interested in is roughly formulated as follows:

Problem 2.0. Let D be a subdomain of X and S be a subset of ∂D of positive
(n − 1)-dimensional measure. Let uα (|α| ≤ p − 1) be given sections of E over
S. It is required to find a solution u ∈ SP (D) whose derivatives Dαu up to order
(p−1) have, in a suitable sense, limit values (Dαu)|S on S such that (Dαu)|S = uα
(|α ≤ p− 1).

Later on we will state Problem 2.0 in a more correct way.
The plan of the chapter is the following.
In §2.1 we elaborate the operator-theoretical foundations for applying bases with

double orthogonality to the problem of the continuation of classes of functions from
massive subsets to the whole set. In a paper dated 1927 Bergman (see [Brg], p.14-
20) developed this remarkable concept considering sequence of analytic functions
which are orthogonal with respect to L2-scalar product on couples of domains one
of which contains the closure of the other. His aim was the study of criteria for
analytic continuation. This beautiful and potentially useful idea did not receive
sufficient recognition, probably because its practical application requires to solve
preliminarily an eigenvalue problem, which may turn out to be quite difficult to
solve. Bases with double orthogonality appeared again in a series of the papers by

Typeset by AMS-TEX
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Slepian and Pollak [SlPo], Landau and Pollak [LPo1], [LPo2], and Slepian [Sl]) in the
sixties somehow independently of Bergman. Shapiro [Shp1] is sure that Bergman
knew well that the phenomenon of double orthogonality had a more general scope
going far beyond the problem of analytic continuation in complex analysis.

The fuctional analysis involved in the study of bases with the double orthogonal-
ity property reduces essentially to the spectral theorem for a compact self-adjoint
operator, which is traditionally credited to F. Riesz (see Riesz and Sz.- Nagy [RS-
N], s. 93). Krasichkov [Kra] has shown how the spectral theorem leads quite simply
to an abstract Bergman theorem about the existence of bases with double orthogo-
nality (see also Shapiro [Shp1], [Shp2]). Our account in §2.1 reproduces Bergman’s
concept in general, except that we consider continuous systems of functions with
double orthogonality.

As the Cauchy Problem 2.0 may be unsolvable even in the class of all smooth
(vector) functions u in D (not only those satisfying Pu = 0) there are formal dif-
ficulties in the setting of the problem. To remove these difficulties it is necessary
that the sections uα(|α| ≤ p − 1) should be restrictions to S of the corresponding
derivatives of some smooth section in D. This is connected with the correct setting
of the Cauchy problem which corresponds to a suitable Green’s formula for solu-
tions. In §2.2 we formulate the Cauchy problem in a more correct way and indicate
a rather general situation where it has no more then one solution.

In §2.3 a solvability criterion for the Cauchy problem for elliptic systems in
the Hardy class H2

P,B(D) (see Tarkhanov [T2]) is deduced in terms of bases with
double orthogonality on the boundary of D. The corresponding eigenvalue problem
is associated with a non-compact operator. Surface bases with double orthogonality
are continuous systems of generalized eigenvectors of this operator (see Berezanskii
[Bz], ch. V). Surface bases with double orthogonality in the Cauchy problem for
holomorphic functions of one variable seemed to have been first applied by Krein
and Nudelman [KrNu].

In §2.4 we prove a solvability criterion for the Cauchy problem for elliptic systems
in terms of a Green’s integral. Using the Cauchy data on S we construct a Green’s
integral satisfying Pu = 0 everywhere outside of S. Then the Cauchy problem is
solvable if and only if this integral can be continued across S from the complement
of D as a solution of the system Pu = 0 (∈ W s,q(E|D)). Although it is possible
to obtain interesting applications directly from this observation, this result has an
auxiliary character. In spite of the simplicity of the idea, its proof is complicated
by the necessity of using nontrivial results from the theory of pseudo-differential
operators on manifolds with boundary. For instance, we need to use a theorem on
the boundedness in Sobolev spaces of potential operators which was recently proved
(see Eskin [Es], Rempel and Schulze [ReSz] and others).

In §2.5 the extendibility condition (as a solution of the system Pu = 0) across S
of the Green’s integral is expressed in terms of space bases with double orthogonal-
ity. Its construction is connected with the solution of an eigenvalue problem for a
compact operator, so this part of the application of bases with double orthogonality
is very similar to the original concept of Bergman [Brg]. We note that these ideas
were first tested on the Cauchy problem for holomorphic functions (see [ShT4]) and
we found some hints in the considerations of Aizenberg and Kytmanov [AKy].

The use of bases with double orthogonality not only gives information about
solvability conditions for the Cauchy problem, but leads to explicit formulae for
its solutions. A Carleman function of the Cauchy problem for solutions of elliptic
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systems is constructed in §2.6.
In §2.7 we describe a stability set in the Cauchy problem for elliptic systems.
In §§2.8, 2.9, as examples, we consider the Cauchy problem for the Laplace

equation and for the Lamé type system in R
n.

In §2.10 we show how the Cauchy problem for overdetermined elliptic systems
with real analytic coefficients may be reduced to the Cauchy problem for solutions
of determined elliptic systems which was considered in sections §§2.4-2.8.

In §2.11 we prove a solvability criterion for the Cauchy problem for systems with
injective symbol in terms of a Green’s integral. By using ”Cauchy data” on S
we construct a Green’s integral which satisfies P ∗Pu = 0 everywhere outside an
arbitrary small neighbourhood of S on ∂D. Then the Cauchy problem is solvable
if and only if this integral analytically extends across S from the complement of D
to this domain in a suitable Sobolev class, and the Cauchy data on S satisfy the
tangential equation on S.

In §2.12 the condition for extendibility (as a solution of the system P ∗Pu = 0)
across S of Green’s integral is written in terms of space bases with double orthog-
onality. As in §2.5, their construction depends on the solution of an eigenvalue
problem for a compact self- adjoint operator.

Again the use of bases with double orthogonality not only gives information
about solvability conditions for the Cauchy problem but also leads to explicit for-
mulae for its solutions. A Carleman function of the Cauchy problem for solutions
of systems with injective symbols is constructed in §2.13.

Finally, in §2.14 we consider some examples of differential equations of the sim-
plest type including the Cauchy-Riemann system in several complex variables.
These are systems of first order differential equations which are matrix factor-
izations of the Laplace operator. A system of homogeneous polynomials in Rn

possessing the double orthogonality property relative to integration over every ball
centered at zero is constructed. Using it we obtain the solvability condition in an
explicit form and obtain a formula for the regularization of the Cauchy problem for
the matrix factorizations of the Laplace operator in this special case. More exactly,
S is a smooth hypersurface and D is the one of the two domains in which S divide
a ball B centered at 0 which does not contain the origin. The theorems on the
solvability of the Cauchy problem and on the Carleman formula for holomorphic
functions of one variable obtained in this way are among the simplest ones (see
[Aky] and [A]). For the Cauchy-Riemann system in several complex variables, the
corresponding results were obtained in [AKy] and [ShT4]. æ

§2.1. Bases with double orthogonality

As Shapiro [Shp1] has observed, Bergman’s problem is a special case of the
question of when a given element of a Hilbert space belongs to the image of some
injective compact operator with dense image.

In practice this problem appears usually in the following way. There is some lin-
ear continuous mapping of Hilbert spaces, T : H1 → H2, say. Further, inH1 a closed
subspace
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Σ1 is distinguished by some considerations. It is very helpful when the image of
Σ1 by the mapping T is closed in H2. However this is not usually the case. In any
case we denote by Σ2 the closure of this image. Hence Σ2 also is a Hilbert space
with the Hermitian structure induced from H2.

Problem 2.1.1. Let h2 ∈ Σ2. It is required to find a vector h1 ∈ Σ1 such that
Th1 = h2.

Except in trivial cases Problem 2.1.1 is ill-posed. Therefore we can repeat the
words which have been written in connection with these problems in [T2]. At the
same time, the use of bases with double orthogonality gives a more satisfactory
approach to Problem 2.1.1 We describe this.

We denote by Π the operator of the orthogonal projection on Σ1 in H1, and by
M the operator T ∗T in H1, where T ∗ : H2 → H1 is the mapping adjoint to the
mapping T according to the theory of Hilbert spaces.

Proposition 2.1.2. The restriction of the mapping ΠM to Σ1 is a bounded
linear operator from Σ1 to Σ1.

Proof. The norm of the operator ΠM is not greater than m = ‖T‖2 even in
H2. �

Proposition 2.1.3. The operator ΠM : Σ1 → Σ1 is self-adjoint.

Proof. The restriction to Σ1 of the operator ΠM coincides with the restriction
to this space of the (evidently) self-adjoint operator ΠMΠ. �

Proposition 2.1.4. The spectrum of the operator ΠM : Σ1 → Σ1 belongs to
the segment [0;m].

Proof. By Propositions 2.1.2 and 2.1.3 we can conclude that the spectrum of
the operator ΠM belongs to the segment [−m;m]. On the other hand, this operator
is non-negative, because for h ∈ Σ1 we have

(ΠMh, h)H1
= (Mh, h)H1

= ‖Th‖2
H2

≥ 0.

This proves our statement. �

Problem 2.1.1 is definite if and only if the restriction of the operator T on Σ1 is
injective. A corresponding conclusion follows for the operator ΠM .

Proposition 2.1.5. The mappings ΠM : Σ1 → Σ1 and T : Σ1 → Σ2 are
simultaneously injective or not injective.

Proof. It is sufficient to prove that the kernels of these operators coincide.
However, for h ∈ Σ1, ΠMh = 0 if and only if (Mh, g)H1

= (Th, Tg)H2
= 0 for all

g ⊂ Σ2, that is, if and only if Th = 0. This proves the proposition. �

We can apply now the spectral theory of self-adjoint operators (see Riesz and
Sz.-Nagy [RS-N], s. 107). Namely, let Eλ (−∞ < λ < ∞) be an orthogonal
decomposition of the unit in the Hilbert space Σ1 corresponding to the operator
ΠM . In the simplest case of a discrete spectrum λ1, λ2, ... we have Eλ =

∑
λ≤λj

prλj

where prλj
is the orthogonal projection to the eigen-subspace of ΠM corresponding

to the eigenvalue λj . In the general case Eλ is some family of orthogonal projections
concentrated on the spectrum of ΠM , and growing from 0 to I while λ changes
from −∞ to +∞. This family has certain well known properties.
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Theorem 2.1.6 (abstract Bergman’s theorem). Problem 2.1.1 is solvable
if and only if

(2.1.1)

∫ m

−0

1

λ2
d(EλΠT

∗h2,ΠT
∗h2)H1

<∞.

Proof. The condition (2.1.1) means that the vector ΠT ∗h2 ∈ Σ1 belongs to the
domain of the (left) inverse operator of the operator ΠM : Σ1 → Σ1. Hence one can
find an element h1 ∈ Σ1 such that ΠMh1 = ΠT ∗h2. This implies that the vector
Mh1 − T ∗h2 = T ∗(Th1 − h2) is orthogonal to the subspace Σ1 in H1. In other
words we have (T ∗(Th1 − h2), g)H1

= (Th1 − h2), T g)H2
= 0 for all g ∈ Σ1. Under

the hypothesis, the vector h2 belongs to the closure of the image of the mapping
T : Σ1 → Σ2. This means that one can find a sequence {fj} ⊂ Σ2 such that Tfj
converges to h2 in H2. Hence

‖Th1 − h2‖2
H2

= lim
j→∞

(Th1 − h2, T (h1 − fj))H2
= limj→∞0 = 0,

therefore Th1 = h2. Thus, we see that the equalities ΠMh1 = ΠT ∗h2 and Th1 = h2

are equivalent. This completes the proof of the theorem. �

From the proof of Theorem 2.1.6 one can see a curious phenomenon. Namely, if
Problem 2.1.1 is solvable then its solution is unique. The formula for this solution
is given in the following theorem.

Theorem 2.1.7 (abstract Carleman’s formula). Under condition (2.1.1)
a solution of Problem 2.1.1 is given by the formula

(2.1.2) h1 =

∫ m

−0

1

λ
d(EλΠT

∗h2).

Proof. Condition (2.1.1) guarantees the convergence of integral (2.1.2) in the
weak topology of the space Σ1. Therefore h1 ∈ Σ1 and we need only prove that
ΠMh1 = ΠT ∗h2. Now

ΠMh1 =

∫ m

0

λ
1

λ
d(EλΠT

∗h2) =

∫ m

−0

d(EλΠT
∗h2) = ΠT ∗h2,

which was to be proved. �

We emphasize once again that under condition (2.1.1) the integral in formula
(2.1.2) converges in the weak topology of the space Σ1.

If we use the representation of the projections Eλ (−∞ < λ < ∞) by means of
the eigenvectors of the operator ΠM : Σ1 → Σ1 (see Berezanskii [Bz]. ch. V) then
we can see that it is possible to make formulae (2.1.1) and (2.1.2) more visible. For
let L1 ⊂ Σ1 ⊂ L′

1 where L1 is a topological vector space such that the embedding
L1 ⊂ Σ1 is quasi-kernel, and the operator ΠM admits an extension ΠM : L1 → L1.
Having taken the transposed mapping to this mapping we obtain a continuation of

ΠM to a continuous linear operator on L′
1 which is denoted by Π̃M . Under the

above assumption on L1, the operator Π̃M has a complete system of generalized



46CHAPTER II. BASES WITH DOUBLE ORTHOGONALITY IN THE CAUCHY PROBLEM

eigenvectors {b(i)λ }1≤i≤nλ

λ∈R
in L′

1 (see Berezanskii [Bz], p.341). This means that

Π̃Mb
(i)
λ = λb

(i)
λ , and for any vectors h, g ∈ L1 there is Parseval’s equality

(E(∆)h, g)H1
=

∫

∆

nλ∑

i=1

(h, b
(i)
λ )H1

(g, b
(i)
λ )H1

dσ(λ).

Here E(∆) =
∫
∆
dEλ is the spectral measure corresponding to the operator ΠM ,

and dσ(λ) is a nonnegative Borel measure on the real axis. Using Parseval’s equality

for vectors in L1 one can extend the ”Fourier transformation” (h, b
(i)
λ )H1

to vectors
from Σ1 by continuity. Then we have (in the sense of the ∗-weak convergence of
the integrals in L′

1)

(2.1.3) Eλh =

∫ λ

−∞

nλ∑

i=1

(h, b
(i)
ζ )H1

b
(i)
ζ dσ(ζ) (h ∈ Σ1).

Corollary 2.1.8 (abstract Bergman’s theorem). Problem 2.1.1 is solv-
able if and only if

(2.1.4)

∫ m

−0

nλ∑

i=1

∣∣∣∣∣
(ΠT ∗h2, b

(i)
λ )H1

λ

∣∣∣∣∣

2

dσ(λ) <∞.

Proof. Using the equality (2.1.3), we obtain

d(EλΠT
∗h2,ΠT

∗h2) = d

∫ λ

−∞

nζ∑

i=1

|(ΠT ∗h2, b
(i)
ζ )H1

|2dσ(ζ) =

nλ∑

i=1

|(ΠT ∗h2, b
(i)
λ )H1

|2dσ(λ).

In view of Theorem 2.1.6, we obtain the statement of the corollary. �

Corollary 2.1.9 (abstract Carleman’s formula). Under condition (2.1.1)
a solution of Problem 2.1.1 is given by the following formula (where convergence is
understood in the ∗-weak topology of the space L′

1) :

(2.1.5) h1 =

∫ m

−0

nλ∑

i=1

b
(i)
λ

(ΠT ∗h2, b
(i)
λ )H1

λ
dσ(λ).

Proof. It is sufficient to calculate

dEλ(ΠT
∗h2) =

nλ∑

i=1

b
(i)
λ (ΠT ∗h2, b

(i)
λ )H1

dσ(λ).

and to put it in formula (2.1.2). �

We consider an instructive example.
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Example 2.1.10. We suppose that the operator T : Σ1 → Σ1 is 1) injective, 2)
compact. Then, by Proposition 2.1.4 the operator ΠM : Σ1 → Σ1 is injective, and
(the compactness of T and) the boundedness of ΠT ∗ implies that ΠM : Σ1 → Σ1

is compact. According to the spectral theorem for compact self-adjoint operators
(see Riesz and Sz.-Nagy [RS-N], s. 93) ΠM has in Σ1 a countable complete system
of eigenvectors {bj}∞j=1 corresponding to positive eigenvalues {λj}. However sim-
ple calculations show that (Tbj , T bj)H2

= λj(bj , bj)H1
, that is, the system {Tbj}

is orthogonal in Σ2. Evidently this system is complete in Σ1, hence it gives an
orthogonal basis in this space. We notice that the system {bj} ⊂ Σ1 possesses the
double orthogonality property : 1) relative to the scalar product (., .)H1

in Σ1 and
2) relative to the scalar product (T., T.)H2

in Σ1. As we noted in the introduc-
tion, Bergman was the first to devise these systems (see [Brg]), and Krasichkov
[Kra] proved the abstract existence theorem. The orthogonal decomposition of the
unit corresponding to the operator ΠM : Σ1 → Σ1 is now given by the operators
Eλh =

∑
λ≤λj

bj(h, bj)H1
(see (2.1.3)). Relations (2.1.4) and (2.1.5) take the form

∑∞
j=1 |cj|2 <∞ and h1 =

∑∞
j=1 cjbj respectively, where cj =

(h2,T bj)H2

‖Tbj‖2
H2

are Fourier

coefficients of the vector h ∈ Σ2 relative to the orthogonal basis {Tbj} in this space.
�

In the general case the system {b(i)λ } also keeps some properties of bases with
double orthogonality. We describe now an alternative method for its construction,
using this idea. In the following we shall not take enough care of the legality of
operations, because we want to make clear the idea only. The problem is first
to construct a basis in Σ2 and then to obtain by means of it a basis in Σ1. We
consider the operator TΠT ∗ : Σ2 → Σ2. Again we notice that it is a bounded self-
adjoint operator with the same spectrum, as ΠM . This operator is always injective,
and it inherits the compactness property from T : Σ1 → Σ2. We notice that the
mapping ΠT ∗ : Σ2 → Σ1 is adjoint to T : Σ1 → Σ2 in the sense of Hilbert spaces.
To describe the image of T one can use an orthogonal decomposition of the unit
{Iλ} in Σ2 corresponding to the operator TΠT ∗. Then the solvability condition
for Problem 2.1.1 has the form

∫m
−0

1
λ
d(Iλh2, h2) < ∞, and the solution is given

by the formula h1 = ΠT ∗ ∫m
−0
dIλ(h2). Further, the projection operators Iλ can be

presented, similarly to (2.1.3), by generalized eigenvectors of the operator TΠT ∗ in

L′
2, where L2 ⊂ Σ2 ⊂ L′

2 is a suitable equipment of the Hilbert space Σ2. Let {e(i)λ }
be a complete system of these vectors in L′

2. Then, if the operator T is injective,

{b(i)λ } (where b
(i)
λ = 1

λ
ΠT ∗e(i)λ ) is a complete system of generalized eigenvectors of

the operator ΠM . We leave the reader to write the formulae, similar to (2.1.4) and

(2.1.5), in terms of the system {e(i)λ }.

Example 2.1.11. Krein and Nudelman [KrNu] have considered the Cauchy
problem for holomorphic functions of the Hardy class H2 in the lower half-plane
with Cauchy data on the segment [−1; 1] of the real axis. They had H1 = L2(R1),
H2 = L2([−1; 1]), the Hardy space Σ1, and the operator of restriction T : Σ1 → H2.
In this case we have Σ2 = H2. The projection Π : H1 → Σ1 is given by means of
limit values on R1 of the Cauchy type integral in the lower half-plane. The operator
TΠT ∗ : Σ2 → Σ2 is an integral operator (but it is not the Carleman operator)
with a simple spectrum. The complete system of generalized eigenfunctions of
this operator was earlier constructed by Koppelman and Pincus [KpPi]. Having
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extrapolated it by the operator ΠT ∗ on the whole real axis, Krein and Nudelman
[KrNu] obtained a continuous system of functions with double orthogonality in Σ1.
They also indicated a solvability condition, and a formula for the solutions of the
Cauchy problem. �

We finish this section with one more example connected with the Cauchy problem
for holomorphic functions when the support of the Cauchy data is a ”thin” set.

Example 2.1.12. Let σ be a compact set of positive measure in Rn. We denote
by Wσ the set of Fourier transforms of functions from L2(σ), that is, the set of
functions of the type û(ζ) = 1

(2π)n

∫
σ
eiζxu(x)dx, where u ∈ L2(σ). According to

the theorem of Paley and Wiener, elements of Wσ are restrictions on R
n of (not all!)

entire functions of exponential order of growth in Cn. For this reason Wσ is called
the Wiener class. By means of the Plancheral theorem it is easy to see that Wσ is
a closed subset of L2(Rn). Let S ⊂ Rn be a given bounded set with a non-negative
Borel measure m. In order not to complicate the notation we use the symbol
L2(S) for the space of (classes of) functions which are measurable and square-
integrable relative to the measure m on S. As for the assumptions about (S,m), we
require that restrictions to S of (infinitely) differentiable functions in R

n should be
contained in L2(S), and dense in this space. We consider the following problem: for
a given function u0 ∈ L2(S), find a function u ∈Wσ such that u|S = u0. To include

it in the general scheme of Problem 2.1.1 we set H1 = Σ1 = Wσ, H2 = L2(S), and
define the operator T : H1 → H2 as the restriction of functions on S. One can show
that the operator T has a dense image. For let Φ be a continuous linear functional
on L2(S) which vanishes on the image of T . According to the Riesz theorem, there
is a function ϕ ∈ L2(S) such that Φ(u) =

∫
S
uϕdm for all u ∈ L2(S). Then one

can consider Φ in explicit form as a distribution with compact support in Rn. The
condition Φ|imT = 0 implies that the Fourier transform Φ̂ of the distribution Φ

vanishes on σ. Since Φ̂ is an entire function, and the measure of σ is positive then
Φ̂ ≡ 0 everywhere in Rn. From this we conclude that Φ is the zero distribution
in R

n, that is, the zero functional on L2(S). Hence in our case we have Σ2 = H2.
It is not difficult to verify that the operator T is compact. We shall assume its
injectivity, in order that the Cauchy problem be defined. This simply means that
S is a set of uniqueness for the class Wσ. Then we have the situation considered
in Example 2.1.10. According to our earlier conclusions, if we denote by {bj},
j = 1, 2, ..., a complete orthonormal system of eigenvectors of the operator T ∗T in
Wσ then the systems {Tbj}, j = 1, 2, ..., will be an orthogonal basis in L2(S). The
condition of solvability and the formula for solutions of the Cauchy problem have

the forms
∑∞
j=1 |cj|2 <∞ and u =

∑∞
j=1 cjbj respectively, where cj =

(u0,T bj)L2(S)

‖bj‖2
L2(S)

are Fourier coefficients of the function u with respect to the orthogonal system
{Tbj} in L2(S). If S is a set of positive measure in Rn, then the results of this
example were obtained by Krasichkov [Kra]. �

æ

§2.2. The Cauchy problem for solutions of elliptic systems

We suppose that D b X is a domain with smooth boundary.
We fix a sufficiently small neighbourhood U of the boundary ∂D (as in §1.3) and

a Dirichlet system of order (p− 1) on ∂D, say, Bj ∈ dobj
(E → Fj) (0 ≤ j ≤ p− 1)
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where Fj = U ×Ck are (trivial) bundles in U and using it we reformulate Problem
2.0 in the following form.

Problem 2.2.1. Let uj (0 ≤ j ≤ p − 1) be sections of the bundles Fj over the
set S. It is required to find a solution u ∈ SP (D) such that the expressions Bju
(0 ≤ j ≤ p− 1) have in a suitable sense limit values on S coinciding with u.

In order to justify the term ”the Cauchy problem” for Problem 2.2.1, we note
that the values of Bju (0 ≤ j ≤ p− 1) on S determine all the derivatives of u up to
order p−1 on S. At the same time Problem 2.2.1 is solvable in the class of smooth
(vector-) functions u (see Proposition 1.1.5), that is, it is not necessary to think
about formal agreements between the sections uj (0 ≤ j ≤ p− 1).

We denote by SfP (D) the subspace of SP (D) which consists of solutions of finite
order of growth near the boundary of D (see §1.3). As we have proved in §1.3, for

any Dirichlet system of order (p−1) on ∂D, say, {Bj}, we have SfP (D) = SP,B(D).
For several reasons, it is convenient to consider the Cauchy Problem 2.2.1 in a

subspace of SfP (D). We indicate now a class of boundary sets S for which Problem

2.2.1 has no more than one solution in SfP (D).

Theorem 2.2.2. Suppose that for a solution u ∈ SfP (D) the boundary values
Bju (0 ≤ j ≤ p− 1) vanish on a set S ⊂ ∂D which has at least one interior point.
Then u ≡ 0 in D.

Proof. Denote, as above, by G(⊕Bju) the integral on the left hand side of
formula (1.3.1). Let x0 ∈ S, and B = B(x0, r) be an open ball in X such that
B∩∂D ⊂ S. We set O = D∪B. Then G(⊕Bju) ∈ C∞

loc(E|O) satisfies PG(⊕Bju) =
0 in the domain O ⊂ X , and it vanishes on the non-empty open subset B\D of this
domain. Since the uniqueness property of the Cauchy problem in the small on X
holds for P then G(⊕Bju) = 0 in O. In particularly, u ≡ 0 in D, which was to be
proved. �

æ

§2.3. A solvability criterion of the Cauchy problem for elliptic
systems in terms of surface bases with double orthogonality

In [T2] the maximal subclasses of Sf (D) of solutions u, for which one can speak
of the boundary values of the expressions Bju (0 ≤ j ≤ p − 1) on ∂D belonging
to the range of usual (not generalized) sections of Fj , was distinguished. These
are the so-called Hardy spaces H2

P,B(D) (1 < q < ∞) which are modelled on the
pattern of the classical Hardy spaces of holomorphic functions. One could say that
H2
P,B(D) consists of all solutions u ∈ SP,B(D) for which the weak limit values of

the expressions Bju (0 ≤ j ≤ p − 1) on ∂D belong to L2(Fj|∂D). In particular,

with the topology induced by L2(⊕Fj|∂D) the space H2
P,B(D) is a Hilbert space

(see below). In this section we indicate an application of the abstract theory of
§2.1 to the Cauchy Problem 2.2.1 in the Hardy class H2

P,B(D). So, let P be a

(determined) elliptic differential operator whose transposed operator (P ′) satisfies
the uniqueness condition for the Cauchy problem in the small on X . We consider
the following problem.
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Problem 2.3.1. Let uj ∈ L2(Fj|S) (0 ≤ j ≤ p− 1) be known sections on S. It

is required to find a solution u ∈ H2
P,B(D), satisfying Bju = uj (0 ≤ j ≤ p− 1) on

S.

As was noticed by M.M. Lavrent’ev, the fundamental result about the solvability
of Problem 2.3.1 is the following.

Lemma 2.3.2. If the complement of S on ∂D has at least one interior point
then Problem 2.3.1 is densely solvable.

Proof. We denote by H the vector space L2(⊕Fj|S). Having provided each
of the bundles Fj with some Hermitian metric (., .)x we can define the conjugate
linear isomorphism ∗ : Fj → F ∗

j by < ∗ϕ, u >x= (u, ϕ)x. With the scalar product

(⊕uj ,⊕ϕj)H =
∑p−1
j=0

∫
S
(uj, ϕj)xds the vector space H is a Hilbert space. We

consider in H the subset H0 which is formed by elements of the form ⊕Bju where

u ∈ SP (D). We obtain more than is asserted in the lemma if we prove that H0

is dense in H. Using the Hahn-Banach theorem it is sufficient to show that if Φ
is a continuous linear functional on H which is equal to zero on H0, Φ ≡ 0. Let
Φ be such a functional. According to the theorem of Riesz, there are elements
ϕ̃j ∈ L2(Fj|S) (0 ≤ j ≤ p − 1) such that Φ(⊕uj) = (⊕uj ,⊕ϕ̃j) for all ⊕uj ∈ H.
Having extended each of the sections ϕ̃j by zero to ∂D\S we obtain the sections
ϕ ∈ L2(Fj|∂D) (0 ≤ j ≤ p − 1), and we set gj = ∗ϕj , that is, gj ∈ L2(F ∗

j|∂D).

Since the functional Φ vanishes on H0, we have
∫
∂D

∑p−1
j=0 < gj , Bju >x ds = 0

for all u ∈ S(D). We can now use Theorem 29.3 from the book of Tarkhanov
[T4] and conclude that there exists a section g ∈ H2

P ′,C(D) for which Cjg = gj
(0 ≤ j ≤ p−1) on ∂D. In particular, Cjg = 0 (0 ≤ j ≤ p−1) on ∂D\S. According
to Theorem 2.2.2, g ≡ 0 in D, so that Φ ≡ 0, which was to be proved. �

To apply the results of §2.1 to Problem 2.3.1 some information about the or-
thogonal projection in L2(⊕Fj|∂D) on the subspace formed by elements of the form

⊕Bju, where u ∈ H2
P,B(D), is needed. We can obtain it by the very general theory

of functional spaces with reproducing kernels (see Aronszajn [Ar]). We now explain
this. We consider the space H2

P,B(D) together with the Hermitian form

(2.3.1) (u, v) =

p−1∑

j=0

∫

∂D

(Bju,Bjϕ)xds (u, ϕ ∈ H2
P,B(D))

on it. Theorem 2.2.2 implies that any solution u ∈ H2
P,B(D) is completely defined

by the restrictions of the expressions Bju (0 ≤ j ≤ p − 1) to ∂D. Hence the form
(2.3.1) defines a scalar product on H2

P,B(D).

Lemma 2.3.3. H2
P,B(D) is a separable Hilbert space.

Proof. We can identify the pre-Hilbert space H2
P,B(D) with the subspace of

L2(⊕Fj|∂D) formed by the elements of the form ⊕Bju, where u ∈ H2
P,B(D). How-

ever by Theorem 29.3 of see Tarkhanov [T4] one can quite simply notice that this
subspace is closed. In fact, it is the intersection of kernels of special continuous lin-
ear functionals on L2(⊕Fj|∂D). Hence, H2

P,B(D) inherits the properties of a closed
subset of the separable Hilbert space. This proves the the lemma. �
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Let x be a fixed point of the domain D. We consider the functional δ
(j)
x (1 ≤

j ≤ k) on H2
P,B(D) given by δ

(j)
x f = f (j)(x) (1 ≤ j ≤ k) where u(j)(x) is the

j-th component of u at the point x. Formula (1.3.1) implies that this functional
is continuous on H2

P,B(D). Moreover, a stronger property than continuity holds.

Namely, for any compact K ⊂ D there is a constant CK such that ‖δ(j)x ‖ < CK
for x ∈ K. Hence, H2

P,B(D) is a space with a reproducing kernel (see Aronszajn

[Ar]). We can now use the Riesz theorem on the general form of a continuous linear

functional on a Hilbert space and thus find (unique) elements K(j)
x ∈ H2

P,B(D)

(1 ≤ j ≤ k) such that u(j)(x) = (u,K(j)
x )H for all u ∈ H. We denote by K(i,j)

x

(1 ≤ j, i ≤ k) the i-th component of the vector-valued function K(j)
x . The (well

defined) matrix K(x, y) = ‖K(i,j)
x (y)‖ is called the reproducing kernel of the domain

D relative to H2
P,B(D). Its properties are well-known.

Proposition 2.3.4. The matrix K(x, y) is Hermitian, that is, K(x, y)∗ = K(y, x).

Proof. If 1 ≤ j, i ≤ k then

K(i,j)
y (x) = (K(j)

y ,K(i)
x )H = (K(i)

x ,K(j)
y )H = K(i,j)

x (y),

which was to be proved. �

Proposition 2.3.5. trK(x, x) =
∑k

j=1 ‖δ
(j)
x ‖.

Proof. We have,

trK(x, x) =

k∑

j=1

(K(j)
x ,K(j)

x )H =

k∑

j=1

‖δ(j)x ‖,

which was to be proved. �

Proposition 2.3.6. If {eν} is an orthonormal basis of the space H2
P,B(D) then

for all x ∈ D we have K(j)
x =

∑∞
ν=1 e

(j)
ν (x)eν (1 ≤ j ≤ k) where the series converges

in the norm of H2
P,B(D). As a series of (vector-) functions of two variables (x, y) ∈

D ×D, it converges uniformly on compact subsets of D ×D.

Proof. For a fixed x ∈ D the Fourier series of the element K(j)
x ∈ H2

P,B(D)

(1 ≤ j ≤ k) with respect to the basis {eν} has the form K(j)
x =

∑∞
ν=1(K

(j)
x , eν)Heν .

To prove the first part of the proposition we notice that (K(j)
x , eν)H = e

(j)
ν (x). We

suppose now that Ki (i = 1, 2) are compact subsets of D, and that constants Ci
(i = 1, 2) are chosen so that ‖δ(j)x ‖ ≤ Ci for x ∈ Ki. Then for x ∈ Ki

( ∞∑

ν=1

|e(j)ν (x)|2
)2

≤
∣∣∣∣∣

∞∑

ν=1

e
(j)
ν (x)eν(x)

∣∣∣∣∣

2

≤

≤ Ci

∥∥∥∥∥

∞∑

ν=1

e
(j)
ν (x)eν(y)

∥∥∥∥∥

2

= Ci

∞∑

ν=1

|e(j)ν (x)|2.
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Hence here we have
∑∞
ν=1 |e

(j)
ν (x)|2 ≤ Ci for x ∈ Ki (i = 1, 2). Thus, if (x, y) ∈

K1 ×K2, we obtain

∞∑

ν=1

|e(j)ν (x)eν(y)| ≤
( ∞∑

ν=1

|e(j)ν (x)|2
)1/2( ∞∑

ν=1

|eν(y)|2
)1/2

≤
√
kC1C2.

This proves the absolute and uniform convergence on compact subsets of D×D

of the series for K(j)
x , which was to be proved. �

The formula for the reproducing kernel mentioned in Proposition 2.3.6 could
be written in the form K(x, y) =

∑∞
ν=1 eν(x)

∗ ⊗ eν(y). The à priori estimates
for a solution of an elliptic system imply that this series here converges uniformly
together with all its derivatives on compact subsets of D × D, that is, K is an
infinitely differentiable section of E � E over D ×D.

Theorem 2.3.7. For all solutions u ∈ H2
P,B(D) the following formula holds

(2.3.2) u(x) =

∫

∂D

p−1∑

j=0

< ∗BjK(x, .), Bju >y ds (x ∈ D).

Proof. We simply rewrite the reproducing property of the kernel K in detail.
�

For holomorphic functions of several variables Theorem 2.3.7 is due to Bungart
[Bu].

Corollary 2.3.8. In the space L2(⊕Fj|∂D) the operator of the orthogonal pro-

jection on the subspace Σ1 formed by elements of the form ⊕Bju where u ∈ H2
P,B(D),

has the form

(2.3.3) Π(⊕uj) = ⊕Bj
(∫

∂D

p−1∑

i=0

< ∗BiK(x, .), fi >y ds

)
(⊕uj ∈ L2(⊕Fj|∂D).

Proof. Let {eν} be an orthonormal basis of the space H2
P,B(D). Then, from

equality (2.3.1), {⊕Bjeν} is an orthonormal basis of the subspace Σ1 in L2(⊕Fj|∂D).

Hence if ⊕uj ∈ L2(⊕Fj|∂D) then

Π(⊕uj) =
∞∑

ν=1

(⊕uj ,⊕Bjeν)L2(⊕Fj|∂D)(⊕Bjeν) =

= ⊕Bj
( ∞∑

ν=1

(⊕uj(y),⊕Bj(y)(e∗ν(x) ⊗ eν(y)))L2(⊕Fj|∂D)(⊕Bjeν)
)
.

The first part of Proposition 2.3.6 implies that the sign of summation over ν can
be taken inside sign of the scalar product. This gives at once formula (2.3.3), which
was to be proved. �

We outline a scheme of application of the theory of §2.1 to the Cauchy Problem
2.3.1. We set H1 = L2(⊕Fj|∂D) and H2 = L2(⊕Fj|S). The Hermitian structures on
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these spaces are introduced as was explained in the proof of Lemma 2.3.2. Then H1

and H2 are Hilbert spaces. The operator T : H1 → H2 is given by the restrictions
of sections. Then the adjoint operator T ∗ is simply the extension of sections from S
to ∂D\S by zero. Further, we consider in H1 the subspace Σ1 formed by elements
of the form ⊕Bju where u ∈ H2

P,B(D). We have already noted that Σ1 is a closed

subspace of H1 representing H2
P,B(D). We denote by Π the operator of orthogonal

projection on Σ1 in H1. This is the integral operator given by formula (2.3.3).
Lemma 2.3.2 means that the operator T : Σ1 → H2 has a dense image, therefore
we set Σ2 = H2. We must consider the mapping ΠT ∗T : Σ1 → Σ1, which is given
by the integral (2.3.3) except that the domain of integration is S instead of ∂D.
If the set S has at least one interior point (on ∂D) then, from Theorem 2.2.2, the
operators T : Σ1 → Σ2 and ΠT ∗T : Σ1 → Σ1 are injective. Even in the simplest
situations the operator ΠT ∗T is not compact, moreover, it is not Carleman operator

(see Berezanskii [Bz], ch.V, 14). Let {b(i)λ } be a complete system of generalized eigen
vectors of the operator ΠT ∗T in L′

1 where L ⊂ Σ1 ⊂ L′
1 is a suitable equipment of

Σ1. Then Corollaries 2.1.8 and 2.1.9 imply the following results.

Theorem 2.3.9. We assume that the complement of S in ∂D has at least one
interior point. Then for the solvability of Problem 2.3.1 it is necessary and sufficient
that

(2.3.4) u(x) =

∫ 1

−0

Nλ∑

i=1

∣∣∣∣∣
(ΠT ∗(⊕uj), b(i)λ )H1

λ

∣∣∣∣∣

2

dσ(λ) <∞

Proof. It is sufficient to note that in this case we have m = ‖T‖2 = 1. �

It is clear that Theorem 2.3.9 has only theoretical value, but is not in the least
a practical, because its application depends on the singular eigenvalue problem
for the operator ΠT ∗T . Therefore cases where one succeeds in calculating the

system {b(i)λ } in an explicit form are very interesting. There is such a situation
in one of the simplest Cauchy problems for holomorphic functions, considered by
Krein and Nudelman [KrNu] (see Example 2.1.11). A corresponding result holds
for Carleman’s formula.

Theorem 2.3.10. Let ∂D\S have a non-empty interior (in ∂D). Then under
condition (2.3.4) the solution of Problem 2.3.1 is given by the formula

(2.3.5) u(x) = −
∫ 1

−0

(
∗−1

Nλ∑

i=1

(⊕CjL(x, .)), b
(i)
λ

)

H1

(ΠT ∗(⊕uj), b(i)λ )H1

λ
dσ(λ)

Proof. It is sufficient to substitute the expressions ⊕Bju(y) (y ∈ D), obtained
by Corollary 2.1.9, in Green’s formula (1.3.1). �

A similar formula could be constructed on the basis of the integral representation
(2.3.2). æ

§2.4. Green’s integral and solvability of the
Cauchy problem for (determined) elliptic systems
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In this and the following 2 sections we assume that P is an elliptic differential
operator such that the transposed operator P ′ satisfies the uniqueness condition of
the Cauchy problem in the small on X .

Theorem 1.4.4 explains that if we solve Problem 2.2.1 (of Cauchy) in the class
SP (D)∩Lq(E|D) (or, more generally, in the class of sections satisfying Pu = 0 in D
which have finite order of growth near the boundary of D) then we can hope only
for generalized limit values of the expressions Bju (0 ≤ j ≤ p−1) on ∂D. Therefore,
since distributions have restrictions only on open subsets of the domain, it is natural
to assume that S is an open connected piece (subdomain) of the boundary of D.

This situation can be realized in the following way. There is some domainO b X ,
and S is a smooth closed hypersurface in O dividing this domain into two connected
components: O− = D and O+ = O\D.

In the wording of the following problem there are Besov spaces Bs−bj−1/q,q(Fj|S)

whose definition may be not clear. We define these spaces in the following way. In
Besov space Bs−bj−1/q,q(Fj|∂D) (defined by one of the usual method) we consider

the subspace Σ formed by all the sections which are equal to zero on S. For s < 0
this means that < g, f >= 0 for all g ∈ B−s,q′(F ∗

j|∂D) with supp g ⊂ S. It is easy to

see that Σ is closed. The corresponding quotient space (with the quotient topology)
we denote by Bs−bj−1/q,q(Fj|S)

Problem 2.4.1. Let uj ∈ Bs−bj−1/q,q(Fj|S) (0 ≤ j ≤ p − 1) be known sec-

tions on S where s ∈ Z+, and 1 < q < ∞. It is required to find a section
u ∈ SP (D) ∩W s,q(E|D) such that Bju = uj (0 ≤ j ≤ p− 1) on S.

Under the formulated conditions the operator P has a right fundamental solution
onX . In other words there is an operator L ∈ pdo−p(F → E) such that LP = 1−S0

on C∞
◦ (E) where S0 ∈ pdo−∞(E → E) is some smoothing operator. Then PS0 = 0

on generalized sections of E with compact supports (that is, on E ′(E)).
Using the ”initial” data of Problem 2.4.1 we construct Green’s integral in a the

special way. That is, we denote by ũj ∈ Bs−bj−1/q,q(Fj|∂D) (0 ≤ j ≤ p − 1) an
extension of the section uj to the whole boundary. If, for example, s = 0 and
uj ∈ L2(Fj|S) (0 ≤ j ≤ p− 1), then it is possible to extend them by zero on ∂D\S.
In any case the extensions could be chosen so that they will be supported on a
given neighbourhood of the compact S on ∂D. Then we set ũ = ⊕ũj , and

(2.4.1) G(ũ)(x) = −
∫

∂D

< CjL(x, .), ũj >y ds (x 6∈ ∂D)

It is clear that G(ũ) is a solution of the system Pu = 0 everywhere in X\∂D. In
particular, if we denote by F± the restrictions of a section F ∈ D′(E|O) to the sets
O±, then G(ũ)± ∈ SP (O±).

Theorem 2.4.2. If the boundary of the domain D is sufficiently smooth then, for
Problem 2.4.1 to be solvable, it is necessary and sufficient that the integral G(ũ) ex-
tends from O+ to the whole domain O as a solution belonging to SP (O) ∩W s,q(E|O).

Proof. Necessity. Suppose that there is a section u ∈ SP (D) ∩W s,q(E|D) such
that Bju = uj (0 ≤ j ≤ p− 1) on S.

We consider the following section in the domain O (more exactly, in O\S):

(2.4.2) F(x) =

{ Gũ(x), x ∈ O+,

Gũ(x) − u(x), x ∈ O−.
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Using the boundedness theorem for potential operators in Sobolev spaces on
manifolds with boundary (see Rempel and Schulze [ReSz], 2.3.2.5) we can conclude
that G(ũ)± ∈ W s,q(E|O±) (here we need that ∂D ∈ Cr with r = max(s, p − s)).

This means F± ∈ W s,q(E|O±).
On the other hand, we consider the difference δ = G(ũ) − G(⊕Bju). Let ϕε ∈

D(X) be any function supported on the ε-neighbourhood of the set ∂D\S, and equal
to 1 in some smaller neighbourhood of this set. Since Bju = ũj (0 ≤ j ≤ p− 1) on
S then we can write

δ(x) =

∫

∂D

p−1∑

j=0

< CjL(x, .), ϕε(Bju− ũj) >y ds (x 6∈ ∂D).

The right hand side of this equality is a solution of the system Pu = 0 everywhere
in the domain O except the part of the ε-neighbourhood of the boundary of S on
∂D which belongs to O. Therefore, since ε > 0 is arbitrary, δ ∈ SP (O).

Now using the expression for the integral G(⊕Bju) from Green’s formula (1.3.4)
and puting G(ũ) = G(⊕Bj ũ) + δ in inequality (2.4.2) we obtain

F(x) = δ(x) (x ∈ O\S)

Since S0(χDu) ∈ SP (X) the section F extends to the whole domain O as a
solution of the system Pu = 0.

Hence the section F extends to the whole domain O as a solution of the system
Pu = 0.

Thus, F belongs to SP (O) ∩W s,q(E|O), and on O+ this section coincides with

G(ũ)+, which was to be proved.
Sufficiency. Conversely, let F ∈ SP (O) ∩W s,q(E|O) be a solution coincid-

ing with G(ũ)+ on O+. We set u(x) = G(ũ) − F(x) (x ∈ D). The above
mentioned boundedness theorem for potential operators in Sobolev spaces (see
Rempel and Schulze [ReSz], 2.3.2.5) implies that G(ũ) ∈ W s,q(E|O−). Therefore
u ∈ SP (D) ∩W s,q(E|D).

Now, for gj ∈ D(F ∗
j|S) (0 ≤ j ≤ p− 1), Lemma 1.3.7 implies that

lim
ε→+0

∫

∂D

< g,Bju(x− εν(x)) >x ds = lim
ε→+0

∫

S

< g,Bju(x− εν(x)) >x ds =

= lim
ε→+0

∫

S

< g,Bj(G(ũ))(x− εν(x)) −BjF(x− εν(x)) >x ds =

= lim
ε→+0

∫

S

< g,Bj(G(ũ))(x− εν(x)) −BjF(x+ εν(x)) >x ds =

= lim
ε→+0

∫

S

< g,Bj(G(ũ))(x− εν(x)) −Bj(G(ũ))(x+ εν(x)) >x ds =

=

∫

S

< gj , ũj >x ds =

∫

S

< gj , uj >x ds.

Hence Bju = uj (0 ≤ j ≤ p − 1) on S, that is, u is a soution of Problem 2.4.1,
which was to be proved. �

æ
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§2.5. A solvability criterion for the Cauchy
problem for (determined) elliptic systems in the

language of space bases with double orthogonality

Theorem 2.4.2 has been formulated so that the application of the theory of §2.1
is suggested. For this assume in addition that q = 2.

So, in this section we consider the solvability aspect of Problem 2.4.1.

Problem 2.5.1. Under what conditions on the sections uj ∈W s−bj−1/2,2(Fj|S)

(0 ≤ j ≤ p − 1) is there a solution u ∈ SP (D) ∩W s,2(E|D) such that Bju = uj
(0 ≤ j ≤ p− 1) on S ?

Let Ω be some relatively compact subdomain of O+. Since Ω b O+, it follows
that the restriction to Ω of Green’s integral G(ũ) defined by equality (2.4.1) belongs
to the space SP (Ω) ∩W s,2(E|Ω). Hence the extendibility condition for G(ũ) from

O+ to the whole domain O (as a solution in the class SP (O) ∩W s,2(E|O)) could

be obtained by the use of a suitable system {bν} in SP (O) ∩W s,2(E|O) with the
double orthogonality property. More exactly, it is required that {bν} should be an
orthonormal basis in Σ1 = SP (O) ∩W s,2(E|O) and an orthogonal basis in Σ2 =

SP (Ω) ∩W s,2(E|Ω) (or the contrary !).
How can such a system be constructed ? The theory of §2.1 answers this question.
We consider Sobolev spaces H1 = W s,2(E|O) and H2 = W s,2(E|Ω) of sections

of E. According to our approach we define them in the ”interior” way using the
Riemannian metric dx on O or Ω, and the Hermitian metric on (fibers of) E.
Thus, H1 and H2 are Hilbert spaces. On the other hand, if the boundaries of O
and Ω satisfy minimal conditions of the smoothness (roughly speaking they should
be Lipschitz’s ones) then these spaces are isomorphic (as normed spaces) to the
Hilbert spaces W s,2(E|O) and W s,2(E|Ω). These spaces are already defined in the

”exterior” way. Namely, they are defined as quotient spaces of the Hilbert space
W s,2(E) by closed subspaces of sections vanishing on O or Ω respectively.

The operator T : H1 → H2 is given by restriction of sections so that this is a
continuous linear mapping of the Hilbert spaces.

Further, we distinguish in H1 and H2 the subspaces Σ1 and Σ2 which are formed
by sections F satisfying PF = 0 in O or Ω respectively. The Stiltjes-Vitali theorem
(see Hörmander [Hö2], 4.4.2) implies that these subspaces are closed, therefore they
are Hilbert spaces with the induced hermitian structures.

It is clear that the restriction of the map T to Σ1 maps to Σ2. However it is not
evident that the image of T is dense in Σ2.

Lemma 2.5.2. If the boundary of the domain Ω b O is regular, and the comple-
ment of Ω has no compact connected components in O then the operator T : Σ1 →
Σ2 has a dense image.

Proof. We need to prove that restrictions to Ω of elements of SP (O) ∩W s,2(E|O)

are dense in SP (Ω) ∩W s,2(E|Ω) in the norm of W s,2(E|Ω). However, since the

boundary of Ω is regular, SP (Ω) is dense in SP (Ω) ∩W s,2(E|Ω) in the norm of

W s,2(E|Ω) (see Tarkhanov [T4], ch. 4). On the other hand, the complement of
Ω has no compact connected components in O, and hence the theorem of Runge
implies that SP (O) is dense in SP (Ω) (see the same book, theorem 11.26). Since
SP (O) ⊂ SP (O) ∩W s,2(E|O), and the natural topology in SP (O) is stronger than

the induced topology from W s,2(E|O), we obtain the required result. �
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From the proof of the lemma we can see how to understand the words ”regular
boundary”. If s ≥ p, the word ”regular” means any boundary. And if s < p then
this means that the complement of Ω in every boundary point is sufficiently massive.
The reader can get a more exact characterization from the book of Tarkhanov [T4]
(ch. 4).

Lemma 2.5.3. If the differential operator P satisfies the condition (U)S on X
then the operator T : Σ1 → Σ2 is injective

Proof. Let u ∈ Σ1 and Tf = 0. This means that the solution u ∈ SP (O)
vanishes on the non-empty open subset Ω of O. Hence the property (U)S implies
u ≡ 0 everywhere in O, which was to be proved. �

However the most important property of the operator T (in view of the applica-
tion, via Theorem 2.4.2, of the theory of §2.1 to Problem 2.5.1) is the following.

Lemma 2.5.4. The operator T : Σ1 → Σ2 is compact.

Proof. We need to show that the operator T maps any bounded set to a rela-
tively compact set.

Let K ⊂ Σ1 be a bounded set, that is, one can find a constant C > 0 such that
‖u‖ < C for all u ∈ K. The image of K by the map T , that is, T (K) is a relatively
compact set if from any sequence {Fj} ⊂ T (K) one can extract a subsequence
{Fjk} converging in Σ2.

However if {Fj} ⊂ T (K) then Fj = uj|Ω where {uj} ⊂ K. The sequence {uj} is
bounded in the Hilbert space Σ1. Therefore it contains a subsequence {ujk} which
converges weakly to some element u ∈ Σ1 (see Riesz and Sz.-Nagy [RS-N], s.32).
Certainly {uj} converges to u in the topology of the space D′(E|O).

We use now the Stiltjes-Vitaly theorem (see Hörmander [Hö], 4.4.2) to conclude
that {fjk} converges to u in the topology of the space C∞

loc(E|O). We set F = u|Ω,
and Fjk = ujk|Ω then F ∈ Σ2 and {Fjk} converges to F in Σ2, which was to be
proved. �

We can formulate now the main result on existence of bases with double orthog-
onality.

Theorem 2.5.5. If Ω b O is an open set with a regular boundary whose com-
plement (in O) has no compact connected components in O then in the space
SP (O) ∩W s,2(E|O) there is an orthonormal basis {bν}∞ν=1 whose restriction to Ω

is an orthogonal basis in SP (Ω) ∩W s,2(E|Ω).

Proof. We construct this basis by a method which will allow to obtain addi-
tional information about the corresponding eigen-value problem.

Let Π be the operator of orthogonal projection on Σ1 in H1. The à priori interior
estimates for solutions of elliptic systems imply that the space Σ1 (and Σ2 ) is a
Hilbert space with a reproducing kernel (see Aronszajn [Ar]). Hence Π is an integral
operator with a kernel K(x, y) ∈ C∞

loc(E �E|(O×O)).

If {eν}∞ν=1 is an orthonormal basis of the space SP (O) ∩W s,2(E|O) then for all

x ∈ O we have K(x, .) =
∑∞

ν=1 eν(x) ⊗ eν(.), where the series converges in the
norm of W s,2(E ⊗ E|O). As a series of (matrix-valued) functions of two variables
(x, y) ∈ O ×O, this series converges uniformly on compact subsets of O ×O.
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Thus, ΠF = (F ,K(x, .))H1
(F ∈ H1). Now simple calculations show that the

operator ΠT ∗T : H1 → H2 is integral. Namely,

(ΠT ∗T )F =

∫

Ω

∑

|α|≤s
< ∗DαK(x, .), DαF >y dv (F ∈ H1).

From Lemmata 2.5.2, 2.5.3 and 2.5.4, and the results of Example 2.1.10 the
restriction of the operator ΠT ∗T to Σ1 is injective, compact, and self-adjoint op-
erator in Σ1. Hence, if we denote by {bν} the countable complete orthonormal
system of eigen-vectors of the operator ΠT ∗T on Σ1 (corresponding to eigenval-
ues {λν} ⊂ (0, 1)), {bν} is an orthonormal basis of the space Σ1 and {Tbν} is an
orthogonal basis in Σ2.

Therefore {bν} is a system with the double orthogonality property, which was to
be proved. �

For an element F ∈ Σ1 we shall denote by cν(F) (ν = 1, 2, ...) its Fourier co-
efficients with respect to the orthonormal system {bν} in Σ1, that is, cν(F) =
(F , bν)H1

. And for an element F ∈ Σ2 we shall denote by kν(F) (ν = 1, 2, ...)
its Fourier coefficients with respect to the orthogonal system {Tbν} in Σ2, that is,

kν(F) =
(F,T bν)H2

(Tbν ,T bν)H2
. Then the principal property of bases with double orthogonal-

ity is the following.

Lemma 2.5.6. For any element F ∈ Σ1 we have

(2.5.1) cν(F) = kν(TF) (ν = 1, 2, ...)

Proof. Using the calculations of Example 1.9 we obtain

cν(F) = (F , 1

λν
(ΠT ∗T )bν)H1

=
1

λν
(TF , T bν)H2

= kν(TF),

which was to be proved. �

We formulate now the solvability condition for Problem 2.5.1. Let Gũ be Green’s
integral (see (2.4.1) constructed from the ”initial” data of the problem. As already
we noted, the restriction of the section Gũ to Ω belongs to the space Σ2.

Lemma 2.5.7. For ν = 1, 2, ...

(2.5.2) kν(Gũ) = −
∫

∂D

p−1∑

j=0

< Cjkν(L(., y)), ũj >y ds.

Proof. This consists of direct calculations with the use of equality (2.4.1). �

In order to determine the coefficients kν(Gũ) (ν = 1, 2, ...) it is not necessary
to know the basis {Tbν} in Σ2. It is sufficient only to know the coefficients of the
decomposition of the fundamental matrix (L(., y) (y ∈ ∂D) with respect to this
series. The properties of the coefficients kν(L(., y) ∈ C∞

loc(F
∗
|X\Ω) we shall discuss

in §2.6.
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Theorem 2.5.8. If the boundary of the domain D is sufficiently smooth then
for the solvability of Problem 2.5.1 it is necessary and sufficient that

(2.5.3)
∞∑

ν=1

|kν(Gũ)|2 <∞.

Proof. Necessity. Suppose that Problem 2.5.1 is solvable. Then Theorem 2.4.2
implies that the solution Gũ extends from O+ to the whole domain O as a solution
belonging SP (O)∩ W s,2(E|O). Having denoted this extension by F we obtain
F ∈ Σ1 and TF = Gũ on Ω. Therefore taking into the consideration formula
(2.5.1), and using Bessel’s inequality we obtain

∞∑

ν=1

|kν(Gũ)|2 =
∞∑

ν=1

|kν(TF)|2 =
∞∑

ν=1

|cν(F)|2 = ‖F‖2
H1

<∞

which was to be proved.
Sufficiency. Conversely, let condition (2.5.3) hold. Then the theorem of Riesz

and Fisher implies that there exists an element F ∈ Σ1 such that cν(F) = kν(Gũ)
for ν = 1, 2, ... Applying the operator T to the series F =

∑∞
ν=1 cν(F)bν which

converges in the norm of H1, and taking into the consideration that the system
{Tbν} is a basis in Σ2, we have

TF =

∞∑

ν=1

cν(F)Tbν =

∞∑

ν=1

kν(Gũ)Tbν = Gũ on Ω.

Hence F ∈ SP (O) ∩W s,2(E|O), and the restrictions to Ω of the sections F and
Gũ coincide. Since the differential operator P satisfies the condition (U)S on X it
follows that the solution F coincides with Gũ everywhere in O. We conclude now
(using Theorem 2.4.2) that Problem 2.5.1 is solvable, which was to be proved. �

æ

§2.6. Carleman’s formula

In this section we consider the regularization aspect of Problem 2.4.1.

Problem 2.6.1. It is required to find a solution u ∈ SP (D) ∩W s,2(E|D) using

known values Bju ∈W s−bj−1/2,2(Fj|S) (0 ≤ j ≤ p− 1) on S.

It is easy to see from Corollary 1.8 that side by side with the solvability conditions
for Problem 2.4.1 (q = 2) bases with double orthogonality give the possibility of
obtaining a suitable formula (of Carleman) for the regularization of solutions. We
shall illustrate this on example of Problem 2.6.1.

Let {bν} be the basis with double orthogonality, constructed in the previous
section, in the space (Σ1 =)SP (O) ∩W s,2(E|O) such that the restriction of {bν} to

Ω (that is, {Tbν}) is an orthogonal basis of (Σ2 =)SP (Ω) ∩W s,2(E|Ω).
As above, we denote by {kν(L(., y))} the sequence of Fourier coefficients for the

fundamental matrix L(., y) (y ∈ Ω) with respect to the system {Tbν}.
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Lemma 2.6.2. The sections kν(L(., y)) (ν = 1, 2...) are continuous, together
with their derivatives up to order (p− s− 1), on the whole set X.

Proof. Though the restrictions to Ω of the columns of the fundamental matrix
L(., y) (for y ∈ Ω) do not belong to the space Σ2, for all y ∈ X they do belong to
W p−1,q(E|Ω) where q < n

n−1 . Hence the scalar products

(2.6.1)

kν(L(., y)) =
(L(., y), T bν)Σ2

Tbν , T bν)Σ2

=
1

λν

∑

|α|≤s|

∫

Ω

< ∗Dαbν , D
αL(., y) >x dv (ν = 1, 2...)

are defined for all y ∈ X . Since bν ∈ C∞
loc(E|O) we have kν(L(., y)) ∈ Cp−s−1

loc (F ∗).
And this was to be proved. �

Using formula (2.6.1) one can see that the sections kν(L(., y)) (ν = 1, 2...) extend
to the boundary of Ω from each side as infinitely differentiable sections (at least, if
the boundary is smooth).

Lemma 2.6.3. For any number ν = 1, 2, ... we have P ′kν(L(., y)) = 0 everywhere
in X\Ω.

Proof. Since P ′L′ = 1 on E ′(E∗) then (2.6.1) implies that

P ′kν(L(., y)) = P ′L′(χΩ(∗bν)) = χΩ(∗bν) (ν = 1, 2, ...),

and this proves the statement. �

We introduce the following kernels C(N) defined for (x, y) ∈ O ×X (x 6= y):

(2.6.2) C(N)(x, y) = L(x, y)−
N∑

ν=1

bν(x) ⊗ kν(L(., y)) (N = 1, 2, ...).

Lemma 2.6.4. For any number N = 1, 2, ... the kernels C(N) ∈ Cloc(E � F )
satisfy P (x)C(N)(x, y) = 0 for x ∈ O, and P ′(y)C(N)(x, y) = 0 for y ∈ X\Ω
everywhere except on the diagonal {x = y}.

Proof. Since {bν} ⊂ SP (O), this immediately follows from Lemma 2.6.3. �

In the following lemma H is a separable Hilbert space with an orthonormal basis
{bν}.

Lemma 2.6.5. Let h = h(α) be a continuous map of a topological space A to H.
Then, for any element h(α), the Fourier series converges uniformly with respect to
α on compact subsets of A.

Proof. Let (., .) be the scalar product and ‖h‖ = (h, h)1/2 be a norm in H
(h ∈ H).

We fix arbitrary α ∈ A and denote by cν(α) the Fourier coefficients of the vector
h(α) with respect to the system {bν}: cν(α) = (h(α), bν). Then for any ε > 0 there
is N > 0, N = N(ε, α), such that for every m ≥ N the following inequality holds:

(2.6.3) ‖h(α) −
m∑

ν=1

cν(α)bν‖ =

(
‖h(α)‖2 −

m∑

ν=1

|cν(α)|2
)1/2

≤ ε.
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Since the map h and the scalar product (., .) are continuous, there is a neighbour-
hood VN (α) of the point α in which estimate (2.6.3) still holds form = N . However,
if m increases, the right hand side of (2.6.3) can only decrease. Therefore inequality
(2.6.3) holds in the neighbourhood VN (α) for all m ≥ N .

Now, for any compact K ⊂ A, we can choose N1 = N1(K) such that estimate
(2.6.3) holds for all α ∈ K because we can cover the compact by a finite number of
neighbourhoods of the type VN (α). The proof is complete. �

From the following lemma one can see that the sequence of kernels {C(N)} inter-
polated for real values N ≥ 0 in a suitable way, for example in the piece-constant
way, gives special Carleman’s function for Problem 2.6.1 (see Tarkhanov [T4], §25).

Lemma 2.6.6. For any multi-index α, Dα
y C(N)(., y) → 0 in the norm of W s,2(E⊗

F ∗
y|O) uniformly with respect to y on compact subsets of X\O, and even X\O if

|α| < p− s− n/2.

Proof. First, we notice that, if y ∈ X\O, every column of the matrix L(x., y)
is an element of the space Σ1. Therefore using Lemma 2.5.6 we obtain C(N)(., y) =

L(., y) −∑N
ν=1 cν(L(., y)). Differentiating this identity with respect to y we find

the equality

(2.6.4) Dα
y C(N)(., y) = Dα

yL(., y)−
N∑

ν=1

bν ⊗ cν(D
α
yL(., y)) (y ∈ X\O).

The correspondence y → Dα
yL(., y) defines a continuous linear mapping of the

topological space X\O to the direct sum of k copies of the space Σ1. Therefore
for every column of the matrix Dα

yL(., y) its Fourier series with respect to the
orthonormal basis {bν} converges in the norm of Σ1 uniformly with respect to y
on compact subsets of X\O (see Lemma 2.6.5). This proves the first part of the
lemma. As for the second part, it is sufficient to use the same arguments because
for |α| < p− s− n/2 the correspondence y → Dα

yL(., y) defines a continuous linear

mapping of the whole set X\O to the direct sum of k copies of the space Σ1. �

We can formulate now the main result of the section. For u ∈ SP (D) ∩W s,2(E|D))

we denote by ũ ∈ W s−bj−1/2,2(Fj|∂D) (0 ≤ j ≤ p− 1) some (arbitrary) extensions
of the sections Bju from S to the whole boundary.

Theorem 2.6.7 (Carleman’s formula). For any solution u ∈ SP (D) ∩W s,2(E|D)
the following formula holds:

(2.6.5) u(x) = − lim
N→∞

∫

∂D

p−1∑

j=0

< CjC
(N)(x, .), ũj >y ds (x ∈ D).

Proof. Let G(ũ) be Green’s integral constructed by formula (2.4.1). Theo-
rem 2.5.8 implies that

∑∞
ν=1 |kν(G(ũ)| < ∞. Hence, from the theorem of Riesz

and Fisher, there exists an element F ∈ SP (O) ∩W s,2(E|O) such that cν(F) =
kν(G(ũ)). In proving Theorem 2.5.8 we saw that this solution F is an extension of
G(ũ) from the domainO+ to the whole domainO as a solution in SP (O) ∩W s,2(E|O).
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Then Theorem 2.4.2 implies that the section u′(x) = G(ũ)(x) − F(x) (x ∈ D) be-
longs to SP (D) ∩W s,2(E|D), and satisfies Bju

′ = u (0 ≤ j ≤ p − 1) on S. Using
(uniqueness) Theorem 2.2.2 we see that u = u′ everywhere in D. Hence

u(x) = (G(ũ))(x) − F(x) = (G(ũ))(x) −
∞∑

ν=1

kν(G(ũ))bν(x) =

(2.6.6) = (G(ũ))(x) − lim
N→∞

N∑

ν=1

kν(G(ũ))bν(x).

Puting in (2.6.6) the expressions for the coefficients kν(G(ũ)) (ν = 1, 2, ...) which
are given in Lemma 2.5.7 we obtain

u(x) = −
∫

∂D

p−1∑

j=0

< CjL(x, .), ũj >y ds+

+ lim
N→∞




N∑

ν=1

∫

∂D

p−1∑

j=0

< Cjkν(L(x, .)), ũj >y ds


 bν(x) =

= − lim
N→∞

∫

∂D

p−1∑

j=0

< Cj

(
L(x, .)−

N∑

ν=1

bν(x) ⊗ kν(L(x, .))

)
, ũj >y ds =

= − lim
N→∞

∫

∂D

p−1∑

j=0

< CjC
(N)(x, .), ũj >y ds,

which was to be proved. �

We emphasize that the integral in the right hand side of formula (2.5.4) depends
only on values of the expressions Bju (0 ≤ j ≤ p− 1) on S. Thus, this formula is
a quantitative expression of (uniqueness) Theorem 2.2.2. However this gives much
more than the uniqueness theorem because there is sufficiently complete information
about Carleman’s function C(N).

For harmonic functions Carleman’ formula (2.6.5) is first met, apparently, in
[Sh1].

Remark 2.6.8. The series
∑∞
ν=1 kν(Gũ)bν (defining the solution F) converges

in the norm of the space W s,2(E|O). The Stiltjes-Vitali theorem (see Hörmander
[Hö2], 4.4.2) implies now that it converges together with all its derivatives on com-
pact subsets of O. Then, from formula (2.6.6), one can see that the limit in (2.6.5)
is reached in the topology of the space C∞

loc(E|O).

In fact, the opposite statement (for Theorem 2.6.7) holds. For the Cauchy-
Riemann system this fact was proved by Aizenberg (see [AKSh]).
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Theorem 2.6.9. Let for sections uj ∈ W s−bj−1/2,2(Fj|S) (0 ≤ j ≤ p− 1) there

exist in the norm of the space W s,2(E|D) the limit

v(x) = − lim
N→∞

∫

∂D

p−1∑

j=0

< CjC
(N)(x, .), ũj >y ds (x ∈ D).

Then v ∈ SP (D) ∩W s,2(E|D) and Bjv|S = uj, i.e. v is the solution of Problem
2.6.1 for ⊕uj.

Proof. (The Uniqueness) Theorem 2.2.2 implies that it suffices to prove that
Problem 2.6.1 is solvable for the sections uj (0 ≤ j ≤ p− 1). In order to prove this
we prove that the series

∑∞
ν=1 |kν(G(ũ))|2 with the Fourier coefficients kν(G(ũ))

of the integral G(ũ) with respect to the orthogonal system {bν|Ω} converges (see
Theorem 2.5.8).

By the definition {bν} is orthonormal in W s,2(E|O); therefore

∞∑

ν=1

|kν(G(ũ))|2 =

∥∥∥∥∥

∞∑

ν=1

kν(G(ũ))bν

∥∥∥∥∥

2

W s,2(E|O)

=

(2.6.7) =

∥∥∥∥∥

∞∑

ν=1

kν(G(ũ))bν

∥∥∥∥∥

2

W s,2(E|O− )

+

∥∥∥∥∥

∞∑

ν=1

kν(G(ũ))bν

∥∥∥∥∥

2

W s,2(E|O+ )

.

Let us prove, first, the boundedness of the first summand in (2.6.7). By simple
calculations

v(x) = (G(ũ))(x) −
∞∑

ν=1

kν(G(ũ))bν(x) (x ∈ D).

By the hypothesis of the theorem v ∈W s,2(E|D); moreover G(ũ) ∈W s,2(E|D) (see
[ReSz], 2.3.2.5). Hence

∥∥∥∥∥

∞∑

ν=1

kν(G(ũ))bν

∥∥∥∥∥

2

W s,2(E|O− )

≤ ‖v‖2
W s,2(E|O− ) + ‖G(ũ)‖2

W s,2(E|O− ) <∞.

To finish the proof we need to show that ‖∑∞
ν=1 kν(G(ũ))bν‖2

W s,2(E|O+ )
< ∞.

However, for any point x ∈ O+ there is a domain Ωx, with smooth boundary, such
that Ω b Ωx b O+ and the complement of Ωx in O has no compact connected
components. Proving Lemma 2.5.2, we have seen that under conditions above the
system {bν} is dense in S(Ωx)∩W s,2(E|Ωx

) (in the norm of the last space). Then,

because G(ũ) ∈W s,2(E|Ωx
), the following decomposition holds:

(2.6.8) G(ũ)(x) =

∞∑

ν=1

aν(G(ũ),Ωx)bν(x) (x ∈ Ωx).



64CHAPTER II. BASES WITH DOUBLE ORTHOGONALITY IN THE CAUCHY PROBLEM

On the other hand, because {bν} is an orthogonal basis in S(Ω)∩W s,2(E|Ω), we
have

(2.6.9) G(ũ)(x) =

∞∑

ν=1

kν(G(ũ))bν(x) (x ∈ Ω).

Comparing (2.6.8) and (2.6.9) we conclude that kν(G(ũ)) = aν(Gũ,Ωx) for every
ν ∈ N. Hence decomposition (2.6.9) holds for x ∈ O+.

Finally, results of [ReSz] (see 2.3.2.5) imply that G(ũ) ∈W s,2(E|O+). Therefore

∥∥∥∥∥

∞∑

ν=1

kν(G(ũ))bν

∥∥∥∥∥

2

W s,2(E|O+ )

= ‖G(ũ)‖2
W s,2(E|O+ ) <∞.

The proof is complete. �

æ

§2.7. A stability set in the Cauchy problem for elliptic systems

As we have already noted the Cauchy problem for elliptic systems is ill-posed
(see, for example, [Hd]). In this section we consider the stability aspect of Problem
2.4.1. More exactly, we are aimed in finding a stability set in the problem. That
means a set Σ of solutions u ∈ W s,2(E|D) to Pu = 0 such that Bju

(µ) → 0 on S

(0 ≤ j ≤ p− 1) implies u(µ) → 0 in D, for any sequence {u(µ)} ⊂ Σ.

We consider Green’s integral

G̃(⊕uj)(x) = −
∫

S

p−1∑

j=0

< CjL(x, .), uj > ds (x 6∈ S),

{Cj}p−1
j=0 being the Dirichlet system on ∂D adjoint to {Bj}p−1

j=0 with respect to

Green’s formula, (see Lemma 1.1.6) and L being a fundamental solution of P on
X .

Let, as in §2.5, Ω b O be a domain with regular boundary whose complement in
O has no compact connected components. This integral, when restricted on Ω, is

in SP (Ω) ∩W s,2(E|Ω). Denote by kν(G̃(⊕uj)) its Fourier coefficients with respect
to the orthogonal system {bν|Ω}. Exactly,

kν(G̃(⊕uj)) = −
∫

S

p−1∑

j=0

< Cjkν(L(., y))uj > ds (ν ∈ N)

where kν(L(., y)) are the Fourier coefficients of the fundamental solution L(x, y)|x∈Ω,
y being on S.

We complete our results on the solvability of Cauchy the problem in the following
way.
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Theorem 2.7.1. Given a sequence {u(µ)} ⊂ SP (D) ∩W s,2(E|Ω), if for every
µ ∈ N

∞∑

ν=1

|kν(G̃(⊕Bju(µ)))|2 ≤ 1

and Bju
(µ) → 0 in the norm of W s−bj−1/2,2(Gj|S) for all 0 ≤ j ≤ p − 1, then

u(µ) → 0 in the topology of W s,2
loc (E|D∪S).

Remark 2.7.2. Of course, the adequate conclusion here would be that u(µ) → 0
in the norm of W s,2(E|D), but we are not able to prove that.

Proof. Fix a sequence {u(µ)} satisfying the condition above.
Arguing as in the proofs of Theorems 2.4.2 and 2.5.8 one obtains that

(2.7.1) u(µ) = G̃(⊕Bju(µ))(x) −Fµ(x) (x ∈ D)

where Fµ ∈ SP (O) ∩W s,2(E|O) is given by the Fourier series

Fµ =

∞∑

ν=1

kν(G̃(⊕Bju(µ))bν .

We see at once that the restrictions of Fµ and G̃(⊕Bju(µ)) to Ω coincide.

Since Bju
(µ) → 0 in the norm of W s−bj−1/2,2(Gj|S) for all 0 ≤ j ≤ p−1, the first

term in the right hand side of (2.7.1) tends to zero in the topology of W s,2
loc (E|D∪S).

We claim that Fµ → 0 in the topology of C∞
loc(E|O). To prove this it suffices to

show that each subsequence of {u(µ)} has a subsequence which converges to zero
in C∞

loc(E|O).
Indeed, assume that this is true while Fµ does not converge to zero. As

‖Fµ‖2
W s,2(E|O) =

∞∑

ν=1

|kν(G̃(⊕Bju(µ)))|2 ≤ 1

and the embedding

SP (O) ∩W s,2(E|O) → {v ∈ C∞
loc(E|O) : Pv = 0 in O}

is compact, each subsequence of {Fµ} contains a subsequence convergent in the
topology of C∞

loc(E|O). Therefore, {Fµ} has a sequence which converges to a nonzero
element of C∞

loc(E|O). This contradicts the our assumption.
We now turn to proving the relation Fµ → 0 in C∞

loc(E|O). To this end, we take
a subsequence of {Fµ}, which we again denote by {Fµ}.

From discussion above it follows that {Fµ} has a subsequence {Fµi
} which con-

verges in the topology of C∞
loc(E|O) to a function F ∈ C∞

loc(E|O) satisfying PF = 0

in O. In particular, the sequence {G̃(⊕Bju(µ))|Ω} converges to F|Ω.

On the other hand, {G̃(⊕Bju(µ))|Ω} converges to zero on Ω because the Cauchy

data of u(µ) on S tends to zero. Thus, F = 0 on Ω, and so F ≡ 0 in the domain O.
This completes the proof. �

Remark 2.7.3. One could formulate similar result in terms of the Fourier co-
efficients kν(G(⊕Bjũ(µ))).

æ
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§2.8. Examples for the Laplace operator in Rn

2.8.1 Solvability condition for the Cauchy problem for the Laplace
operator in Rn in terms of Green’s integral.

In this subsection we consider the following variant of the Cauchy problem 2.4.1.
Again let O be a bounded domain in Rn and S be a closed smooth hypersurface

dividing it into 2 connected components: O+ and O− = D, and oriented as the
boundary of O−.

Problem 2.8.1.1. Under what conditions on functions u0 ∈ C1(S) and u1 ∈
C0(S) is there a function u ∈ C1(D ∪ S), which is harmonic in D and such that
the restrictions on S of u and its normal derivative ∂u

∂n
are equal to u0 and u1

correspondingly.

In other words, we consider the situation where P = ∆n is the Laplace operator
in R

n, B0 = 1 and B1 = ∂
∂n .

We denote by σn the area of the unit sphere in Rn and by ϕn(y) the standard
(bilateral) fundamental solution of the Laplace operator in Rn:

ϕn(y) =

{
1

(2−n)σn|y|n−2 , n > 2,

1
2π
ln|y|, n = 2.

Assume that the functions u0, u1 are summable on S. Then the corresponding
Green’s integral is well defined:

G(⊕uj) =

∫

S

(
u0(y)

∂ϕn(x− y)

∂ny
− u1(y)ϕn(x− y)

)
ds(y) (x ∈ O\S).

It is clear that G(⊕uj) is harmonic everywhere outside of S; let G(⊕uj)± =
G(⊕uj)|O± .

Theorem 2.4.2 and Lemma 1.3.4 imply the following result.

Theorem 2.8.1.2. Let S ∈ C2, u0 ∈ C1 and u1 ∈ C0 be summable functions
on S. Then, for Problem 2.8.1.1 to be solvable, it is necessary and sufficient that
the integral G(⊕uj)+ harmonically extends from O+ to the domain O.

Proof. See also paper [Sh1].

Example 2.8.1.3. Let S be a piece of the hyperplane {xn = 0} in Rn. Then,
if u0 = 0, the function G(⊕uj) is even with respect to xn 6= 0, and, if u1 = 0, it is
odd. Therefore, if one of the functions uj (0 ≤ j ≤ 1) is zero, the integrals G(⊕uj)±
extend harmonically across S simultaneously. Because their difference on S is equal
to u0, and the difference of their normal derivatives is equal to u1, Theorem 2.8.1.2
implies the known Hadamard’s statement (see [Hd]. p. 31). Namely, if one of the
functions uj (0 ≤ j ≤ 1) is zero, Problem 2.8.1.1 is solvable only if another function
is real analytic.

2.8.2 Example of a basis with double orthogonality in the Cauchy
problem for the Laplace operator in Rn.

Let O = BR be the ball with centre at zero and radius 0 < R < ∞, and S
be a closed smooth hypersurface dividing it into 2 connected components (O+ and
O− = D) in such a way that 0 ∈ O+, and oriented as the boundary of O−. In this
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case we can construct a basis with double orthogonality in the subspace Ss,2∆n
(BR)

of W s,2(BR) (s ≥ 0), which consists of harmonic functions, in a rather explicit
form.

For s ∈ Z+, we provide W s,2(BR) with the scalar product

(u, v)W s,2(BR) =

∫

|y|≤R

∑

|α|≤s
(Dαu)(y)(Dαv)(y)dy (u, v ∈W s,2(BR)).

Hence Ss,2∆n
(BR) is a Hilbert space with the induced from W s,2(E|BR

) Hilbert struc-
ture.

According to Theorem 1.4.4 for u ∈ Ss,2∆n
(BR) there exists weak boundary values

(Dαu)|∂BR
belonging to the Sobolev space W s−|α|−1/2,2(E|∂BR

). Then, for s =

N − 1/2 (N ∈ N) we provide Ss,2∆n
(BR) with the scalar product

(u, v)Ss,2
∆n

(BR) = (u, v)W [s],2(∂BR) =

∫

|y|=R

∑

|α|≤[s]

(Dαu)(y)(Dαv)(y)dσ(y),

where u, v ∈ Ss,2∆n
(BR) and [s] is the integral part of s. It is not difficult to see that

in this case Ss,2∆n
(BR) is a Hilbert space too with the topology equivalent to the one

induced from W s,2(BR).

For example, S
1/2,2
∆n

(BR) is the Hardy space of harmonic complex valued func-

tions in BR, S
1/2,2
∆n

(BR) ⊂ S0,2
∆n

(BR) and these spaces are not equal (cf. [ShT1]).

For other non-integer s we will define a special Hilbert structure in Ss,2∆n
(BR)

later.
Let {h(i)

ν } be a set of homogeneous harmonic polynomials which form a complete
orthonormal system in L2(∂B1) (spherical harmonics) where ν is the degree of
homogeneity, and i is an index labeling the polynomials of degree ν belonging to
the basis. The size of the index set for i as a function of ν is known, namely,

1 ≤ i ≤ J(ν) where J(ν) = (n+2ν−2)(n+ν−3)!
ν!(n−2)!

for n > 2 and ν ≥ 0 (see [So], p. 453).

If n = 2 then, obviously, J(0) = 1, J(ν) = 2 for ν ≥ 1. Using the system {h(i)
ν } we

will construct the basis with double orthogonality.
The following decomposition for ϕn(x−y) can be found for even n > 2 in [AKy])

and for the general case in [Sh1] (Lemma 3.2).

Lemma 2.8.2.1.

(2.8.2.1) ϕn(x− y) = ϕn(y) −
∞∑

ν=1

J(ν)∑

i=1

h
(i)
ν (x)

n+ 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
,

where the series converges absolutely together with all the derivatives uniformly on
compact subsets of the cone K = {(x, y) ∈ R

n × R
n : |y| > |x|}.

Proof. Because of the homogeneity of the polynomial h
(i)
ν , Euler formula im-

plies that

(2.8.2.2)

n∑

m=1

∂h
(i)
ν

∂xm
xm = νh(i)

ν ,

n∑

m=1

∂2h
(i)
ν

∂xm∂xj
xm = (ν − 1)

∂h
(i)
ν

∂xj
xj .
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We denote by Y
(i)
ν the restriction of the polynomial h

(i)
ν to ∂B1. Then {Y (i)

ν } is
a basis in L2(∂B1) consisting of spherical functions.

Let x ∈ B1 be fixed. We represent ϕn(x− y) by the Fourier series in L2(∂B1).
Namely,

ϕn(x− y) =
∑

ν,i

c(i)ν (x)Y
(i)
ν ,

where c
(i)
ν (x) are the Fourier coefficients of ϕn(x − y) with respect to the system

{Y (i)
ν }.
Let us consider first the case where n > 2. Then

c(i)ν (x) =
1

(2 − n)σn

∫

∂B1

|x− y|2−nY (i)
ν (y)dσ(y),

where dσ is the volume form on the sphere ∂B1. We rewrite the coefficients in the
following way:

(2.8.2.3) c(i)ν (x) =
1

(2 − n)

∫

∂B1

P(x, y)
1 − 2 < x, y > +|x|2

1 − |x|2 Y (i)
ν (y)dσ(y).

Here < x, y >=
∑n
m=1 xmym and

P(x, y) =
1

σn

1 − |x|2
|x− y|n

is the Poisson kernel for the unit ball in Rn.
It is not difficult to see that the function

(2.8.2.4) F(x) = xmh
(i)
ν (x) − 1

n+ 2ν − 2

∂h
(i)
ν

∂xm
(|x|2 − 1)

is the harmonic extension into the ball B1 of the function ymY (i)ν given on ∂B1.
Really, using (2.8.2.2) and harmonicity of h(i)ν we have:

∆nF = 2
∂h

(i)
ν

∂xm
(x) − 1

n+ 2ν − 2

∂h
(i)
ν

∂xm
(x)∆n(|x|2 − 1)+

+
2

n+ 2ν − 2

n∑

j=1

∂2h
(i)
ν

∂xm∂xj
(x)

∂

∂xj
(|x|2 − 1) =

= 2
∂h

(i)
ν

∂xm
(x) − 2

n+ 2ν − 2


n∂h

(i)
ν

∂xm
(x) + 2

n∑

j=1

∂2h
(i)
ν

∂xm∂xj
(x)xj


 = 0.

Using the Poisson formula and equalities (2.8.2.2), (2.8.2.3) and (2.8.2.4) we
obtain

c(i)ν (x) =
1

(2 − n)

1 + |x|2
1 − |x|2

∫

∂B1

P(x, y)Y (i)
ν (y)dσ(y)−

− 2

(2 − n)

n∑

m=1

xm
1 − |x|2

∫

∂B1

P(x, y)ymY
(i)
ν (y)dσ(y) = − h

(i)
ν (x)

n+ 2ν − 2
.
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Therefore

ϕn(x− y) = −
∞∑

ν=0

J(ν)∑

i=1

h
(i)
ν (x)Y

(i)
ν (y)

n+ 2ν − 2
,

and Lemma 2.6.5 implies that this series converges in the norm of the space
L2(∂B1), uniformly with respect to x on compact subsets of the ball B1.

The harmonic extension with respect to y leads us to the equality

|y|2−nϕn(x− y

|y|) = −
∞∑

ν=0

J(ν)∑

i=1

h
(i)
ν (x)h

(i)
ν (y)

n+ 2ν − 2
,

where the series converges absolutely and uniformly with respect to x and y inside
the ball B1.

Applying to this equality the Kelvin transformation with respect to y we see
that

(2.8.2.5) ϕn(x− y) = −
∞∑

ν=0

J(ν)∑

i=0

h
(i)
ν (x)

(n+ 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2
.

It is clear that series (2.8.2.5) converges uniformly with respect to x (inside the
ball B1) and y (outside B1). Let us show that it is converges uniformly on the set
of the following type

{(x, y) ∈ R
n × R

n :
|y|
|x| ≥ δ1, and |y| ≥ δ0}

where δ1 > 1, δ0 > 0. We choose γ > 1 such that γ2 < δ1. Then

J(ν)∑

i=0

h
(i)
ν (x)

(n+ 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2
=

=

(
γ

|y|

)n−2 J(ν)∑

i=0

h
(i)
ν ( x

γ|x| )

(n+ 2ν − 2)

h
(i)
ν ( y

γ|y|)
(
γ2|x|
|y|

)ν

|y|n+2ν−2
.

By the choice of γ we have:

∣∣∣∣
x

γ|x|

∣∣∣∣ =
1

γ
< 1,

∣∣∣∣
γy

|y|

∣∣∣∣ = γ > 1,
γ2|x|
|y| ≤ γ2

δ1
< 1.

Using the criterion of Abel for the uniform convergence of series and the following
estimate of a harmonic homogeneous polinomial hν of degree ν on the unit sphere
(see [So]):

(2.8.2.6) max
|y|=1

|hν | ≤ const(n)νn/2−1‖hν‖L2(∂B1), �

we see that series (2.8.2.5) converges absolutely together with all its derivatives,
uniformly on subsets of the type above.
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If ν = 0 then J(0) = 1 and h
(1)
0 = const. Because the system {h(i)

ν } is orthonor-

mal we conclude that |h(1)
0 |2 = 1

σn
. Therefore

ϕn(x− y) =
1

(2 − n)σn|y|n−2
−

∞∑

ν=1

J(ν)∑

i=1

h
(i)
ν (x)

(n+ 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2
.

In the case n = 2, we have

c(i)ν (x) =
1

2π

∫

∂B1

Y (i)
ν (y)ln|x− y|dσ(y).

However, from the discussion above, we see that, for ν ≥ 1 and m = 1, 2,

∂c
(i)
ν

∂xm
(x) =

1

2π

∫

∂B1

xm − ym
|y − x|2 Y

(i)
ν (y)dσ(y) =

−1

2ν

∂h
(i)
ν

∂xm
(x).

Moreover, because ν ≥ 1, c
(i)
ν (0) = h

(i)
ν (0) = 0. Hence

c(i)ν (x) = −h
(i)
ν (x)

2ν
(ν ≥ 1)

If ν = 0 then

∂c
(1)
1

∂xm
(x) =

h
(1)
0

2π

∫

∂B1

xm − ym
|y − x|2 Y

(i)
ν (y)dσ(y) =

=
h

(1)
0

2ν(1 − |x|2)

(
xm

∫

∂B1

P(x, y)dσ(y)−
∫

∂B1

ymP(x, y)dσ(y)

)
= 0 (m = 1, 2).

Arguing as before we obtain:

1

2π
ln|x− y| =

1

2π
ln|y| −

∞∑

ν=1

J(ν)∑

i=1

h
(i)
ν (x)

(n+ 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2
. �

Lemma 2.8.2.2. The system {h(i)
ν } is an orthogonal basis in Ss,2∆n

(BR) (s =
(N −1)/2, N ∈ N). Moreover there exist constants C1(s, n), C2(s, n) > 0 such that

C1(s, n)‖h(i)
ν ‖2

Ss,2
∆n

(BR)
≤ ν2s‖h(i)

ν ‖2
L2(E|BR

) ≤ C2(s, n)‖h(i)
ν ‖2

Ss,2
∆n

(BR)

for every ν ≥ 0, 1 ≤ i ≤ dimSk(ν).

Proof. Let us first check the orthogonality of the system {h(i)
ν }. Using the

homogeneity of the polynomials, one easily obtains

∑

|α|=m

∫

|y|≤R
(Dαh(i)

ν )∗(y)(Dαh(j)
µ )(y)dy =
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=

{
0, m > ν or m > µ or µ 6= ν;
Rn+2ν−2m−1

n+2ν−2m−1

∫
|y|=1

∑
|α|=m(Dαh

(i)
ν )∗(y)(Dαh

(j)
ν )(y)dσ(y),

which implies (with m = 0) the orthogonality for the case s = 1/2, and then

∑

|α|=m

∫

|y|≤R
(Dαh(i)

ν )∗(y)(Dαh(j)
µ )(y)dy =

= Rn+µ+ν−2m+1
∑

|β|=m−1

∫

|y|=1

(Dβh(i)
ν )∗(y)

n∑

i=1

yi
(Dβh

(j)
µ )(y)

∂yi
dσ(y) =

=

{
(ν −m+ 1)Rn+2ν−2m+1

∑
|β|=m−1

∫
|y|=1

∑n
i=1(D

βh
(i)
ν )∗(Dβh

(j)
ν )dσ(y), ν ≥ m,

0, ν ≤ m− 1, or ν 6= µ

which implies (with m = 1) the orthogonality for the case s = 1.

Arguing by induction, we obtain that the system {h(i)
ν } is orthogonal in Ss,2∆n

(BR).
The estimates follow immediately from the calculations above.

Let us prove that the system {h(i)
ν } is dense in Sm,2∆n

(B).

It is known that a function u ∈ Sm,2∆n
(B) can be approximated in the norm

of the space Wm,2(B) by functions uN (N = 1, 2, ...), which are harmonic in a
neighbourhood of the ball B (see, for example, [T4], ch. 4). Because, for every
(N = 1, 2, ...), the function uN is harmonic in a neighbourhood of a (larger than

B) ball B̂, it can be represented in the ball B̂ by Green’s formula (1.1.2) with the
fundamental solution L(x, y) = ϕn(x − y). Substituting in this Green’s formula
decomposition (2.8.2.1), we obtain a sequence {uNM} of finite linear combinations

of polynomials h
(i)
ν which converges to uN in the norm of Wm,2(B). Taking the

diagonal sequence {uNN} we obtain the desired approximation of u in the norm of
Wm,2(B). The proof is complete. �

Now, for s ≥ 0 (s 6= (N − 1)/2, N ∈ N) we provide the space Ss,2∆n
(BR) with the

Hermitian form

(u, v)Ss,2
∆n

(BR) =

∞∑

ν=0

dimSk(ν)∑

i=1

C(i)
ν (u)C

(i)
ν (v)ν2s (u, v ∈ Ss,2∆n

(BR)),

where C
(i)
ν (u) are the Fourier coefficients of the vector-function u with respect to

the orthonormal basis {h(i)
ν } in S0,2

∆n
(BR).

Proposition 2.8.2.3. The Hermitian form (., .)Ss,2
∆n

(BR) (s ≥ 0) is a scalar

product in Ss,2∆n
(BR) defining a topology, equivalent to the original one. More-

over, the system {h(i)
ν } is an orthogonal basis in Ss,2∆n

(BR) and there exist constants
C1(s, n), C2(s, n) > 0 such that

C1(s, n)‖h(i)
ν ‖2

W s,2(E|BR
) ≤ ν2s‖h(i)

ν ‖2
L2(BR) ≤ C2(s, n)‖h(i)

ν ‖2
W s,2(E|BR

)

for every ν ≥ 0, 1 ≤ i ≤ dimSk(ν).
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Proof. For s = (N − 1)/2, N ∈ N the statement was proved in Lemma 2.8.2.2.
We fix a number s ≥ 0 (s 6= (N − 1)/2, N ∈ N) and consider 2 interpolation

couples S
[s],2
∆n

(BR), S
[s]+1,2
∆n

(BR) and l2([s]), l2([s]+1), where [s] is the integral part
of s and, for r ≥ 0,

l2(r) = {{Kν}∞ν=0 :

∞∑

ν=1

|Kν |2ν2r <∞}.

Then, see, for example, [Tr] (4.1 - 4.4 and 1.18.2), we have interpolation spaces
with 0 < γ < 1

[S
[s],2
∆n

(BR), S
[s],2
∆n

(BR)]γ = S
[s]+γ,2
∆n

(BR),

[l2([s]), l2([s] + 1)]γ = l2([s] + γ).

Now, for u ∈ Ss,2∆n
(BR) denote by Mu the sequence {∑dimSk(ν)

i=1 |C(i)
ν (u)|2}∞ν=0,

where C
(i)
ν (u) are the Fourier coefficients of the vector-function u with respect to the

orthonormal basis {h(i)
ν } in S0,2

∆n
(BR). According to Lemma 2.8.2.2, the operator

M : Sm,2∆n
(BR) → l2(m)

is continuous for every m ∈ Z+. Therefore, using standart interpolation arguments
(see [Tr]), we conclude that the operator

M : S
[s]+γ,2
∆n

(BR) → l2([s] + γ)

is continuous for every 0 < γ < 1. In particular, (., .)
S

[s]+γ,2
∆n

(BR)
defines a weaker

topology that the one induced from W [s]+γ,2(E|BR
).

The estimates follow from Lemma 2.8.2.2 and Interpolation Theory (see [Tr],
1.3.3, p. 25).

The system {h(i)
ν } is complete in Ss,2∆n

(BR) because it is complete in S0,2
∆n

(BR)

and orthogonal in Ss,2∆n
(BR). �

We fix 0 < r < dist(0, S) and set Ω = Br so that Ω b O. In order to obtain the

Fourier coefficients for the section G(ũ) with respect to this basis in S0,2
∆n

(Br) it is
sufficient to know the Fourier coefficients for the fundamental solution ϕn(x − y)
(see Lemma 2.8.2.1.).

Our principal results will be formulated in the language of the coefficients

k(i)
ν =





−1
n+2ν−2

∫
S

(
u0(y)

∂
∂n

(
h
(i)
ν (y)

|y|n+2ν−2

)
− u1(y)

h
(i)
ν (y)

|y|n+2ν−2

)
ds(y) (ν = 1, 2, ...),

∫
S

(
u0(y)

∂ϕn(y)
∂n − u1(y)ϕn(y)

)
ds(y), ν = 0.

Theorem 2.8.2.4. Let u0, u1 ∈ L1(S). Then for Problem 2.8.1.1 to be solvable,
it is necessary and sufficient that

(2.8.2.7) lim sup
ν→∞

max
i

ν

√
|k(i)
ν (y)| ≤ 1

R
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Proof. Necessity. Let Problem 2.8.1.1 be solvable. Then Theorem 2.8.1.2
implies that the function Gũ+ on the domain O+ harmonically extends to a function
F ∈ S∆n

(BR).
We fix 0 < r < R. It is clear that the components of the solution F belong to

the space S0,2
∆n

(Br). Therefore, from Lemma 2.8.2.2, they are represented by their

Fourier series with respect to the orthonormal in S0,2
∆n

(Br) system {
√

n+2ν
rn+2ν h

(i)
ν }

(2.8.2.8) F(x) =
∑

i,ν

c(i)ν (r)

√
n+ 2ν

rn+2ν
h(i)
ν (x) (x ∈ Br).

Bessel’s inequality implies that the series
∑
i,ν |c

(i)
ν (r)|2 converges. On the other

hand, in the ball Ω, from Lemma 2.8.2.1, we obtain the decomposition

(2.8.2.9) G(⊕uj)(x) =
∑

i,ν

k(i)
ν h(i)

ν (x) (x ∈ Ω).

Comparing (2.8.2.9) and (2.8.2.8) we find that

c(i)ν (r) =

√
rn+2ν

n+ 2ν
k(i)
ν (ν = 1, 2, ...).

Hence for any 0 < r < R

∑

i,ν

|k(i)
ν (r)|2 r

n+2ν

n+ 2ν
= rn

∞∑

ν=0



J(ν)∑

i=1

|k(i)
ν (r)|2
n+ 2ν


 r2ν <∞

Using the Cauchy-Hadamard formula for the radius of the convergence of a power
series we obtain

lim sup
ν→∞

max
i

ν

√
|k(i)
ν (y)| ≤ lim sup

ν→∞



J(ν)∑

i=1

|k(i)
ν (r)|2
n+ 2ν




1/2ν

≤ 1

r

Since 0 < r < R is arbitrary then condition (2.8.2.7) holds, which was to be
proved.

Sufficiency. If condition (2.8.2.7) holds then the Cauchy-Hadamard formula and

the estimate J(ν) < const νn−2 implies that the series
∑
i,ν |k

(i)
ν (r)|2 rn+2ν

n+2ν
converges

for any 0 < r < R. The Riesz-Fisher theorem implies that there exists a section F
(of the bundle E|Br

) with the components from S0,2
∆n

(Br) such that

F(x) =
∑

i,ν

√
rn+2ν

n+ 2ν
k(i)
ν

√
n+ 2ν

rn+2ν
h(i)
ν (x) =

=
∑

i,ν

k(i)
ν h(i)

ν (x)
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where the series converges in the norm of the space L2(Br). It is easy to see that
in the ball Ω the section F coincides with G(⊕uj). Therefore it is a harmonic
extension of Green’s integral G(⊕uj) from O+ to the whole domain O.

Now using Theorem 2.8.1.2 we conclude that Problem 2.8.1.1 is solvable. This
proves the theorem. �

Let us give now the corresponding variant of Carleman’s formula. For each
number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all y 6= 0 off the
diagonal {x = y}, by the equality

C(N)(x, y) = ϕn(x− y) − ϕn(y) +

N∑

ν=1

J(ν)∑

i=1

h
(i)
ν (x)

n+ 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
.

Lemma 2.8.2.5. For any number N = 1, 2, ..., the kernel C(N) is harmonic with
respect to x and y for all y 6= 0 off the diagonal {x = y}.

Proof. Follows from the properties of the ϕn(x−y) and the polynomials h
(i)
ν (y).

�

We note that since C(N) is a ”remainder” summand in the formula (2.8.2.1),
CN)(x, y) → 0 (N → ∞), together with all its derivatives uniformly on compact
subsets of the cone {(x, y) ∈ Rn × Rn : |y| > |x|}.

Theorem 2.8.2.6 (Carleman’s formula). For any harmonic function u ∈
C1
loc(D ∪ S) whose restriction to S is summable there, the following formula holds

(2.8.2.10)

u(x) = lim
N→∞

∫

S

(
u(y)

∂C(N)(x, y)

∂ny
− ∂u(y)

∂ny
C(N)(x− y)

)
ds(y) (x ∈ D).

Proof. This is similar to the proof of Theorem 2.6.6. �

Remark 2.8.2.7. As in Theorem 2.6.6, the convergence of the limit in (2.8.2.10)
is uniform on compact subsets of the domain D together with all its derivatives.

Example 2.8.2.8. If n = 2 then O is the circle in R2. As a system of spherical

harmonics we can take the system h
(1)
0 = 1/

√
2π, h

(1)
ν = (x1 +

√
−1x2)

ν/
√

2π,

h
(2)
ν = (x1 −

√
−1x2)

ν/
√

2π with x = (x1, x2) ∈ R2. Then

C(N)(x, y) =
1

2π
ln|x− y| − 1

2π
ln|y|+ 1

2π
Re

(
N∑

ν=1

(
x1 +

√
−1x2

y1 +
√
−1y2

)ν
1

ν

)

where y = (y1, y2) ∈ R2 and Re(c) stands for the real part of the complex number
c.

2.8.3 Example for the Cauchy problem for the Laplace operator in a
shell in Rn.

In this section we consider the Cauchy problem for harmonic functions in a
shell D in Rn whose exterior surface is a smooth closed hypersurface S in Rn and
interior surface is a sphere ∂Br = {x ∈ Rn : |x| = r} with centre at zero and radius
0 < r <∞, with the Cauchy data on S (cf. [Sh5]).

For this purpose we will take as the domain O a shell G(r, R) = {x ∈ Rn : r <
|x| < R} (0 < r < R <∞), with sufficiently big R, and, as in 2.8.2, we will use the

spherical harmonics h
(i)
ν .
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Lemma 2.8.3.1. For any shell G(r1, r2) (0 < r1 < r2 <∞) we have

∫

G(r1,r2)

h
(i)
ν (x)

|x|n+2ν−2

h
(j)
µ (x)

|x|n+2µ−2
dx =

{
r4−n−2ν
2 −r4−n−2ν

1

4−n−2ν , ν = µ, and i = j

0, ν 6= µ or j 6= i,

with ν = 1, 2, ..., except the case n = 2, µ = ν = 2;

∫

G(r1,r2)

h
(i)
ν (x)

|x|n+2ν−2

h
(j)
µ (x)

|x|n+2µ−2
dx =

{
r4−n−2ν
2 −r4−n−2ν

1

4−n−2ν
, ν = µ, and i = j

0, ν 6= µ or j 6= i,

with ν = 1, 2, ..., except the case n = 2, i = j, µ = ν = 2;

∫

G(r1,r2)

h
(i)
ν (x)

|x|n+2ν−2
ϕn(x) dx = 0 (ν = 1, 2, ...);

∫

G(r1,r2)

h(i)
ν (x) h(j)

µ (x) dx =

{
(rn+2ν

2 − rn+2ν
1 )/(n+ 2ν), ν = µ, and i = j,

0, ν 6= µ or j 6= i,

with ν = 0, 1, ....

Proof. Let us prove the first equality (the proofs of the others are similar).

∫

G(r1,r2)

h
(i)
ν (x)

|x|n+2ν−2

h
(j)
µ (x)

|x|n+2µ−2
dx =

∫ r2

r1

dt

∫

|x|=t

h
(i)
ν (x)

|x|n+2ν−2

h
(j)
µ (x)

|x|n+2µ−2
dσ(x) =

=

∫ r2

r1

t3−ν−µ−ndr

∫

|x|=1

h
(i)
ν (x)h(j)

µ (x)dσ(x) =

=

{
r4−n−2ν
2 − r4−n−2ν

1 /(4 − n− 2ν) ν = µ, and i = j,

0, ν 6= µ or j 6= i.
�

Now, using Lemmata 2.8.2.1, 2.8.3.1, we can write the Laurent series for har-
monic functions in a shell G(r1, r2) = {x ∈ Rn : r1 < |x| < r2} (cf. [T4], Corollary
8.11).

Proposition 2.8.3.2. Every function u ∈ C1(G(r1, r2)), harmonic in G(r1, r2),
can be expanded as follows:

(2.8.3.1) u(x) =

∞∑

ν=0

J(ν)∑

i=1

a(i)
ν h(i)

ν (x) + b0ϕn(x) +

∞∑

ν=1

J(ν)∑

i=1

b(i)ν
h

(i)
ν (x)

|x|n+2ν−2
,

where the series converge absolutely together with all the derivatives uniformly on

compact subsets of G(r1, r2) and the coefficients a
(i)
ν , b

(i)
ν are uniquely defined.

Proof. Let u ∈ C1(G(r1, r2)) be harmonic in G(r1, r2). It is known that in this
case u can be can be represented in G(r1, r2) by Green’s formula. Replacing the
fundamental solution ϕn(x− y) in this Green’s formula by decomposition (1.2), we
obtain that

u(x) =

∫

|y|=r2

(
u(y)

∂ϕn(x− y)

∂ny
− ∂u(y)

∂n
ϕn(x− y)

)
ds(y)+
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+

∫

|y|=r1

(
u(y)

∂ϕn(x− y)

∂ny
− ∂u(y)

∂n
ϕn(x− y)

)
ds(y) =

(2.8.3.2) =
∞∑

ν=0

J(ν)∑

i=1

a(i)
ν h(i)

ν (x) + b0ϕn(x) +
∞∑

ν=1

J(ν)∑

i=1

b(i)ν
h

(i)
ν (x)

|x|n+2ν−2
, (r1 < |x| < r2)

where the coefficients a
(i)
ν , b

(i)
ν are defined by the following formulae:

a(i)
ν =





−1
n+2ν−2

∫
|y|=r2

(
u(y) ∂

∂n

(
h
(i)
ν (y)

|y|n+2ν−2

)
− ∂u(y)

∂n
h
(i)
ν (y)

|y|n+2ν−2

)
ds(y) (ν = 1, 2, ...),

√
σn
∫
S

(
u(y)∂ϕn(y)

∂n − ∂u(y)
∂n ϕn(y)

)
ds(y), ν = 0,

b(i)ν =





−1
n+2ν−2

∫
|y|=r1

(
u(y)

∂h(i)
ν (y)
∂n

− ∂u(y)
∂n

h
(i)
ν (y)

)
ds(y) (ν = 1, 2, ...),

−
∫
|y|=r1

∂u(y)
∂n ds(y) ν = 0,

In order to prove that coefficients a
(i)
ν , b

(i)
ν are uniquely defined we note that,

according to Lemma 7.20 of [T4], every harmonic in the shell G(r1, r2) function u
can be represented in the form

u(x) = u+(x) + u−(x)

where u+, u− are uniquely defined such that u+ is harmonic in the ball Br2 and
u− is harmonic in Rn\Br1 and regular at infinity. Clearly, in our case

u+ =

∞∑

ν=0

J(ν)∑

i=1

a(i)
ν h(i)

ν (x),

u− = b0ϕn(x) +

∞∑

ν=1

J(ν)∑

i=1

b(i)ν
h

(i)
ν (x)

|x|n+2ν−2
.

Now, using Lemma 2.8.3.1, we see that the coefficients a
(i)
ν , b

(i)
ν are uniquely

defined. �

Our principal results in this section will be formulated in terms of the coefficients

k(i)
ν =





−1
n+2ν−2

∫
S

(
u0(y)

∂h(i)
ν (y)
∂n − u1(y)h

(i)
ν (y)

)
ds(y) (ν = 1, 2, ...),

−
∫
|y|=r1 u1(y)ds(y) (ν = 0).

Theorem 2.8.3.3. Let u0, u1 ∈ L1(S). Then, for Problem 2.8.1.1 to be solv-
able, it is necessary and sufficient that

(2.8.3.3) lim sup
ν→∞

max
i

ν

√
|k(i)
ν | ≤ r

Proof. It is similar to the proof of Theorem 2.8.2.4. �

Let us to obtain Carleman’s formula for solutions of Problem 2.8.1.1 in this case.
For each number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all

y 6= 0 off the diagonal {x = y}, by the equality

C(N)(x, y) = ϕn(x− y) − ϕ(x) +
N∑

ν=1

J(ν)∑

i=1

h
(i)
ν (y)

(n+ 2ν − 2)

h
(i)
ν (x)

|x|n+2ν−2
.
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Proposition 2.8.3.4. For any number N = 1, 2, ..., the kernel C(N) is harmonic
with respect to x and y for all x 6= 0 off the diagonal {x = y}.

Proof. Follows from the properties of the ϕn(x−y) and the polynomials h
(i)
ν (y).

�

Theorem 2.8.3.5. (Carleman’s type formula). For any harmonic func-
tion u ∈ C(D ∪ S) whose restriction to S is summable there, the following formula
holds

(2.8.3.4) u(x) = lim
N→∞

∫

S

(
u(y)

∂C(N)(x, y)

∂ny
− ∂u(y)

∂n
C(N)(x, y)

)
ds(y) (x ∈ D).

æ

2.9. Example for the Lamé type system in Rn

2.9.1 Solvability condition for the Cauchy problem for the Lamé type
system in Rn in terms of Green’s integral.

In this section we study the Cauchy problem for the system

L = µ∆n + (λ+ µ)∇n divn,

with constants µ 6= 0, λ 6= −2µ.
In Elasticity Theory (n = 2, 3), with Lamé constants λ, µ, this system is known

as the Lamé system.
More exactly, denoting by νj(x) the j-th component of the unit outward normal

vector ν(x) to ∂D at the point x, by ∂
∂ν the normal derivative with respect to ∂D

and by T the stress operator, i.e the matrix T (x,D) = (Tij(x,D)i,j=1,2,...,n with
components

Tij(x,D) = µ δij
∂

∂ν
+ λ νi(x)

∂

∂xj
+ µ νj(x)

∂

∂xi
(i, j = 1, ..., n),

we consider the following problem.

Problem 2.9.1.1. Let vector-functions u0(x) = (u1
0(x), ..., u

n
0 (x))T ∈ [C1(S)]n

and u1(x) = (u1
1(x), ..., u

n
1(x))T ∈ [C(S)]n, be given. It requires to find (if possible)

a vector-function u(x) ∈ [C1(D ∪ S) ∩ C2(D)]n such that





Lu = f in D,

u|S = u0,

(Tu)|S = u1.

Since µ 6= 0, λ 6= −2µ, and

det σ(L)(x, ζ) = µn−1(λ+ 2µ)|ζ|2n,

the Lamé type system L is elliptic. One easily sees that the boundary system
{B0 = Idn, B1 = T} is a Dirichlet system of the first order on ∂D (det σ(T )(x, dρ) =
µn−1(λ+ 2µ)|dρ|2n).

By direct calculation one obtains
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Lemma 9.1.1.2. The matrix Φ(x) = (Φij(x))i,j=1,2,...,n with components

Φij(x) =
1

2µ(λ+ 2µ)

(
δij (λ+ 3µ)ϕn(x) − (λ+ µ) xj

∂

∂xi
ϕn(x)

)
(i, j = 1, 2, ..., n),

where δij is the Kronecker delta, is a fundamental solution of convolution type for
the homogeneous Lamé type system L.

The matrix Φ is called the Kelvin-Somigliana matrix for n = 3 (see, for example,
[Kup]).

Green’s formula (1.3.1) in this case is the Somigliana formula (see, for example,
[Kup]):
(9.1.1.1)∫

∂D

(
T (y,D)Φ(x− y)Tu(y) − Φ(x− y)T (y,D)u(y)

)
ds(y) =

{
u(x), x ∈ D,

0, x 6∈ D.

Assume that the functions u0, u1 are summable on S. Then the corresponding
Green’s integral is well defined:
(2.9.1.2)

G(⊕uj)(x) =

∫

S

(
(T (y,D)Φ(x− y))T u0(y) − Φ(x− y) u1(y)

)
ds(y) (x ∈ O\S).

It is clear that G(⊕uj) is a solution of the homogeneous Lamé type system
everywhere outside of S; let G(⊕uj)± = G(⊕uj)|O± .

Theorem 2.4.2 and Lemma 1.3.4 imply the following result.

Theorem 2.9.1.3. Let S ∈ C2, u0 ∈ [C1(S)]n and f1 ∈ [C0(S)]n be summable
vector-functions on S. Then, for Problem 2.9.1.1 to be solvable, it is necessary and
sufficient that the integral G(⊕uj)+ harmonically extends from O+ to the domain
O.

Proof. See also paper [Sh4].

In the next two subsections we will use decomposition (2.8.2.1) to obtain Carle-
man’s type formula in domains of special types for solutionsof the system L.

2.9.2 Example for the Cauchy problem for the Lamé system in a part
of a ball in R

n.
Let O = BR be the ball with centre at zero and radius 0 < R < ∞, and

S be a closed smooth hypersurface dividing it into 2 connected components (O+

and O− = D) in such away that 0 ∈ O+, and oriented as the boundary of O−.
Using Lemma 2.8.2.1, we obtain the following decompositions for the fundamental
solution Φ of the homogeneous Lamé system.

Lemma 2.9.2.1. The fundamental solution Φ(x− y) of the Lamé type system L

can be expanded as follows:

Φ(x− y) =

∞∑

ν=0

Φ(ν)(x, y)

where the series converges absolutely together with all the derivatives uniformly on
compact subsets of the cone K = {(x, y) ∈ Rn × Rn : |y| > |x|} and Φ(ν)(x, y)
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(ν ≥ 0) are matrices with components Φ
(ν)
kl (x, y) (k, l = 1, 2, ..., n):

Φ
(0)
kl (x, y) = ϕn(y)

(λ+ 3µ)δkl
2µ(λ+ 2µ)

−
n∑

i=1

λ+ µ

2µ(λ+ 2µ)

yl h
(i)
1 (y)

n |y|n
∂h

(i)
1 (x)

∂xk
,

Φ
(ν)
kl (x, y) = −

J(ν)∑

i=1

h
(i)
ν (y)

|y|n+2ν−2

(
λ+ 3µ

2µ(λ+ 2µ)

δkl h
(i)
ν (x)

(n+ 2ν − 2)
−

− λ+ µ

2µ(λ+ 2µ)

∂h
(i)
ν (x)

∂xk

xl
(n+ 2ν − 2)

)
−

(2.9.2.1) −
J(ν+1)∑

i=1

λ+ µ

2µ(λ+ 2µ)

h
(i)
ν+1(y)

|y|n+2ν

yl
(n+ 2ν)

∂h
(i)
ν+1(x)

∂xk
(ν ≥ 1).

Lemma 2.9.2.2. For ν = 1, 2, ... and x ∈ R
n, y ∈ R

n\{0}, we have

L(x)Φ
(ν)
kl (x, y) = 0,∆2

n(y)Φ
(ν)
kl (x, y) = 0.

Proof. Due to the harmonicity of the polynomials h
(i)
ν , the matrix, whose com-

ponents are formed by the first sum in the right hand side of (2.9.2.1), is a solution
of the homogeneous Lamé type system.

On the other hand, the matrix, whose components are formed by the second sum
in the right hand side of (2.9.2.1), is equal to

J(ν+1)∑

i=1

λ+ µ

2µ(λ+ 2µ)

h
(i)
ν+1(y)

|y|n+2ν

∇xh
(i)
ν+1(x)y

T

(n+ 2ν)
.

Therefore, because of the harmonicity of the polynomials h
(i)
ν , it is a solution of

the homogeneous Lamé type system too.
The biharmonicity of Φ(ν) is obvious. �

We obtain now a decomposition of the vector-function G(⊕uj) in a neighbour-
hood of origin.

Lemma 2.9.2.3. Let 0 < ρ < dist(0, S) be fixed, so that the ball Bρ b O+. Then

(2.9.2.2) G(⊕uj)+(x) =
∞∑

ν=0

Hν(x) (x ∈ Bρ),

where the series converges absolutely together with all the derivatives uniformly on
compact subsets of the ball Bρ and Hν are homogeneous polynomials of degree ν
satisfying LHν = 0 in Rn:

Hν(x) =

∫

S

(
(T (y,D)Φ(ν)(x, y))T u0(y) − Φ(ν)(x, y) u1(y)

)
ds(y).
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Proof. Since 0 6∈ S,

max
x∈Bρ,y∈S

|x|
|y| ≤ q < 1.

Then, using estimate (2.8.2.6), one easily obtains that

(2.9.2.3) |Hν(x)| ≤ C q2ν(ν + 1)n−2 (x ∈ Bρ, ν ≥ 0)

with a constant C > 0 which depends on u0, u1 and does not depend on ν and x.
Estimate (2.9.2.3) implies that the series

∑∞
ν=0Hν(x) converges absolutely together

with all the derivatives uniformly on compact subsets of the ball Bρ. Now, using
formula (2.9.1.2) and Lemmata 2.9.2.1 and 2.9.2.2, we conclude that the statement
of the lemma holds. �

Proposition 2.9.2.4. Let S ∈ C2, u0 ∈ [C1(S)]n and u1 ∈ [C(S)]n be summa-
ble vector-functions on S. Then, for Problem 2.9.1.1 to be solvable, it is necessary
and sufficient that the series

∑∞
ν=0Hν(x) converges absolutely together with all the

derivatives uniformly on compact subsets of the ball BR.

Proof. Necessity. Let Problem 2.9.1.1 be solvable. Then Theorem 2.9.1.3
imply that the integral G(⊕uj)+ on the domain O+ extends to a solution F of the
homogeneous Lamé system in BR.

We fix 0 < r0 < R. It is clear that F ∈ [C1(Br0)]
n. Hence, it represents in the

ball Br0 in the following way (see formula (2.9.1.1)):

F(x) =

∫

∂Br0

(
(T (y,D)Φ(x− y))T F(y)− Φ(x− y)T (y,D)F(y)

)
ds(y).

Substituting instead of Φ its decomposition obtained in Lemma 2.9.2.1 and arguing
in the same way as in Lemma 2.9.2.3, we obtain that, for x ∈ Br (0 < r < r0),

(2.9.2.4) F(x) =

∞∑

ν=0

H̃ν(x) (x ∈ Br),

where the series converges absolutely together with all the derivatives uniformly on

compact subsets of the ball Br and H̃ν are homogeneous polynomials of degree ν
and solutions of the homogeneous Lamé type system L in Rn:

H̃ν(x) =

∫

∂Br0

(
(T (y,D)Φ(ν)(x, y))T F(y) − Φ(ν)(x, y)T (y,D)F(y)

)
ds(y).

Comparing (2.9.2.2) and (2.9.2.4) we find that

DαHν = DαH̃ν = Dα(G(⊕uj)+)(0) (|α| = ν, ν = 0, 1, ...).

Because Hν , H̃ν are homogeneous , we conclude that, for x ∈ Rn,

Hν(x) = H̃ν(x) (ν = 0, 1, ...).

Therefore the series
∑∞
ν=0Hν(x) converges absolutely together with all the

derivatives uniformly on compact subsets of the ball Br.
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Since 0 < r0 < R is arbitrary then the series
∑∞
ν=0Hν(x) converges absolutely

together with all the derivatives uniformly on compact subsets of the ball BR, which
was to be proved.

Sufficiency. Let the series F(x) =
∑∞
ν=0Hν(x) converge absolutely together

with all the derivatives uniformly on compact subsets of the ball BR. Since the
polynomials Hν are solutions of the homogeneous Lamé type system in Rn, by
Stiltjes-Vitali theorem we conclude that F satisfies LF = 0 in BR.

It is easy to see from Lemma 2.9.2.3, that in the ball Br the vector-function F

coincides with G(⊕uj)+. Now using Theorem 2.9.1.3 we see that Problem 2.9.1.1
is solvable. This proves the proposition. �

Proposition 2.9.2.4 can be used to prove Carleman’s formula for determination
of a solution u of the Lamé type system in BR by its Cauchy data on S.

For each number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all
y 6= 0 off the diagonal {x = y}, by the equality

C(N)(x, y) = Φ(x− y) −
N∑

ν=0

Φ(ν)(x, y).

Proposition 2.9.2.5. For any number N = 1, 2, ..., the kernel C(N) satisfies the
equations L(x)C(N)(x, y) = 0, ∆2

n(y)C
(N)(x, y) = 0 for all y 6= 0 off the diagonal

{x = y}.
Proof. Follows from the properties of the Φ(x− y) and Lemma 2.9.2.1. �

Theorem 2.9.2.6 (Carleman’s formula). Let S ∈ C2. Then, for any solu-
tion u ∈ [C1

loc(D ∪ S)]n of the Lamé type system L such that u|S and (Tu)|S are
summable on S, the following formula holds:

(2.9.2.5) u(x) = lim
N→∞

∫

S

(
(T (y,D)C(N)(x, y))T u0(y) − C(N)(x, y) u1(y)

)
ds(y).

Proof. This is similar to the prooh of Theorem 2.6.6 (see also [Sh4]). �.

A Carleman formula for solutions of the Lamé system in R3 was established in
[Ma] for specific choices of D, for example if it is bounded by part of the surface
of a cone K and a smooth piece of S in the interior of K, or if it is a relatively
compact domain in R3 whose boundary consists of a piece of the plane {x3 = 0}
and a smooth surface S lying in the half-space {x3 > 0}.

Remark 2.9.2.7. As in Theorem 2.6.6, the convergence of the limit in (2.9.2.5)
is uniform on compact subsets of the domain D together with all its derivatives.

2.9.3 Example for the Cauchy problem for the Lamé system in a shell
in Rn.

Let us consider now the situation where D is a shell Rn whose exterior surface is
a smooth closed hypersurface S in Rn and interior surface is a sphere ∂Br = {x ∈
R
n : |x| = r} with centre at zero and radius 0 < r <∞, with the Cauchy data on

S.
As in 2.8.3, we take as the domain O a shell G(r, R) = {x ∈ Rn : r < |x| < R}

(0 < r < R <∞), with sufficiently big R.
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Lemma 2.9.3.1. The fundamental solution Φ(x− y) of the Lamé type system L

can be expanded as follows:

Φ(x− y) = Φ(x) +
∞∑

ν=1

Φ̃(ν)(x, y)

where the series converges absolutely together with all the derivatives uniformly on
compact subsets of the cone K = {(x, y) ∈ Rn × Rn : |x| > |y|} and Φ(ν)(x, y)

(ν ≥ 0) are matrices with components Φ
(ν)
kl (x, y) (k, l = 1, 2, ..., n):

Φ̃
(1)
kl (x, y) = −

(n)∑

i=1

h
(i)
1 (y)

(n+ 2)

(
λ+ 3µ

2µ(λ+ 2µ)

δkl h
(i)
1 (x)

|x|n+2
−

− (λ+ µ)xl
2µ(λ+ 2µ)

∂

∂xk


h

(i)
1 (x)

|x|n+2




− (λ+ µ)yl

2µ(λ+ 2µ)

∂g(x)

∂xk
,

Φ̃
(ν)
kl (x, y) = −

J(ν)∑

i=1

h
(i)
ν (y)

(n+ 2ν − 2)

(
λ+ 3µ

2µ(λ+ 2µ)

δkl h
(i)
ν (x)

|x|n+2ν−2
−

− (λ+ µ)xl
2µ(λ+ 2µ)

∂

∂xk


 h

(i)
ν (x)

|x|n+2ν−2




−

(2.9.3.1) −
J(ν−1)∑

i=1

(λ+ µ)yl
2µ(λ+ 2µ)

h
(i)
ν−1(y)

(n+ 2ν − 4)

∂

∂xk


 h

(i)
ν−1(x)

|x|n+2ν−4


 (ν ≥ 2).

Lemma 2.9.3.2. For ν = 1, 2, ... and x ∈ Rn, y ∈ Rn\{0} we have

LxΦ̃
(ν)
kl (x, y) = 0, ∆2

yΦ̃
(ν)
kl (x, y) = 0.

Proof. It is similar to the proof of Lemma 2.9.2.2. �

Now we obtain an analogue of the Laurent series for solutions of the Lamé system
L functions (cf. [T4], §7).

Proposition 2.9.3.3. Every function u ∈ C1(G(r1, r2)), satisfying Lu = 0 in
G(r1, r2), can be expanded as follows:

(2.9.3.2) u(x) =

∞∑

ν=0

H+
ν (x) + A0Φ(x) +

∞∑

ν=1

H−
ν (x)

where

(1) the series converge absolutely together with all the derivatives uniformly on
compact subsets of G(r1, r2);

(2) H+
ν are n-vectors of homogeneous polynomials of degree ν with LH+

ν = 0 in
Rn;

(3) H−
ν are n-vectors of homogeneous functions of degree 2−n−ν with LH+

ν = 0
in Rn\{0};

(4) A0 and H±
ν are uniquely defined.



2.9. EXAMPLE FOR THE LAMÉ TYPE SYSTEM IN Rn 83

Proof. Let u ∈ C1(G(r1, r2)) be a solution of the Lamé type system L in
G(r1, r2). Using Lemma (2.9.1.1) we represent u inG(r1, r2) by Somigliana formula:

u(x) =

∫

|y|=r1

(
(T (y,D)Φ(x− y))T u(y) − Φ(x− y)T (y,D)u(y)

)
ds(y)+

+

∫

|y|=r2

(
(T (y,D)Φ(x− y))T u(y) − Φ(x− y)T (y,D)u(y)

)
ds(y) (r1 < |x| < r2).

Replacing the fundamental solution Φ(x − y) in this formula by decompositions,
obtained in Lemmata 2.9.2.1, 2.9.3.1, we see that

u(x) =

∞∑

ν=0

H+
ν (x) + A0Φ(x) + +

∞∑

ν=1

H−
ν (x) (r1 < |x| < r2),

where the series converges absolutely together with all the derivatives uniformly
on compact subsets of the shell G(r1, r2) and A0, H

±
ν are defined by the following

formulae:

A0(x) =

∫

S

T (y,D)u(y)ds(y),

H−
ν (x) =

∫

|y|=r1

(
(T (y,D)Φ(ν)(x, y))T u(y) − Φ(ν)(x, y)T (y,D)u(y)

)
ds(y) (ν ≥ 1),

H+
ν (x) =

∫

|y|=r2

(
(T (y,D)Φ̃(ν)(x, y))T u(y) − Φ̃(ν)(x, y)T (y,D)u(y)

)
ds(y).

Clearly (3) and (4) follows from Lemmata 2.9.2.2, 2.9.3.2 and properties of the

polynomials h
(i)
ν .

Let us prove now that A0 and H±
ν are uniquely defined. As in the proof of

Proposition 1.4, using Lemma 7.20 of [T4], we see that any solution u of the Lamé
system L can be represented in the form

u(x) = u+(x) + u−(x)

where u± are uniquely defined such that u+ is a solution of the Lamé type system
L in the ball Br2 and u− is a solution of the Lamé type system L in Rn\Br1 .

Obviously

u+ =
∞∑

ν=0

H+
ν (x),

u− = A0Φ(x) +
∞∑

ν=1

H−
ν (x).

Let us assume that there exists another decomposition

u+(x) =

∞∑

ν=0

H̃+
ν (x),

u−(x) = Ã0Φ(x) +

∞∑

ν=1

H̃−
ν (x) (r1 < |x| < r2).
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Then
DαH+

ν = DαH̃+
ν = Dαu+(0) (|α| = ν, ν = 0, 1, ...).

Because Hν , H̃ν are homogeneous polynomials of degree ν ≥ 0 , we conclude that,
for x ∈ R

n,

Hν(x) = H̃ν(x) (ν = 0, 1, ...).

On the other hand, for x ∈ ∂B1 (|x| = 1) we have

A0 − Ã0 = lim
λ→∞

∑∞
ν=1(H

−
ν (λx) − H̃−

ν (λx)

Φ(λx)
= 0.

Arguing in a similar way one obtains that

H−
ν (x) = H̃−

ν (x) (ν ≥ 1). �

Lemma 2.9.3.4. Let r < ρ1 < ρ2 < R be fixed, so that the shell G(ρ1, ρ2) b G+.
Then

(2.9.3.3) G(⊕uj)+(x) =
∞∑

ν=0

Hν(x) (x ∈ G(ρ1, ρ2)),

where the series converges absolutely together with all the derivatives uniformly
on compact subsets of the shell G(ρ1, ρ2) and Hν are n-vectors of homogeneous
functions of degree 2 − n− ν, satisfying LHν = 0 in Rn\{0}:

H0(x) = Φ(x)

∫

S

u1(y)ds(y),

Hν(x) =

∫

S

(
(T (y,D)Φ(ν)(x, y))T u0(y) − Φ(ν)(x, y) u1(y)

)
ds(y) (ν ≥ 1).

Proof. Since G(ρ1, ρ2) b G+,

max
x∈G(ρ1,ρ2),y∈S

|y|
|x| ≤ q < 1.

Hence it follows from (2.9.1.1), and the proof is similar to the proof of Lemma
2.9.3.3. �

Proposition 2.9.3.5. Let S ∈ C2, u0 ∈ [C1(S)]n and u1 ∈ [C(S)]n be summa-
ble vector-functions on S. Then, for Problem 2.9.1.1 to be solvable, it is necessary
and sufficient that the series

∑∞
ν=0Hν(x) converges absolutely together with all the

derivatives uniformly on compact subsets of the shell G(r, R).

Proof. Follows from Lemmata 2.9.3.3 and 2.9.3.4, as Proposition 2.9.2.4 from
Lemma 2.9.2.3. �

Proposition 2.9.3.5 can be used to prove Carleman’s formula for determination
of a solution u of the Lamé type system L in D by its Cauchy data on S.

For each number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all
y 6= 0 off the diagonal {x = y}, by the equality

C(N)(x, y) = Φ(x− y) − Φ(x) −
N∑

ν=1

Φ(ν)(x, y).
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Proposition 2.9.3.6. For any number N = 1, 2, ..., the kernel C(N) satisfies
the equations LxC

(N)(x, y) = 0, ∆2
yC

(N)(x, y) = 0 for all x 6= 0 off the diagonal
{x = y}.

Proof. Follows from the properties of the Φ(x− y) and Lemma 2.9.3.2. �

The following formula produces rather explicitly a way to obtain a solution of
the Lamé type system L by successive approximations (see [Sh5]).

Theorem 2.9.3.7 (Carleman’s type formula). Let S ∈ C2. Then, for any
solution u ∈ [C1(D ∪ S)]n of the Lamé type system L such that u|S and (Tu)|S are
summable on S, the following formula holds:

(2.9.3.2) u(x) = lim
N→∞

∫

S

(
(T (y,D)C(N)(x, y))T u(y) − C(N)(x, y)Tu(y)

)
ds(y).

Remark 2.9.3.8. The limit in (2.9.3.2) is uniform on compact subsets of D∪S
together with all its derivatives.

æ

§2.10. Reduction of the Cauchy problem for systems with injective
symbols to the Cauchy problem for determined elliptic systems

We continue to consider the Cauchy problem for solutions of the system Pu = 0
where P is an elliptic operator on an open set X in Rn.

Problem 2.10.1. Let uj (0 ≤ j ≤ p− 1) be sections of the bundles Fj over an

open set S. It is required to find a solution u ∈ SfP (D) of finite order of growth such
that the expressions Bju (0 ≤ j ≤ p − 1) have weak limit values on S coinciding
with uj.

In this and in the following 3 sections of this chapter we assume that the coeffi-
cients of the operator P are real analytic and we concentrate here on the situation
where P is an overdetermined elliptic operator, i.e. l > k, though the case l = k
is also formally permitted. In fact, we need real analyticity of the coefficients of P
in order to have information about solvability of the system Pu = f , or, in other
words, about the validity of the Poincarè Lemma for the compatibility complex
{Ei, P i} induced by P (see [T5], [AnNa]). The validity of the Poincarè Lemma for
operators with smooth coefficients is an open problem and it will be discussed in
Chapter 3.

What new facts does this bring to the Cauchy problem?

First, the differential operator P may have no right fundamental solutions. Hence
the Green integral Gũ (see (2.4.1)) may, perhaps, not satisfy the equation PGũ = 0.

On the other hand, every overdetermined differential operator P induces on the
hypersurface S a tangential differential operator Pb, and now ”the initial data”
(⊕uj) must satisfy the induced tangential equation on S (see Tarkhanov [T5], §11).

We denote by {Cj}p−1
j=0 the Dirichlet system of order (p − 1) on ∂D associated to

the system {Bj} in the Green formula for the differential operator P . This system
is determined in a natural way in Lemma 1.1.6.
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Lemma 2.10.2. If Problem 2.10.1 is solvable then Pb(⊕uj) = 0 (weakly) on S,
that is,
(2.10.1)∫

S

< Cj(P
1′

v), uj >y ds = 0 for all v ∈ D(E2′

) such that (supp v) ∩ ∂D ⊂ S.

Proof. Let there be a solution u ∈ Sf (D) such that Bjf = uj (0 ≤ j ≤ p− 1)

on S. Then, if v ∈ D(E2′

) and (supp v) ∩ ∂D ⊂ S, the Stokes formula implies

∫

S

< Cj((P
1)′v), uj >y ds =

∫

∂D

< Cj((P
1)′v), Bjf >y ds =

= lim
ε→+0

∫

∂Dε

GP ((P 1)′v), f) = 0,

which was to be proved. �

Let O b X be a domain and S be a smooth closed hypersurface in O dividing
this domain into two connected components: O− = D and O+ = O\D. For our
purposes, it is sufficient to consider that the Dirichlet system {Bj} is given only in
some neighbourhood of (compact) S.

We had already noted in §1.1 that, the differential operator ∆ = P ∗P has a
(bilateral) fundamental solution Φ ∈ pdo−2p(E → E) whose kernel is real analytic
off the diagonal of X ×X (see Tarkhanov [T5], §8).

We consider the following system of boundary operators defined in the neighbour-
hood U of the boundary ∂D. For a section u ∈ Cp−1

loc (E|U ) we set τ(u) = ⊕(Bju),
that is, τ(u) is a representation of the Cauchy data on S with respect to the differ-

ential operator P . Similarly for g ∈ Cp−1
loc (F|U ) we set ν(g) = ⊕(∗−1Cj ∗ g), that is,

ν(g) represents the Cauchy data of g on S with respect to the differential operator
P ∗.

Lemma 2.10.3. The system of boundary operators {τ(.), ν(P.)} forms a Dirich-
let system of order (2p− 1) on ∂D.

Proof. This fact has already been noted in the proof of Theorem 1.4.4, and it
is proved by simple calculations. �

For easy reference we note a simple consequence of Theorem 1.3.6.

Lemma 2.10.4. Let S ∈ C∞
loc. Then, for any solution u ∈ Sf (O±) which has

finite order of growth near S, the expressions τ(u) and ν(Pu) have weak limit values
on S belonging to D′(⊕Fj|S).

Proof. The statement of the lemma follows from Theorem 1.3.6 and Lemma
2.10.3 because, for any domain D′ ⊂ O± whose boundary intersects the boundary

of O± only in the set S, the restriction of the solution u on D′ belongs to Sf∆(D′),
and because it is possible to extend the Dirichlet system {τ(.), ν(P.)} from ∂D′∩S
to the whole boundary ∂D′ as a suitable Dirichlet system (at least, if the boundary
of ∂D′ is sufficiently smooth). �

We could not prove the converse statement (as we did in Theorem 1.3.6) except
in the case when S is a connected component of the boundary of the domain O±.
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Lemma 2.10.5. Let S ∈ C∞
loc. If the solutions u± ∈ S∆(O±) have finite orders

of growth near S, and τ(u+) = τ(u−) and ν(Pu+) = ν(Pu−) on S then there is a
solution u ∈ S∆(O) such that u|O±) = u±.

Proof. It is sufficient to use Theorem 3.2 from the book of Tarkhanov [T4]
taking into consideration Lemma 2.10.3. �

The following theorem for the Cauchy-Riemann system in the space Cn was first
proved, apparently, by Kytmanov (see Aizenberg and Kytmanov [AKy]).

Theorem 2.10.6. We suppose that S ∈ C∞
loc. If a solution u ∈ S∆(D) has

finite order of growth near S, and Pb(τ(u)) = 0, and ν(Pu) = 0 on S then Pu = 0
everywhere in the domain D.

Proof. Let the solution u ∈ S∆(D) have finite order of growth near the hyper-
surface S. Then, from Lemma 2.10.4, the expressions τ(u) and ν(Pu) have weak
limit values on S belonging to D′(⊕Fj|S). We suppose that Pb(τ(u)) = 0, and
ν(Pu) = 0 on S.

Fix an arbitrary point x0 ∈ S. Since the coefficients of the differential operator P
are real analytic and P has an injective symbol then the complex of compatibility
conditions {Ei, P i} (which is induced by P ) is exact in positive degrees on the
level of sheaves over X . In particular, this means that for any neighbourhood
U = U(x0) of the point x0 and any section f ∈ SP 1(U) there exist a possibly
smaller neighbourhood V = V (x0) of this point, and a section v ∈ C∞

loc(E|V ) such
that Pv = f on V (see Tarkhanov [T5], Theorem 3.10).

Since τ(u) represents the Cauchy data of u on S with respect to the differential
operator P , and Pb(τ(u)) = 0 on S then the exact Mayer -Vietoris sequence (see
Theorem 18.9 in the book of Tarkhanov [T5]) implies that there are a neighbour-
hood V = V (x0) of the point x0 in O and solutions u± ∈ S∆(O±∩V ) having finite
order of growth near S ∩ V such that τ(u+) − τ(u−) = τ(u) on S ∩ V .

Consider now two sections F+ = u+ and F− = u− + u defined on the open sets
O+ ∩ V and O− ∩ V respectively.

By construction, the sections F± ∈ S∆(O± ∩ V ) have finite orders of growth
near the hypersurface S ∩ V , and τ(F+) = τ(F−), and ν(PF+) = 0 = ν(PF−) on
S ∩ V . Hence we can use Lemma 2.10.5, and conclude that there exists a section
F ∈ S∆(V ) such that F|O±∩V = F±.

The differential operator ∆ is elliptic and has real analytic coefficients therefore
the theorem of Petrovskii implies that the sections F and PF are real analytic in
V . Since PF = 0 in O+ ∩ V , we can conclude that PF = 0 everywhere in V .

Thus, Pu = PF − PF− = 0 in D ∩ V , and u is real analytic in the domain D.
Hence we have Pu = 0 everywhere in this domain which was to be proved. �

We note that without the requirement ”Pb(τ(u)) = 0 on S” Theorem 2.10.6 is
false.

Example 2.10.7. Let P (D) =




∂
∂x1· · ·
∂
∂xn


 be the gradient operator in Rn (n > 1),

and B0 = 1. Then ∆ = P ∗P is (minus) the usual Laplace operator in Rn, and
τ(u) = u, and ν(Pu) = ∂u

∂ν . In particular, if S is a piece of the hypersurface
{xn = 0}, any harmonic function u in D which does not depend on the variable xn
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satisfies ν(Pu) = 0 on S. But, certainly, such a function may be non-constant in
D. �

At the same time, if S = ∂D then the condition ”Pb(τ(u)) = 0 on an open subset
of S” in Theorem 10.3 is not necessary (see Karepov and Tarkhanov [KT2]).

Remark 2.10.8. As one can see from the proof of Theorem 1.3.6, the smooth-
ness condition for the hypersurface S in Lemmata 2.10.3, 2.10.4, 2.10.5 and Theo-
rem 2.10.6 can be loosened if we consider à priori solutions of the system Pu = 0
of order of growth which is not greater than a given fixed number. But this is a
general observation. �

Theorem 2.10.6 gives a method of studying Problem 2.10.1. More precisely it
shows that this problem is equivalent to the Cauchy problem for solutions of the
system P ∗Pu = 0 with initial data τ(u) = ⊕uj and ν(Pu) = 0 on S. The last
problem belongs already to the range of Cauchy problems for determined elliptic
systems which was considered in §2.3-2.9 of this chapter.

In the following sections we realize this method. æ

§2.11. Green’s integral and solvability of the
Cauchy problem for systems with injective symbols

We formulate Problem 2.10.1 more precisely (as we did in §2.4).

Problem 2.11.1. Let uj ∈ Bs−bj−1/q,q(Fj|S) (0 ≤ j ≤ p − 1) be known sec-

tions on S where s ∈ Z+, and 1 < q < ∞. It is required to find a section
u ∈ SP (D) ∩W s,q(E|D) such that Bju = uj (0 ≤ j ≤ p− 1) on S.

Using the ”initial” data of Problem 10.1 we construct the Green integral in a
special way.

Namely, as a left fundamental solution of the differential operator P we take the
kernel L(x, y) = P ∗′

Φ(x, y) where Φ is a fundamental solution of the ”laplacian”
∆ = P ∗P about which we spoke in Lemma 2.10.1.

We denote by ũ ∈ Bs−bj−1/q,q(Fj|∂D) (0 ≤ j ≤ p−1) an extension of the section

uj to the whole boundary. If, for example, s = 0 and uj ∈ L2(Fj|S) (0 ≤ j ≤ p−1),
it is possible to extend them by zero on ∂D\S. In any case the extensions could be
chosen so that they will be supported on a given neighbourhood of the compact S
on ∂D. Then we set ũ = ⊕uj , and

(2.11.1) G(ũ)(x) = −
∫

∂D

< CjL(x, .), ũj >y ds (x ∈ ∂D)

Lemma 2.11.2. The potential G(ũ) satisfies ∆G(ũ) = 0 on each of the open sets
D and X\∂D, and has finite order of growth near the surface ∂D.

Proof. This follows from equality (2.11.1) and the structure of the fundamental
solution L(x, y). �

In particular, if we denote by F± the restrictions of the section F ∈ D′(E|O) to

the sets O±, we have G(ũ)± ∈ S∆(O±).

Theorem 2.11.3. If the boundary of the domain D is sufficiently smooth then,
for Problem 2.11.1 to be solvable, it is necessary and sufficient that

(1) the integral G(ũ) extends from O+ to the whole domain O as a solution
belonging to S∆(O) ∩W s,q(E|O);

(2) Pb(sf) = 0 in a neighbourhood of some point x0 on S.
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Proof. Necessity. Suppose that there is a section u ∈ SP (D) ∩W s,q(E|D) such
that Bju = uj (0 ≤ j ≤ p− 1) on S.

We consider in the domain O (more exactly, in O\S) the following section:

(2.11.2) F(x) =

{ Gũ(x), x ∈ O+,

Gũ(x) − u(x), x ∈ O−.

Using the boundedness theorem for potential operators in Sobolev spaces on
manifolds with boundary (see Rempel and Schulze [ReSz], 2.3.2.5) we can conclude
that G(ũ)± ∈ W s,q(E|O±) (if the surface ∂D is sufficiently smooth, for example if

∂D ∈ Cr, r = max(s, p− s)). This means that F± ∈W s,q(E|O±).
On the other hand, we consider the difference δ = G(ũ) − G(⊕Bju). Let ϕε ∈

D(X) be any function supported on the ε-neighbourhood of the set ∂D\S, and
being equal to 1 in some smaller neighbourhood of this set. Since Bju = ũj (0 ≤
j ≤ p− 1) on S then we can write

δ(x) =

∫

∂D

p−1∑

j=0

< CjL(x, .), ϕε(Bju− ũj) >y ds(x 6∈ ∂D).

The right hand side of this equality is a solution of the system ∆f = 0 everywhere
in the domain O except the part of the ε-neighbourhood of the boundary of S on
∂D which belongs to O. Therefore, since ε > 0 is arbitrary, δ ∈ S∆(O).

Now expressing the integral G(⊕Bju) from the Green formula (1.3.4) and putting
G(ũ) = G(⊕Bjũ) + δ in inequality (2.11.2) we obtain

F(x) = δ(x) (x ∈ O\S)

Hence the section F extends to the whole domain O as a solution of the system
∆u = 0.

Thus F belongs to S∆(O) ∩W s,q(E|O), and on O+ this section coincides with

G(ũ)+, which was to be proved.
Sufficiency. Conversely, let F ∈ S∆(O) ∩W s,q(E|O) be a solution coinciding

with G(ũ)+ on O+, and Pb(⊕uj) = 0 in a neighbourhood of some point x0 on S.
We set u(x) = G(ũ)−F(x) (x ∈ D). The above mentioned boundedness theorem

for potential operators in Sobolev spaces (see Rempel and Schulze [ReSz], 2.3.2.5)
implies that G(ũ) ∈ W s,q(E|O−). Therefore u ∈ S∆(D) ∩W s,q(E|D), and u has
finite order of growth near the hypersurface S.

Now Lemma 1.3.7 on the weak jump of the Green integral associated with the
differential operator ∆ and the Dirichlet system {τ(.), ν(P.)} on ∂D implies that

{
τ(Gũ(x)−) − τ(Gũ(x)+) = ⊕ũj on ∂D,
ν(PG(ũ)−) − ν(PG(ũ)+) = 0 on ∂D.

Since τ(G(ũ)+) = τ(F), and ν(PG(ũ)+) = ν(PF) on S then these equations
imply that {

τ(u) = ⊕ũj on S,
ν(Pu) = 0 on S.
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We use now the condition ”Pb(⊕uj) = 0 in a neighbourhood V = V (x0) on S”.
Then Pb(τ(u)) = 0 in V , and, from Theorem 2.10.6 applied to the piece V ∩ S
instead of S, we obtain that Pu = 0 everywhere in the domain D.

Hence u ∈ SP (O) ∩W s,q(E|O) is the required solution of Problem 2.11.1, which
was to be proved. �

For the Cauchy-Riemann operator in Cn (n > 1) Theorem 2.11.3 is due to
Aizenberg and Kytmanov [AKy].

There is an example showing that the sufficiency part of Theorem 2.11.3 without
the requirement ”Pb(⊕ũj) = 0 on an open subset of S” is false.

Example 2.11.4. Let P (D) =




∂
∂x1· · ·
∂
∂xn


 be the gradient operator in Rn (n > 1),

and B0 = 1. Then, as we note in Example 2.10.6, ∆ = P ∗P is (minus) the usual

Laplace operator in Rn, and τ(u) = u, and ν(Pu) = ∂f
∂ν . We take as S a piece of

the hypersurface {xn = 0}, and fix, on a neighbourhood of O, some non-constant
harmonic function u which does not depend on the variable xn. If the Cauchy
data on S are given by means of the restriction u|S then the Green integral can

be constructed by the formula G(ũ)(x) =
∫
S

∂
∂ν g(x− .)fds, where g(x− y) is the

standard fundamental solution of convolution type of the Laplace operator in Rn.
In other words, G(ũ) is (minus) the potential of a double layer with density f
supported on S. From the theorems on the jump of this integral and its normal
derivate, we have G(ũ)−−G(ũ)+ = f , and ∂

∂νG(ũ)−− ∂
∂νG(ũ)+ = 0 on S. Moreover

∂f
∂ν = 0 on S. Therefore Lemma 2.10.5 implies that the function (G(ũ)−f) extends
harmonically from O+ to the whole domain O (by means of G(ũ)− on O− ). This
means that we can conclude the same for the integral G(ũ)+. However u|S may be
the restriction of a non-constant function in D. �

At the same time, if S = ∂D then the condition ”Pb(⊕ũj) = 0 on an open subset
of S” in Theorem 2.11.3 is not necessary (see Karepov and Tarkhanov [KT2]).

Corollary 2.11.5 (the Cartan-Kähler theorem). Suppose that the hy-
persurface S, the coefficients of the operators Bj (0 ≤ j ≤ p−1) in a neighbourhood
of ∂D and the sections uj ∈ D′(Fj|S) (0 ≤ j ≤ p − 1) are real analytic. Then, if
Pb(⊕uj) = 0 on S, there is a section u satisfying Pu = 0 in some neighbourhood of
S and such that Bju = uj (0 ≤ j ≤ p− 1) on S.

Proof. In view of the uniqueness theorem for solutions of Pu = 0 it is sufficient
to find for each point x0 ∈ S a neighbourhood V = V (x0) on X and a solution
u ∈ S(V ) such that Bju = uj (0 ≤ j ≤ p− 1) on S ∩ V . Therefore we can at once
consider that the sections uj (0 ≤ j ≤ p − 1) are real analytic in a neighbourhood
of the compact S. Then we can construct the Green integral by the formula

G(ũ)(x) = −
∫

S

< CjL(x, .), uj >y ds (x 6∈ S).

The condition of the corollary implies that the integral G(ũ) is a real analytic
(vector-) function up to S on each sides of this hypersurface. This means that
each of the integrals G(ũ±) extends as a solution of the system ∆f = 0 to some
neighbourhood of S. If we keep the same notations for these extensions then the
difference u = G(ũ)− − G(ũ)+ is the solution we sought. �

æ
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§2.12. A solvability criterion for the Cauchy
problem for systems with injective symbols in the
language of space bases with double orthogonality

Theorem 2.11.3 has been formulated so that the application of the theory of §2.1
is suggested. For this assume in addition that q = 2.

So, in this section we consider the solvability aspect of Problem 2.11.1.

Problem 2.12.1. Under what conditions on the sections uj ∈W s−bj−1/2,2(Fj|S)

(0 ≤ j ≤ p − 1) is there a solution u ∈ SP (D) ∩W s,2(E|D) such that Bju = uj
(0 ≤ j ≤ p− 1) on S ?

Let Ω be some relatively compact subdomain of O+.
Since Ω b O+, the restriction to Ω of the Green integral G(ũ) defined by

equality (2.11.1) belongs to the space S∆(Ω) ∩W s,2(E|Ω). Hence the extendibil-

ity condition for G(ũ) from O+ to the whole domain O (as a solution in the class
S∆(O) ∩W s,2(E|O) could be obtained by the use of a suitable system {bν} in

S∆(O) ∩W s,2(E|O) with the double orthogonality property. More exactly, it is re-

quired that {bν} should be an orthonormal basis in Σ1 = S∆(O) ∩W s,2(E|O) and

an orthogonal basis in Σ2 = S∆(Ω) ∩W s,2(E|Ω).
Since ∆ = P ∗P is an elliptic differential operator with real analytic coefficients

on X , Theorem 2.5.5 guarantees existence of such a basis {bν}, at least if the
boundary of Ω is regular (see §2.5). As we did in §2.5, for an element F ∈ Σ1

we shall denote by cν(F) (ν = 1, 2, ...) its Fourier coefficients with respect to the
orthonormal system {bν} in Σ1, that is, cν(F) = (F , bν)H1

. And for an element
F ∈ Σ2 we shall denote by kν(F) (ν = 1, 2, ...) its Fourier coefficients with respect

to the orthogonal system {Tbν} in Σ2, that is, kν(F) =
(F,T bν)H2

(Tbν ,T bν)H2
.

We formulate now the solvability conditions for Problem 2.12.1. Let Gũ be the
Green integral (see (2.11.1) constructed with ”initial” data of the problem. As we
noted, the restriction of the section Gũ to Ω belongs to the space Σ2.

Lemma 2.12.2. For ν = 1, 2, ...

(2.12.1) kν(Gũ) = −
∫

∂D

p−1∑

j=0

< Cjkν(L(., y)), ũj >y ds.

Proof. This consists of direct calculations with the use of equality (2.11.1).
�

In order to determine the coefficients kν(Gũ) (ν = 1, 2, ...) it is not necessary
to know the basis {Tbν} in Σ2. It is sufficient only to know the coefficients of the
decomposition of the fundamental matrix (L(., y) (y ∈ ∂D) with respect to this
series. The properties of the coefficients kν(L(., y) ∈ C∞

loc(F
∗
|X\Ω) we shall discuss

in §2.13.

Theorem 2.12.3. If the boundary of the domain D is sufficiently smooth then
for the solvability of Problem 2.12.1 it is necessary and sufficient that

(1)
∑∞
ν=1 |kν(Gũ)|2 <∞;

(2) Pb(⊕uj) = 0 in a neighborhood of some point x0 on S.
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Proof. The statement follows from Theorem 2.11.3 as Theorem 2.5.8 follows
from Theorem 2.4.2. �

æ

§2.13. Carleman’s formula

In this section we consider the regularization aspect of Problem 2.11.1.

Problem 2.13.1. It is required to find a solution f ∈ SP (D) ∩W s,2(E|D) using

known values Bju ∈W s−bj−1/2,2(Fj|S) (0 ≤ j ≤ p− 1) on S.

It is easy to see from Corollary 2.1.9 that side by side the solvability conditions
for Problem 2.4.1 (q = 2) bases with double orthogonality give the possibility to
obtain a suitable formula (of Carleman) for the regularization of solutions. We shall
illustrate this on example of Problem 2.6.1.

Let {bν} be the basis with double orthogonality, used in the previous section, in
the space (Σ1 =)SP (O) ∩W s,2(E|O) such that the restriction of {bν} to Ω (that is,

{Tbν} ) is an orthogonal basis of (Σ2 =)SP (Ω) ∩W s,2(E|Ω).
As above, we denote by {kν(L(., y))} the sequence of Fourier coefficients for the

fundamental matrix L(., y) (y ∈ Ω) with respect to the system {Tbν}, i.e.,

(2.13.1) kν(L(., y)) =
1

λν

∫

Ω

< ∗Dαbν , D
αL(., y) >y dv (ν = 1, 2...).

Lemma 2.13.2. The sections kν(L(., y)) (ν = 1, 2...) are continuous, together
with their derivatives up to order (p− s− 1), on the whole set X.

Proof. See, Lemma 2.6.2. �

Using formula (2.13.1) one can see that the sections kν(L(., y)) (ν = 1, 2...)
extend to the boundary of Ω from each side as infinitely differentiable sections (at
least, if the boundary is smooth).

Lemma 2.13.3. For any number ν = 1, 2, ... we have P ′kν(L(., y)) = 0 every-
where in X\Ω.

Proof. See Lemma 2.6.3. �

We consider the following kernels C(N)(x, y) defined for (x, y) ∈ O ×X (x 6= y):

(2.13.2) C(N)(x, y) = L(x, y)−
N∑

ν=1

bν(x) ⊗ kν(L(., y)) (N = 1, 2, ...).

Lemma 2.13.4. For any number N = 1, 2, ... the kernels C(N) ∈ Cloc(E � F )
satisfy P (x)C(N)(x, y) = 0 for x ∈ O, and P ′(y)C(N)(x, y) = 0 for y ∈ X\Ω
everywhere except the diagonal {x = y}.

Proof. Since {bν} ⊂ S∆(O), this immediately follows from Lemma 2.13.3. �

From the following lemma one can see that the sequence of kernels {C(N)},
suitably, for example in a piece-constant way, interpolated to real values N ≥ 0,
provides a special Carleman function for Problem 2.13.1 (see Tarkhanov [T4], §25).
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Lemma 2.13.5. For any multi-index α, Dα
y C(N)(., y) → 0 in the norm of W s,2(E⊗

F ∗
y|O) uniformly with respect to y on compact subsets of X\O, and even X\O if

|α| < p− s− n/2.

Proof. See Lemma 2.6.6. �

We can formulate now the main result of the section. For u ∈ SP (D) ∩W s,2(E|D))

we denote by ũ ∈ W s−bj−1/2,2(Gj|∂D) (0 ≤ j ≤ p − 1) an (arbitrary) extension of
the section Bju from S to the whole boundary.

Theorem 2.13.6 (Carleman’s formula). For any solution u ∈ SP (D) ∩W s,2(E|D)
the following formula holds:

(2.13.3) u(x) = − lim
N→∞

∫

∂D

< CjC
(N)(x, .), ũj >y ds (x ∈ D).

Proof. This follows from Theorems 2.13.3 and 2.12.8 as Theorem 2.6.7 follows
from Theorems 2.4.2 and 2.5.8. �

We emphasize that the integral on the right hand side of formula (2.13.3) depends
only on the values of the expressions Bju (0 ≤ j ≤ p−1) on S. Thus this formula is
a quantitative expression of (uniqueness) Theorem 2.2.2. However this gives much
more than the uniqueness theorem because there is sufficiently complete information
about the Carleman function C(N).

For holomorphic functions of several variables the Carleman formula (2.13.3) is
first met, apparently, in [ShT4].

Remark 2.13.7. The series
∑∞
ν=1 kν(Gũ)bν (defining the solution F) converges

in the norm of the space W s,2(E|O). The Stieltjes-Vitali theorem (see Hörmander
[Hö2], 4.4.2) implies now that it converges together with all its derivatives on com-
pact subsets of O. Then, as in §2.6, one can see that the limit in (2.13.3) is reached
in the topology of the space C∞

loc(E|O).

æ

§2.14. Examples for matrix factorizations of the Laplace operator

2.14.1. The Cauchy problem for matrix factorizations of the Laplace
operator.

The examples of this section are based on the following simple observation.

Lemma 2.14.1.1. If the coefficients of the differential operator P are real ana-
lytic then Problem 2.11.1 is solvable if and only if

(1) the section G(ũ) extends from O+ to the whole domain O as a real analytic
section belonging to W s,q(E|D);

(2) Pbu0 = 0 in a neighbourhood of some point x0 ∈ S.

Proof. First, we note that, since PG(ũ) = 0 outside of ∂D, the section G(ũ) is
real analytic in the domain O+. Now let F be the above extension of this section
in O. Then PF is also a real analytic section in O, and PF = 0 in O+. From
the uniqueness theorem we obtain that PF = 0 everywhere in the domain O, that
is, F ∈ SP (O) ∩W s,2(E|O). Therefore the statement of the lemma follows from
Theorem 2.11.3. �
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In particular, we can use the fact that (P ∗P )Gũ = 0 everywhere outside ∂D,
and the extendibility condition for G(ũ) (up to a section F ∈W s,2(E|O) satisfying
(P ∗P )F = 0 in O) write in the language of bases with the double orthogonality.

Definition 2.14.1.2. The differential operator P is said to be a matrix fac-
torization of the Laplace operator if p = 1, and P ∗P = −∆nIk where ∆n is the
Laplace operator in Rn.

Problem 2.14.1.3. Let u0 ∈ Cloc(E|S) be a summable section of E on S. It is
required to find a solution u ∈ SP (D) ∩ Cloc(E|D∪S) such that u|S = u0.

As the fundamental solution of the differential operator P we can take the matrix
L(x, y) = P ∗′

(y)ϕn(x− y), where ϕn(x− y) is the standard fundamental solution
of convolution type of the Laplace operator in R

n with the opposite sign. Then the
Green integral (2.11.1) has the following form:

Gũ(x) = − 1√
−1

∫

S

tL(x, y)
∑

α=1

Pα(y)να(y)u0(y)ds(y) (x 6∈ S),

where ν(y) is the vector of unit outward normal to S at the point y.
It is easy to see from the structure of the fundamental matrix L that the com-

ponents of the section Gũ are harmonic functions everywhere in BR (and even in
R
n ) except on the set S.
In the next 2 subsections we suppose that P is differential operator as in Defini-

tion 2.14.1.2.

2.14.2. Example for matrix factorization of the Laplace operator in a
part of a ball in Rn.

Let O = BR be the ball in Rn with centre at zero and of radius 0 < R < ∞,
and S be a smooth closed hypersurface in BR dividing this ball into 2 connected
components O+, and D = O− so that the domain O+ contains zero. We consider
the following problem (of Cauchy).

To obtain a solvability criterion for Problem 2.14.1.1 we can use the basis with
double orthogonality constructed in Lemma 2.8.2.2.

We fix 0 < r < dist(0, S) and set Ω = Br so that Ω b O. In order to obtain the
Fourier coefficients for the section G(ũ) with respect to this basis in h2(Br) it is
sufficient to know the Fourier coefficients for the fundamental matrix L(x, y) (see
(2.12.1)). The information about them is contained in the following lemma.

Lemma 2.14.2.1.

(2.14.2.1) L(x, y) = L(0, y)−
∞∑

ν=1

J(ν)∑

i=1

h(i)
ν (x)P ∗′

(y)


 1

n+ 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2


 .

where the series converges together with all the derivatives uniformly on compact
subsets of the cone {(x, y) ∈ Rn × Rn : |y| > |x|}.

Proof. It is sufficient to use the similar decomposition for ϕn(x− y) obtained
in Lemma 2.8.2.1. �

Our principal result will be formulated in the language of the coefficients

k(i)
ν =

1√
−1

∫

S

P ∗′

(y)


 1

(n+ 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2


σ(P )(ν)u0ds (ν = 1, 2, ...).
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Theorem 2.14.2.2. For solvability of Problem 2.14.1.3, it is necessary and suf-
ficient that

(1) lim supν→∞ maxi
ν

√
|k(i)
ν (y)| ≤ 1

R ;

(2) Pbu0 = 0 in a neighbourhood of some point x0 ∈ S.

Proof. The statement follows from Lemma 2.14.1.1 as Theorem 2.8.2.4 follows
from Theorem 2.8.1.3. �

Remark 2.14.2.3. It is clear that if P is determined elliptic then Pb ≡ 0, i.e.
condition (2) of Theorem 2.14.2.2 obviously holds.

Let us give now the corresponding variant of Carleman’s formula. For each
number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all y 6= 0 off the
diagonal {x = y}, by the equality

C(N)(x, y) = L(x, y)− L(0, y) +
∞∑

ν=1

J(ν)∑

i=1

h(i)
ν (x)P ∗′

(y)


 1

(n+ 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2


 .

Lemma 2.14.2.4. For any number N = 1, 2, ..., the kernel C(N) is an infin-
itely differentiable section of E � F , harmonic with respect to x, and satisfying
P ′(y)C(N)(x, y) = 0 for all y 6= 0 off the diagonal {x = y}.

Proof. Follows from the properties of the matrix L and the polynomials h
(i)
ν (y).

�

We note that since C(N) is a ”remainder” summand in the formula (2.14.1),
CN)(x, y) → 0 (N → ∞), together with all its derivatives uniformly on compact
subsets of the cone {(x, y) ∈ Rn × Rn : |y| > |x|}.

Theorem 2.14.2.5 (Carleman’s type formula). For any solution u ∈ SP (D)∩
Cloc(E|D∪S) whose restriction to S is summable there, the following formula holds

(2.14.2.2) u(x) = − 1√
−1

lim
N→∞

∫

S

C(N)(x, .)σ(P )(ν)u0ds (x ∈ D).

Proof. This is similar to the proof of Theorem 2.13.6. �

Remark 2.14.2.6. As in Theorem 2.13.6, the convergence of the limit in (2.14.2.2)
is uniform on compact subsets of the domain D together with all its derivatives.

Example 2.14.2.7. Let P = 2 d
dz be the Cauchy-Riemann system in C1 (∼=

R2). Obviously P is an determined matrix factorization of the Laplace operator in
R2n. Then Pb ≡ 0, the corresponding fundamental solution is the Cauchy kernel
L(ζ, z) = −1

ζ−z where z = x1 +
√
−1x2, ζ = y1 +

√
−1y2, x, y ∈ R

2, and the

corresponding Green’s integral is the Cauchy integral. The system of the monomials
{1, zν , zν}∞ν=1 is the basis with double orthogonality constructed in Lemma 2.8.1.5.
The corresponding solvability conditions for the Cauchy problem were obtained by
L. Aizenberg (see [AKy]). The corresponding Carleman’s formula, probably, is due
to Goluzin and Krylov (see [A]); it is one of the simplest formulae of this type.
More exactly, for any holomorphic function u ∈ Cloc(E|D∪S) whose restriction to
S is summable there the following formula holds:

u(z) = lim
N→∞

1

2π
√
−1

∫

S

(
z

ζ

)N
u0(ζ)dζ

ζ − z
(z ∈ D).
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Example 2.14.2.8. Let P = 2




∂
∂z1
...
∂
∂zn


 be the Cauchy-Riemann system in C

n

(∼= R2n). Obviously P is an overdetermined matrix factorization of the Laplace
operator in R

2n. Then condition (2) in Theorem 2.14.5 is the well known tangential
Cauchy-Riemann condition (or, CR-condition) on S. The corresponding Green’s
integral is the Martinelli-Bochner integral (see §1.2). Theorem 2.14.5 was proved
in this case by Aizenberg and Kytmanov [AKy]. The corresponding Carleman’s
formula is due to Shlapunov and Tarkhanov [ShT4].

2.14.3. Example for matrix factorization of the Laplace operator in a
shell in Rn.

In this section we consider the Cauchy problem for (k× k)-matrix factorizations
if the Laplace operator in a shell D in R

n whose exterior surface is a smooth closed
hypersurface S in Rn and interior surface is a sphere ∂Br = {x ∈ Rn : |x| = r}
with centre at zero and radius 0 < r <∞, with the Cauchy data on S.

As in §2.8.3, G(r1, r2) = {x ∈ Rn : r1 < |x| < r2} is a shell with 0 < r1 < r2 <
∞, R is a real number such that D b O = G(r, R), O− = D, O+ = G(r, R)\D.
Then F±

P = FP |G± .
As in §2.8.3, using Lemma 2.8.2.1, we can write the Laurent series for solutions

of matrix factorizations of the Laplace operator in a shell G(r1, r2) = {x ∈ Rn :
r1 < |x| < r2} (cf. [T4], Corollary 8.9).

Proposition 2.14.3.1. Every vector-function u ∈ C1(E|G(r1,r2)
), satisfying

Pu = 0 in G(r1, r2), can be expanded as follows:

(2.14.3.1) u(x) =
∞∑

ν=0

J(ν)∑

i=1

a(i)
ν h(i)

ν (x) + b0ϕn(x) +
∞∑

ν=1

J(ν)∑

i=1

b(i)ν
h

(i)
ν (x)

|x|n+2ν−2
,

where the series converge absolutely together with all the derivatives uniformly on

compact subsets of G(r1, r2) and the coefficients a
(i)
ν , b

(i)
ν are uniquely defined by

a(i)
ν =





−1
n+2ν−2

∫
|y|=r2

(
tP ∗(y) h

(i)
ν (y)

|y|n+2ν−2

)∑
|α|=1 Pα(y)να(y)u(y)ds(y) (ν = 1, 2, ...),

√
σn
∫
|y|=r2 (tP ∗(y)ϕn(y))

∑
|α|=1 Pα(y)να(y)u(y)ds(y) (ν = 0).

b(i)ν =
−1

n+ 2ν − 2

∫

|y|=r1

tP ∗(y)h(i)
ν (y)

∑

|α|=1

Pα(y)να(y)u(y)ds(y) (ν = 1, 2, ...).

Now, denoting by

c(i)ν =
−1

n+ 2ν − 2

∫

S

tP ∗(y)h(i)
ν (y)

∑

|α|=1

Pα(y)να(y)u0(y)ds(y) (ν = 1, 2, ...).

and arguing as in Theorem 2.8.3.3 we obtain the following result.

Theorem 2.14.3.2. Let u0, u1 ∈ L1(E|S). Then, for Problem 2.14.1.3 to be
solvable, it is necessary and sufficient that

lim sup
ν→∞

max
i

ν

√
|c(i)ν | ≤ r
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Let us write the corresponding Carleman’s formula.
For each number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all

y 6= 0 off the diagonal {x = y}, by the equality

C(N)(x, y) = tP ∗(y)ϕn(x− y) −
N∑

ν=1

J(ν)∑

i=1

tP ∗(y)h(i)
ν (y)

(n+ 2ν − 2)

h
(i)
ν (x)

|x|n+2ν−2
.

Proposition 2.14.3.3. For any number N = 1, 2, ..., the kernel C
(N)
∆ is har-

monic with respect to x and satisfying tP ∗(y)C(N)(x, y) = 0 for all x 6= 0 off the
diagonal {x = y}.

Proof. Follows from the properties of the ϕn(x−y) and the polynomials h
(i)
ν (y).

�

The kernels C(N) are useful to obtain formulae for solutions and approximate
solutions of Problem 2.14.1.3.

Theorem 2.14.3.4 (Carleman’s type formula).. For any function u ∈
C(E|D∪S), satisfying Pu = 0 in D, whose restriction to S is summable there, the
following formula holds

(2.14.3.2) u(x) = lim
N→∞

∫

S

C(N)(x, y)
∑

|α|=1

Pα(y)να(y)u(y)ds(y) (x ∈ D).

Remark 2.14.3.5. The convergence of the limit in (2.14.3.2) is uniform on
compact subsets of the domain D together with all its derivatives.

We note that in the case, where P is the Cauchy-Riemann system Cn, n > 1,
the Cauchy Problem 2 is the Cauchy Problem for a bounded domain D ∪Br with
the Cauchy datum u0 on the whole boundary S (because of the Hartogs Theorem
on removability of compact singularities of holomorphic functions in C

n, n > 1).
In particular it shows that formula (2.14.3.2) may be trivial for (l × k)-matrix
factorizations of the Laplace operator, with l > k (as, for instance in the case of
the multi-dimensional Cauchy-Riemann system).

Example 2.14.3.6. Let P = d
dz

be the Cauchy-Riemann in the complex plane

C1. Then the system { 1√
2π
, zν
√

2π
, zν
√

2π
} (with z = x1 +

√
−1x2, z = x1 −

√
−1x2,

(x1, x2) ∈ R2) is the system of spherical harmonics {h(i)
ν } (ν = 0, 1, ..., i = 1, 2). In

this case D is a shell between a closed smooth curve S and a circle Br, G(r, R) is
a ring with centre at zero, tP ∗(ζ)g(ζ − z) = 1

π
1
ζ−z is the Cauchy kernel and

G(u0)(z) =
1

2π
√
−1

∫

S

u0(ζ)dζ

ζ − z
(z 6∈ S)

is the Cauchy integral. Decomposition (2.1) is the Laurent series for holomorphic
functions.

By simple calculations, we have

c(i)ν =
−1√
−2π

∫

S

u0(ζ)ζ
ν−1dζ (ν = 1, 2, ...).
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C(N) =
1

π

(
ζ

z

)N+1
1

ζ − z
(N ≥ 0).

Thus, we obtain Carleman’s formula for a holomorphic function u ∈ C(D ∪ S),
whose restriction to S is summable there:

(2.14.3.3) u(z) =
1

2π
√
−1

lim
N→∞

∫

S

(
ζ

z

)N
u(ζ)dζ

ζ − z
(z ∈ D).

Formula (2.3) is well-known in the case where S is a circle ∂Bρ with r < ρ < R
(see, for example, [A]).

æ
æ
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CHAPTER III

ITERATIONS OF GREEN’S INTEGRALS AND THEIR

APPLICATIONS TO ELLIPTIC DIFFERENTIAL COMPLEXES

§3.0. Introduction

The validity of the Poincaré lemma, i.e. local acyclicity, for complexes of linear
partial differential operators with smooth coefficients is a long standing problem
of the theory of overdetermined systems (see, for example, [T5], [AnNa]). The
Poincaré lemma is valid for complexes of linear partial differential operators with
constant coefficients which are obtained from Hilbert resolutions of modules of fi-
nite type over the ring of polynomials (see, for instance, [Pal] and [Mal1], [Mal2])
and for elliptic complexes of linear partial differential operators with real analytic
coefficients satisfying suitable algebraic conditions (see [AnNa]). Local solvability
is also known for determined elliptic systems and has been thoroughly investigated
for scalar operators of the principal type. Trivial examples shows that some nonde-
generacy assumption is necessary, but a famous example of H. Lewy showed that
even a nondegenerate scalar linear partial differential operator of the first order
with polinomial coefficients in R3 can be nonsurjective on the germs of smooth
functions at any point of R3.

The Hans-Lewy example has been extended in several ways and simple examples
have been found even in R2. An interpretation of the Hans-Lewy phenomenon was
given by [Hö3] for the case of a scalar operator and by [Na1] for complexes of
partial differential operators. These results essentially involve some asymptotic
analysis related to a microlocalization of the operator (or the complex) near the
bicharacteristic points.

It is a natural question to investigate whether in case there are no bicharacteristic
points (i.e. for elliptic complexes) there is local acyclicity.

In this chapter we take up this problem. Elliptic complexes are characterized by
the exactness of the complex obtained by the principal symbols of their operators
at each nonzero cotangent vector. Although we are still not able to prove the
Poincaré Lemma for elliptic complexes, we prove in this chapter a representation
formula giving a solution of the equation Pu = f for an operator P with injective
symbol whenever a solution exists.

This representation involves the sum of a series whose terms are iterations of
integro- differential operators, while solvability of Pu = f is equivalent to the
convergence of the series together with an orthogonality condition with respect to
a harmonic space (the last one is a trivial necessary condition).

For the Dolbeault complex, these integro-differential operators are related to the
Mar- tinelli-Bochner integral. In this case, results similar to ours were obtained by
A.V. Romanov [Rom2].

Typeset by AMS-TEX
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In fact this approach is more fit to study the global solvability of the system
Pu = f in a domain D b X , though in this way a problem about the (global)
regularity of solutions of Pu = f in D arises (cf. [Sh3], [Sh6]).

Although the example of the Cauchy-Riemann system shows that in general we
should expect a loss of global Sobolev regularity for the solutions of Pu = f (see
Example 3.6.4), the case where the system can be solved without losing global
regularity has interesting applications to a variational nonelliptic boundary value
problem, that we discuss and illustrate by the examples at the end of the chapter.

Let us describe in a more precise way the contents of this chapter.
Let X be an open set in Rn (n ≥ 1) and P be an elliptic (l×k)-matrix of partial

differential operators of order p ≥ 1 with C∞ coefficients in X . We are interested
in the solvability of the equation Pu = f in a relatively compact domain D in X .
Our approach is based on the following simple but useful observation.

Let H be a linear topological vector space of (vector-valued) functions defined
in D and let us assume that for every u ∈ H the following formula holds true:

(3.0.1) u = Π1u+ Π2Pu

where Π1,Π2P :H → H and Π1 is a projection from H to the subspace {u ∈ H :
Pu = 0 in D} of H. Then one can hope that, under reasonable conditions, the
element Π2f defines a solution of the equation Pu = f in D.

For instance, such an approach was successfully tested on the Cauchy- Riemann
system ∂ in Cn (n > 1) and formulae of the type (3.0.1) were obtained in [AYu],
[HeLe] (see also [He]) by the method of integral representations. The construction of
formula (3.0.1) by the method of integral representations demands the construction
of special holomorphic kernels for the integral Π1, essentially depending on the
domain D.

In this chapter we exploit another idea which was first introduced in complex
analysis.

In 1978 two papers of A.V. Romanov devoted to the iterations of the Martinelli
-Bochner integral were published (see [Rom1],[Rom2]). In particular, in [Rom2] the
following result was obtained.

Theorem (A.V. Romanov [Rom2]). Let D be a bounded domain in Cn (n >
1) with a connected boundary ∂D of class C1, and let M be the Martinelli-Bochner
integral (on ∂D) defined on the Sobolev space W 1,2(D). Then, in the strong operator
topology in W 1,2(D), limν→∞Mν = Π1 where Π1 is a projection from W 1,2(D) onto
the closed subspace of holomorphic W 1,2(D) -functions.

Using this theorem Romanov (see [Rom2]) obtained a multi-dimensional ana-
logue of the Cauchy-Green formula in the plane (see, for example, [HeLe]), i.e. a
formula of the type (3.0.1), and, as a consequence, an explicit formula represent-
ing a solution u ∈ W 1,2(D) of the equation ∂u = f in the case where D is a
pseudo-convex domain with a smooth boundary, and f is a ∂ -closed (0,1)-form
with coefficients in W 1,2(D).

Green’s integrals (see, §§1.1, 1.2) associated to systems of linear differential equa-
tions with injective symbols are natural analogues of the Martinelli-Bochner inte-
gral. Within this more general context we obtain in the present chapter the pos-
sibility of proving a result similar to the theorem of Romanov and give then some
applications.
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The plan of the chapter is the following.
The scheme of the proof of the theorem on iterations for Green’s integrals is

described in §3.1. This scheme is a variation of the original proof by A.V. Romanov
[Rom2]. Also some immediate consequences of this theorem are shown in this
section.

In §3.2 the theorem on iterations is established for Green’s integrals (associated
to differential operators with injective symbols) which are constructed by means of
special left fundamental solutions (Green’s functions).

Using results of §3.2, in §3.3 we obtain solvability conditions for equation Pu = f
in the case where the operator P is overdetermined elliptic.

In §3.4 we study the first Sobolev cohomology group of elliptic differential com-
plexes. In particular we obtain criterions for its vanishing.

In §3.5 we obtain necessary and sufficient conditions for the solvability in the
Sobolev spaces of a P -Neumann problem for elliptic differential operators.

After discussing in §3.6 some examples of P -Neumann problems, we consider in
§3.7 some applications of the Theorem on iterations to the Cauchy and Dirichlet
problems.

Sections §3.5 and §3.7 were inspired by results of Kytmanov [Ky] for the multi-
dimensio- nal Cauchy-Riemann system.

Finally in §3.8 we consider the special case of matrix factorizations of the Laplace
operator in Rn. æ

§3.1. A theorem on iterations

Let, as above, X ⊂ R
n be an open set, E = X × C

k and F = X × C
l be

(trivial) vector bundles over X . Let now P ∈ dop(E → F ) and let us denote by
∆ ∈ do2p(E → E) the differential operator P ∗P . As we said before, the operator
∆ is a determined elliptic operator of order 2p if and only if P is elliptic of order p.
We assume that ∆ is elliptic and has a bilateral fundamental solution Φ on X . This
is always the case if we allow X to be taken sufficiently small or when we assume
that the coefficients of P are real analytic. Then L(x, y) = tP ∗(y,D)Φ(x, y) is a
left fundamental solution of P (x,D) on X .

Let D be an (open) relatively compact domain in X , with smooth boundary ∂D

as in §1.1. Having fixed a Dirichlet system {Bj}p−1
j=0 of order (p − 1) on ∂D as in

Definition 1.1.4, we denote by GP corresponding Green’s operator given by Lemma
1.1.6. Then we define the operators M and T by setting, for u ∈ W p,2(E|D), f ∈
L2(F|D),

(Gu)(x) = −
∫

∂D

GP (tP ∗(y,D)Φ(x, y), u(y)) (x ∈ X\∂D),

(3.1.1) (Tf)(x) =

∫

D

< tP ∗(y,D)Φ(x, y), f(y)>y dy (x ∈ X).

By Theorem 1.1.7, we have

(3.1.2) (Gu)(x) + (TPu)(x) =

{
u(x), x ∈ D,

0, x ∈ X\D
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for every u ∈W p,2(E|D)

Analogous to the Martinelli- Bochner integral, for every u ∈ W p,2(E|D) the

integral Gu defines a W p,2(E|D)-section which is only ”harmonic”, i.e. ∆Gu = 0
everywhere outside of ∂D, while in general PGu 6= 0. By Corollary 1.1.9 we have

Proposition 3.1.1. Let ∂D ∈ Cq (q = max(p, 1) if m = p, and q = ∞ if
m > p). Then the integrals G and TP given above define linear bounded operators
from Wm,2(E|D) to Wm,2(E|D) (m ≥ p).

In particular, it is possible to consider iterations Gν = G ◦ G ◦ · · · ◦ G , (TP )ν =
TP ◦ TP ◦ · · · ◦ TP (ν times) of the integrals G and TP in the Sobolev spaces
Wm,2(E|D) (m ≥ p, ν ≥ 1).

In order to prove his theorem on iterations for the Martinelli -Bochner inte-
gral A.V. Romanov constructed in [Rom2] a suitable scalar product in the space
W 1,2(D). We follow his approach in our more general case.

Let H be a Hilbert space with a scalar product (., .)H, and A : H → H, B :
H → H be bounded linear operators with A + B = Id (where Id stands for the
identity operator on H). Let us assume that we can construct in the Hilbert space
H a scalar product H(., .) for which the following properties hold:

(3.1.A) For every u ∈ H : H(Au, u) ≥ 0, H(Bu, u) ≥ 0.

(3.1.B) The topologies induced in H by H(., .) and by the initial scalar product
(., .)H are equivalent.

In §3.2, by choosing special fundamental solutions, we will construct such a
scalar product HP

p (., .) for the operators G and TP in the Hilbert space W p,2(E|D)
(see also §3.8 for operators G and TP , associated with matrix factorizations of the
Laplace operator in a ball in Rn and standard fundamental solution of the Laplace
operator). In the remaining part of this section we will show that existence of a
scalar product with properties (3.1.A) and (3.1.B) implies the convergence of the
iterations Aν and Bν (cf. [Sh3]).

The kernels kerA and kerB of the operators A and B are closed subspaces of
H, therefore they are Hilbert spaces (with the Hermitian structure induced from
H). If S is a closed subspace of H, we denote by Π(S) the orthogonal projection
with respect to H(., .) from H to S.

Theorem 3.1.2. Assume that a scalar product H, for which (3.1.A) and (3.1.B)
hold, is defined in the space H. Then

lim
ν→∞

Aν = Π(kerB), lim
ν→∞

(B)ν = Π(kerA)

in the strong operator topology in H.

Proof. By (3.1.B) the space H, with the scalar product H(., .), is a complex
Hilbert space. Then (3.1.A) and the fact that A+B = Id imply that the operators
A and B are self- adjoint in H with respect to the scalar product H(., .), and that
0 ≤ A ≤ Id, 0 ≤ B ≤ Id.

The spectral theorem for bounded self -adjoint operators yields

(3.1.3) Aν =

1∫

0

λνdEλ, B
ν =

1∫

0

(1 − λ)νdEλ
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where {Eλ}0≤λ≤1 is a resolution of the identity in the Hilbert space H correspond-
ing, for example, to the operator A and the scalar product H(., .).

Passing to the limit in (3.1.3) one obtains

lim
ν→∞

Aν = Ẽ1, lim
ν→∞

Bν = Ẽ0

where Ẽ0 = E+0 − E−0, Ẽ1 = E1+0 − E1−0 are the orthogonal projections from
H onto the subspaces V (0),V (1) corresponding to the eigenvalues 0 and 1 of the
operator A. Finally, because A+B = Id, V (0) = kerA, V (1) = kerB. �

Corollary 3.1.3. Under the hypotheses of Theorem 3.1.2, for every u ∈ H the
following formulae hold:

(3.1.4) u = lim
ν→∞

Aνu+
∞∑

µ=0

AµBu,

(3.1.5) u = lim
ν→∞

Bνu+

∞∑

µ=0

BµAu,

where the limits and the series im the right hand sides converge in the H-norm.

Proof. Formula A+B = Id implies that for every ν ∈ N

(3.1.6) u = Aνu+

ν−1∑

µ=0

Aµ(Bu) = Bνu+

ν−1∑

µ=0

Bµ(Au).

Using Theorem 3.1.2 we can pass to the limit for ν → ∞ in (3.1.6), obtaining
(3.1.4) and (3.1.5). �

æ

§3.2. Construction of projection Π(Sp,2P (D))

In this section we construct a scalar product HP
p (., .) on W p,2(E|D) satisfying

(3.1.A), (3.1.B) for the operators G, TP . This will be obtained by the use of a
fundamental solution of ∆ = P ∗P enjoying special properties at the boundary of a
subdomain Y of X .

Throughout this section we will assume that D is a relatively compact connected
open subset of X , with a smooth boundary ∂D of class C∞. Since Green’s integrals
do not depend on the choice of the Dirichlet system {Bj} on ∂D, in this section we

can as well set Bj = Ik
∂j

∂nj .

Proposition 3.2.1. Assume that the operator ∆ ∈ do2p(E → E) admits a
bilateral fundamental solution Φ on X. Then for every domain Y b X, with
∂Y ∈ C∞, there exists a unique bilateral fundamental solution ΦY (x, y) of the
operator ∆ in Y such that

(1) ΦY extends to a smooth function on (Y × Y )\{(x, x)|x ∈ Y };
(2) ( ∂j

∂nj
x
Dα
yΦY (x, y))|x∈∂Y = 0 for every y ∈ Y , every multi-index α, and

0 ≤ j ≤ p− 1.
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Moreover, the function γ = Φ − ΦY extends to a smooth function on (Y × Y ) ∪
(Y × Y ).

Proof. The proof of Proposition 3.2.1 relies on the fact that the existence of a
bilateral fundamental solution Φ of ∆ in X implies existence and uniqueness of the
Dirichlet problem for ∆ on every subdomain D of X :

Lemma 3.2.2. For every ψj ∈Wm−j−1/2,2(Fj|∂D) (0 ≤ j ≤ p−1, m ≥ p) there

exists a (unique) section ψ ∈ Sm,2∆ (D) such that (Bjψ)|∂D = ψj (0 ≤ j ≤ p− 1).

Proof. Let ψ ∈ Sm,2∆ (D) be such that Bjψ = 0 on ∂D (0 ≤ j ≤ p− 1). Then
there is a sequence {ψν} of smooth functions with compact support in D such that
limν→∞ ψν = ψ in the W p,2(E|D)-norm. Now using Stokes’ formula, one has:

0 =

∫

D

(ψ,∆ψ)xdx = lim
ν→∞

∫

D

(ψν ,∆ψ)xdx =

= lim
ν→∞

∫

D

(Pψν , Pψ)xdx =

∫

D

(Pψ, Pψ)xdx.

Hence ψ ∈ Sm,2P (D). By Theorem 1.1.7 we obtain that ψ = Mψ = 0 in the domain
D. This proves the uniqueness of the Dirichlet problem.

We denote by W p,2
o (E|D) the space

W p,2
o (E|D) = {u ∈W p,2(E|D) : Bju = 0 on ∂D for 0 ≤ j ≤ p− 1}.

Because ∆ is elliptic, we have the classical G̊arding inequality:

‖u‖2
W p,2(E|D) ≤ c0

∫

D

(Pu, Pu)xdx+ λ0‖u‖2
L2(E|D) (u ∈W p,2

o (E|D))

for constants c0, λ0 > 0 which do not depend on u.
As we noted before, Theorem 1.1.7 implies that u = 0 if u ∈ W p,2

o (E|D) and
Pu = 0 in D. Let us prove now that we can find a constant c > 0 such that for
every u ∈W p,2

o (E|D) we have

‖u‖2
W p,2(E|D) ≤ c

∫

D

(Pu, Pu)xdx.

We argue by contradiction. If there is no such a constant then we can find a
sequence {uν} ⊂W p,2

o (E|D) such that

‖uν‖W p,2(E|D) = 1, ‖Puν‖L2(F|D) < 2−ν .

Because the unit ball in a separable Hilbert space is weakly compact, we can assume
that the sequence {uν} weakly converges to a section u∞ ∈W p,2

o (E|D). Clearly we
have Pu∞ = 0 in D and hence u∞ = 0 by the discussion above. But the G̊arding
inequality yields

1 ≤ 2−ν + λ0‖uν‖L2(E|D) for every ν

and hence, because the inclusion W p,2
o (E|D) → L2(E|D) is compact, and thus uν

strongly converges to u∞ in L2(E|D), we obtain

‖u∞‖L2(E|D) ≥ λ−1
0
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contradicting u∞ = 0.
Thus we proved that the Hermitian form

∫

D

(Pu, Pv)xdx

defines in the Hilbert space W p,2
o (E|D) a scalar product which is equivalent to the

original one. Therefore for every ϕ ∈W−p,2(E|D) there is a unique solution of

(3.2.1)

{
u ∈W p,2

o (E|D)
∫
D

(Pu, Pv)xdx = ϕ(v) for every v ∈ W p,2
o (E|D)

Moreover, by the regularity theorem for elliptic systems, if ϕ ∈Wm,2(E|D), the

solution u of (3.2.1) belongs to W p,2
o (E|D) ∩W 2p+m,2(E|D).

Given w ∈Wm,2(E|D), with m ≥ p, the map

D(E|D) 3 v →
∫

D

(w,∆v)xdx

extends to a continuous anti-C-linear functional on W p,2
o (E|D) and defines an el-

ement ϕ ∈ Wm−2p,2(E|D). If u is a solution of (3.2.1) for w, then ψ = w − u ∈
Wm,2(E|D), ∆ψ = 0 in D, and Bjψ = Bjw on ∂D.

The proof of Lemma 3.2.2 is complete. �

Using the lemma, we obtain the fundamental solution ΦY in Y by subtracting
from Φ the solution γ of the Dirichlet problem

{
∆(x)γ(x, y) = 0, x ∈ Y, y ∈ Y,

∂j

∂nj
x
γ(x, y) = ∂j

∂nj
x
Φ(x, y), x ∈ ∂Y, y ∈ Y, (0 ≤ j ≤ p− 1).

The solution smoothly depends on y ∈ Y and one easily checks that ΦY = Φ−γ
satisfies the conditions sets in the statement.

We turn now to the proof of the regularity of γ.
The fact that γ ∈ C∞(Y × Y ) follows from the regularity up to the boundary

of the solution of a Dirichlet problem with smooth data. The regularity of γ in
Y ×Y is a consequence of the interior regularity of solutions of elliptic systems and
the existence and uniqueness results for the Dirichlet problem in Sobolev spaces of
negative order (cf. [LiMg], ch. 2, §6).

Let ρ be a defining function for Y . For every nonnegative integer r, define the
spaces

Ξr(E|Y ) = {u ∈ L2(E|Y ) : ρ|α|Dαu ∈ L2(E|Y ) for |α| ≤ r}.
They are Hilbert spaces with the norm

‖u‖Ξr(E|Y ) =
∑

|α|≤r
‖ρ|α|Dαu‖L2(E|Y ).

Then Ξ−r(E|Y ) is defined as the strong dual of Ξr(E|Y ): it can be identified to
a subspace of D′(E|Y ) because D(E|Y ) is dense in Ξr(E|Y ) for every integer r ≥ 0.
The definition of Ξr(E|Y ) for general r ∈ R is obtained by interpolation.
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Next we introduce the Hilbert spaces

D−r
∆ (Y ) = {u ∈W−r,2(E|Y ) : ∆u ∈ Ξ−r−2p(E|Y )},

endowed with the graph norm, for r ≥ 0.
By the trace theorem (Theorem 6.5, p. 187 in [LiMg]) the map

C∞(E|Y ) 3 u→ ⊕p−1
j=0(Bju) ∈ ⊕p−1

j=0(C∞(E|∂Y ))

uniquely extends to a continuous linear map

D−r
∆ (Y ) 3 u→ ⊕p−1

j=0(Bju) ∈ ⊕p−1
j=0(W−r−j−1/2,2(E|∂Y ))

where r + 1/2 6∈ Z and in this case the Dirichlet problem




∆u = f in Y,
∂j

∂nj u = ψj on ∂Y, for 0 ≤ j ≤ p− 1,

u ∈ D−r
∆ (Y )

has a unique solution for f ∈ Ξ−r−2p(E|Y ) and ψj ∈ W−r−j−1/2,2(E|∂Y )) (this is
Theorem 6.6, p. 190 in [LiMg]).

To apply the general result to our special situation, we note that for every fixed
ε > 0, and every multi-index α

Y 3 x→ Dα
yΦ(x, y)

defines an element of W 2p−n/2−|α|−ε,2(E|Y ) and ∆(x) = Dα
y δ(x− y)⊗ IdE belongs

to Ξn/2−|α|−ε(E|Y ), uniformly for y ∈ Y .
Having fixed α, we choose rα ≥ 0 with rα < 2p − n/2 − |α| and rα + 1/2 6∈ Z.

Since {Dα
yΦ(x, y)|y ∈ Y } is bounded in D−rα

∆ (Y ), also { ∂j

∂nj
x
Dα
yΦ(x, y)|y ∈ Y } is

bounded in ⊕W−rα−j−1/2,2(E|∂Y ) .
If γ̃α is a solution of the Dirichlet problem





∆(x)γ̃α(x, y) = 0, x ∈ Y, y ∈ Y,

∂j

∂nj
x
γ̃α(x, y) = ∂j

∂nj
x
Dα
yΦ(x, y), x ∈ ∂Y, y ∈ Y, (0 ≤ j ≤ p− 1).

γ̃α(., y) ∈ D−rα

∆ (Y ),

then Dβ
x γ̃α is a bounded function of y ∈ Y for every multi-index β while x belongs

to a compact subset of Y . Since γ̃α = Dα
y γ(x, y) for y ∈ Y , the last part of the

statement follows. �

Remark 3.2.3. In fact, one could prove more precise regularity of γ outside of
diagonal of ∂Y × ∂Y , together with bounds for the growth of its derivatives when
(x, y) approaches the singularities (cf. [Shi], p. 145 ). However, the results obtained
above suffices for our purposes.

We fix a domain Y with a C∞-smooth boundary ∂Y such that D b Y b X . Let

S̃m,2∆ (Y \D) (m ≥ p) be the Hilbert space of functions v ∈ Sm,2∆ (Y \D) such that
∂jv
∂nj = 0 on ∂Y (0 ≤ j ≤ p− 1). We obtain a linear isomorphism

S̃m,2∆ (Y \D) 3 v
R+

−−→ ⊕p−1
j=0(Bjv)∂D ∈ ⊕p−1

j=0(Wm−j−1/2,2(E|∂D)).
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Composing (R+)−1 with the trace operator

Wm,2(E|D) 3 u
R−

−−→ ⊕p−1
j=0(Bju)∂D ∈ ⊕p−1

j=0(Wm−j−1/2,2(E|∂D))

we obtain a continuous linear map

Wm,2(E|D) 3 u→ S(u) ∈ S̃m,2∆ (Y \D).

For u ∈ W p,2(E|D), f ∈ L2(F|D), and g ∈ L2(F|Y \D) we introduce now the
following notations:

GY u(x) = −
p−1∑

j=0

∫

∂D

< (Cj
tP

∗
)(y)ΦY (x, y), Bju >y ds (x ∈ Y \∂D),

GY S(u)(x) = −
p−1∑

j=0

∫

∂D

< (Cj
tP

∗
)(y)ΦY (x, y), BjS(u) >y ds (x ∈ Y \∂D),

TY f(x) =

∫

D

< tP ∗(y)ΦY (x, y), f(y)>y dy (x ∈ Y ),

TY g(x) =

∫

Y \D
< tP ∗(y)ΦY (x, y), g(y)>y dy (x ∈ Y ).

Because (BjS(u))|∂D = (Bju)|∂D (0 ≤ j ≤ p− 1), we have GY u = GY S(u).
In order to prove the Theorem on the limit of iterations of the integrals GY and

TY P , we consider, for u, v ∈ Wm,2(E|D)(m ≥ p), the Hermitian form

(3.2.2) HP
p (u, v) =

∫

D

(Pu, Pv)xdx+

∫

Y \D
(PS(u), PS(v))xdx.

Proposition 3.2.4. The Hermitian formHP
p (., .) is a scalar product inWm,2(E|D).

Proof. The coefficients of the operator P are C∞(Y ) - functions, therefore,
PS(u) ∈ Wm−p,2 (E|Y \D). Then, since (., .)x is a Hermitian metric, to prove the

statement it is sufficient to prove that HP
p (u, u) = 0 implies u ≡ 0 in D.

If HP
p (u, u) = 0 then u ∈ Sm,2P (D), S(u) ∈ Sm,2P (Y \D), and, by definition

(Bju)|∂D = (BjS(u))|∂D (0 ≤ j ≤ p − 1). Then Theorem 3.2 of [T4] implies
that there exists a section U ∈ SP (Y ) such that U|D = u,U|Y \D = S(u). Then

U ∈ Sm,2P (Y ) and ∂jU
∂nj = 0 for 0 ≤ j ≤ p − 1 on ∂Y . Therefore U ≡ 0 in Y (by

the representation formula proved in Theorem 1.1.7), and in particular u ≡ 0 in D.
�

Lemma 3.2.5. Let (Tf)− = (Tf)|D, (Tf)+ = (Tf)|X\D. Then for every f ∈
W p,2(F|D) we have

(Bj(Tf)−)|∂D − (Bj(Tf)+)|∂D = 0,

(tC∗
j P (Tf)−)|∂D − (tC∗

j P (Tf)+)|∂D = (tC∗
j f)|∂D.
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Proof. Using Stokes’ formula we obtain for x 6∈ ∂D and f ∈W p,2(E|D) :
(3.2.3)

Tf(x) =

∫

D

< Φ(x, y), P ∗f(y) >y dy −
∫

∂D

p−1∑

j=0

< tB∗
j (y)Φ(x, y), tCj

∗
(y)f(y)).

Because P ∗f ∈ L2(E|D), the first integral in the right hand side defines a section

in W 2p,2(E|Y ). Indeed the fundamental solution Φ is a pseudo-differential operator
of order (−2p) on X . Thus it does not contribute to the jumps of the derivatives of
Tf on ∂D up to order (2p− 1). The statement of the lemma is then a consequence

of the jump formula (1.3.5), after nothing that {−Cj tP ∗, tB∗
j }p−1
j=0 is the Dirichlet

system corresponding to the Dirichlet system {Bj , tC∗
j P}p−1

j=0 with respect to ∆ in

Lemma 1.1.6 (see Theorem 1.4.4). �

Remark 3.2.6. In particular, if f ∈W p,2(F|D) has compact support in D, then

Tf ∈W 2p,2(E|Y ).

Let (TY g)
+ = (TY g)|Y \D, (TY g)

− = (TY g)|D, and introduce similar notations

for TY f (f ∈ L2(F|D), g ∈ L2(F|Y \D)) .

Lemma 3.2.7. Let r ≥ 0, ∂D ∈ Cq (q = 1 if r = 0, q = ∞ if r > 0). Then there
exist a positive number c(r) such that for every f ∈W r,2(F|D) and g ∈W r,2(F|Y \D)

‖(TY f)−‖2
W p+r,2(E|D) ≤ c(r)‖f‖2

W r,2(F|D),

‖(TY f)+‖2
W p+r,2(E|Y \D) ≤ c(r)‖f‖2

W r,2(F|D),

‖(TY g)−‖2
W p+r,2(E|D) ≤ c(r)‖g‖2

W r,2(F|Y \D).

Proof. By Proposition 3.2.1, γ = Φ − ΦY is smooth in (Y × Y ) ∪ (Y × Y ).
Then

L2(F|D) 3 f →
∫

D

< tP ∗(y)γ(x, y), f(y)>y dy ∈ C∞(E|Y )

and

L2(F|Y \D) 3 g →
∫

Y \D
< tP ∗(y)γ(x, y), g(y)>y dy ∈ C∞(E|D)

are linear and continuous maps. Therefore the proof of the estimates is reduced to
the proof of the analogous estimates for T substituting TY .

When 0 ≤ r < 1/2, the estimates hold true because tP ∗Φ(x, y) is a pseudo-
differential operator of order (−p) on X and for general r > 0 by nothing that it
has moreover the transmission property relative to every relatively compact open
subset of X with a smooth boundary (cf. [ReSz], 2.2.2 and 2.3.2.4). �

Remark 3.2.8. The lemma, together with the preceeding remark, implies that
TY f ∈W p,2(E|Y ) for every f ∈ L2(F|D). Indeed we can approximate f ∈ L2(F|D)

by smooth sections with compact support in D in the L2-norm. By the jump
Lemma 3.2.5, (TY f)− and (TY f)+ agree with their derivatives up to order (p− 1)
on ∂D when f is smooth with compact support in D and hence by continuity the
same is true when f ∈ L2(F|D).
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Proposition 3.2.9. For every u, v ∈W p,2(E|D), f ∈ L2(F|D)

HP
p (TY f, v) =

∫

D

(f, Pv)xdx,

HP
p (GY u, v) =

∫

Y \D
(PS(u), PS(v))xdx.

Proof. By integration by parts we obtain (cf. Lemma 1.1.6)
∫

D

(f, Pv)xdx−
∫

D

(P ∗f, v)xdx =

(3.2.4)

=

p−1∑

j=0

∫

∂D

< ∗Fj
Bjv,

tC∗
j f >x ds for every f ∈W p,2(F|D), v ∈W p,2(E|D)

and analogously

(3.2.5)

∫

Y \D
(PS(u), PS(v))xdx = −

p−1∑

j=0

∫

∂D

< (∗Fj
Bj)S(v), tC∗

j PS(u) >y ds =

= −
p−1∑

j=0

∫

∂D

< (∗Fj
Bj)v,

tC∗
j PS(u) >y ds for every u, v ∈W p,2(E|D).

Let u ∈ W 2p,2(E|D), v ∈ W p,2(E|D), and apply formula (3.2.4) for f = Pu.
Then we obtain, using (3.2.4) and (3.2.5)

HP
p (u, v) =

p−1∑

j=0

∫

∂D

< (∗Fj
Bj)v,

tC∗
j Pu− tC∗

j PS(u) >y ds+

∫

D

(P ∗Pu, v)ydy.

Let f ∈ D(F|D). Then we can substitute TY f for u in the formula above, to
obtain

HP
p (TY f, v) =

∫

D

(P ∗PTY f, v)ydy+

+

p−1∑

j=0

∫

∂D

< ∗Fj
Bjv,

tC∗
j P (TY f)− − tCj

∗
P (TY f)+ >y ds.

By Remark 3.2.6, TY f ∈ W 2p,2(E|D) and thus the second summand in the right
hand side of the last equality equals to zero. Because

P ∗PTY f(x) = P ∗f(x) (x ∈ D),

we get

HP
p (TY f, v) =

∫

D

(P ∗f, v)ydy =

∫

D

(f, Pv)ydy.

Since D(F|D) is dense in L2(F|D), this formula holds for every v ∈ W p,2(E|D)

and every f ∈ L2(F|D).
Finally, (3.1.2) implies that

HP
p (GY u, v) = HP

p (u− TY Pu, v) =

∫

Y \D
(PS(u), PS(v))ydy. �
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Lemma 3.2.10. For every u ∈Wm,2(E|D) (m ≥ p)

(TY Pu)(x) + (TY PS(u))(x) =

{
u(x), x ∈ D,

S(u)(x), x ∈ Y \D.

Proof. Since Y ⊂ X , Theorem 1.1.7 implies that

−
∫

∂(Y \D)

GP (tP ∗(y)Φ(x, y), S(u)(y))+

∫

Y \D
< tP ∗(y)Φ(x, y), PS(u)(y)>y dy =

=

{
S(u)(x), x ∈ Y \D,
0, x ∈ X\(Y \D).

On the other hand, if γ = Φ − ΦY then for every fixed point x ∈ Y the integrals∫

∂(Y \D)

GP (tP ∗(y)γ(x, y), S(u)(y)) and

∫

Y \D
< tP ∗(y)γ(x, y), PS(u)(y)>y dy

are well defined. Then, since t∆(y)γ(x, y) = 0 for (x, y) ∈ Y × Y , Stokes’ formula
yields for x ∈ Y

−
∫

∂(Y \D)

GP (tP ∗(y)γ(x, y), S(u)(y))+

∫

Y \D
< tP ∗(y)γ(x, y), PS(u)(y)>y dy = 0

Therefore, since ∂jS(u)
∂nj = 0 on ∂Y

(3.2.6) (TY PS(u))(x) − (GY S(u))(x) =

{
0, x ∈ D,

S(u)(x), x ∈ Y \D.
Finally, (Bju)|∂D = (BjS(u))|∂D by definition, hence GY u = GY S(u). Now

adding (3.1.2) and (3.2.6) we obtain the statement. �

Lemma 3.2.11. The Hilbert spaces Sm,2∆ (D), S̃m,2∆ (Y \D), ⊕p−1
j=0W

m−j−1/2,2(Fj |∂D)

are topologically isomorphic.

Proof. Lemma 3.2.2 implies that for every ⊕uj ∈ ⊕Wm−j−1/2,2(Fj |∂D) there

exist (unique) solutions u ∈ Sm,2∆ (D) and S(u) ∈ S̃m,2∆ (Y \D) of the interior and
exterior Dirichlet problems. Therefore, in order to prove the statement of the lemma
it is sufficient to prove existence of constants ci > 0 (1 ≤ i ≤ 4) such that for every
⊕uj ∈ ⊕Wm−j−1/2,2(Fj∂D)

c1‖u‖2
Wm,2(E|D) ≤

p−1∑

j=0

‖uj‖2
Wm−j−1/2,2(Fj |∂D

) ≤ c2‖u‖2
Wm,2(E|D)

(3.2.7) c3‖S(u)‖2
Wm,2(E|Y \D) ≤

p−1∑

j=0

‖uj‖2
Wm−j−1/2,2(Fj |∂D) ≤ c4‖S(u)‖2

Wm,2(E|Y \D).

The existence of the constants c2, c4 follows from the continuity of the restriction
maps

R− : Sm,2∆ (D) → ⊕Wm−j−1/2,2(Fj |∂D)

R+ : S̃m,2∆ (Y \D) → ⊕Wm−j−1/2,2(Fj |∂D)

where R−u = ⊕(Bju)|∂D,R+S(u) = ⊕(BjS(u))|∂D (see [EgSb], p.120). Since

R−,R+ are one-to-one (see Lemma 3.2.2), the existence of constants c1, c3 follows
from the open mapping theorem. �
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Proposition 3.2.12. The topologies induced in W p,2(E|D) by HP
p (., .) and by

the standard scalar product are equivalent.

Proof. Since the coefficients of P are C∞(Y )- functions then there are con-
stants c5, c6 > 0 such that for every u ∈W p,2(E|D)

(Pu, Pu)x ≤ c5
∑

|α|≤p
(Dαu,Dαu)x, (PS(u), PS(u))x ≤ c6

∑

|α|≤p
(DαS(u), DαS(u))x.

On the other hand, Lemma 3.2.11 (see (3.2.7)) implies that for every u ∈ W p,2(E|D),

we have ‖S(u)‖2
W p,2(E

Y \D
) ≤ (c3)

−1
∑p−1
j=0 ‖uj‖2

Wm−j−1/2,2(Fj |∂D
)
. Then, since the

restriction mapping R− (see proof of Lemma 3.2.11) is continuous, we have ‖S(u)‖2
W p,2(E

Y \D
) ≤

c2(c3)
−1‖u‖2

W p,2(E|D). Hence

HP
p (u, u) ≤ (c5 + c6c2(c3)

−1)‖u‖2
W p,2(E|D).

Conversely, Lemmata 3.2.7 and 3.2.10 imply that

(1/2)‖u‖2
W p,2(E|D) ≤ ‖TY Pu‖2

W p,2(E|D) + ‖TY PS(u)‖2
W p,2(E|D) ≤

≤ c(0)‖Pu‖2
L2(F|D) + c(0)‖PS(u)‖2

L2(F|Y \D) = c(0)HP
p (u, u),

which was to be proved. �

In the following theorem S̃p,2P (Y \D) stands for the subspace of W p,2(E|D) which

consists of functions u ∈W p,2(E|D) such that PS(u) = 0 in (Y \D).

Theorem 3.2.13. In the strong operator topology in W p,2(E|D)

lim
ν→∞

GνY = Π(Sp,2P (D)),

lim
ν→∞

(TY P )ν = Π(S̃p,2P (Y \D)).

Proof. First, Propositions 3.2.9 and 3.2.12 imply that (3.1.A) and (3.1.B) hold
for the Hermitian HP

p (., .) defined in (3.2.2) and the operators GY , TY P . Second,

Proposition 3.2.9 implies that kerTY P = Sp,2P (D). Third, Proposition 3.2.9, (3.1.2)

and Lemma 3.2.10 imply that GY u = 0 if and only if S(u) ∈ Sp,2P (Y \D). Hence the
theorem follows from Theorem 3.1.2. �

Remark 3.2.14. Let the operator P satisfy the so-called Uniqueness Condition
in the small on X , i.e. Pu = 0 in a domain D ⊂ X and u = 0 in an open subset
of D imply u ≡ 0 in D. Then, if ∂D is connected, the Uniqueness Theorem for
the Cauchy problem for systems with injective symbols (see [ShT2], Theorem 2.8),

implies that S̃p,2P (Y \D) = W p,2
0 (E|D). For instance, the Uniqueness Condition

holds if the coefficients of the operator P are real analytic.

Remark 3.2.15. Lemmata 3.2.7, 3.2.9 and 3.2.12. implies that the operator
TY : L2(F|D) → W p,2(E|D) is the adjont operator (in the sence of Hilbert Spaces

Theory) to the operator P : W p,2(E|D) → L2(F|D) with respect to the scalar

product HP
p (., .) in W p,2(E|D) and the standard scalar product in L2(F|D).

Though we can not constract such a scalar product in Wm,2(E|D) in general, we

will do it for Sm,2∆n
(E|BR

) and a matrix factorization P of the Laplace operator ∆n

in Rn in §3.8. æ
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§3.3. Solvability conditions for the equation Pu = f

In this section we will use Theorem 3.2.13 to investigate solvability of equation
Pu = f . In particular, when Pu = f is solvable we will obtain an expression of the
solution by means of a series that can be computed from the data.

Let P ∈ dop(E → F ) be an elliptic operator of order p, as in §§3.1, 3.2. We
formulate now

Problem 3.3.1. Let r ≥ 0, 0 ≤ m ≤ p + r, and f ∈ W r,2(F|D) be a given

section. It is required to find a section u ∈Wm,2(E|D) such that Pu = f in D.

We denote by RY the series

RY =

∞∑

µ=0

GµY TY .

For every r ≥ 0 we set

domRp,rY ={g ∈ L2(F|D) : RY g converges in the W
p,2(E|D) − norm,

and P (RY g) ∈W r,2(F|D)}.

Then RY defines a linear operator Rp,rY : domRp,rY →W p,2(E|D). This series will
play an essential role in our investigation of equation Pu = f .

Proposition 3.3.2. Let (Sp,2P (D))⊥ be the orthogonal complement of the sub-

space Sp,2P (D) inW p,2(E|D) with respect to HP
p (·, ·). Then Im(R

(p,0)
Y ) = (Sp,2P (D))⊥.

Proof. If f ∈ domR
(p,0)
Y then RY f ∈ W p,2(E|D), and, since GY is continuous

(see Proposition 3.1.1),

(3.3.1) GYRY f = GY lim
ν→∞

ν∑

µ=0

GµY TY f = lim
ν→∞

ν∑

µ=0

Gµ+1
Y TY f = RY f − TY f.

Therefore

(3.3.2) GνYRY f = RY f −
ν−1∑

µ=0

GµY TY f.

Passing to the limit for ν → ∞ in (3.3.2) we obtain that limν→∞ GνYRY f = RY f −
RY f = 0, i.e. Π(Sp,2P (D))RY f = 0 and therefore RY f ∈ (Sp,2P (D))⊥.

Conversely, if u ∈ (Sp,2P (D))⊥ then (3.1.4) and Theorem 3.2.13 imply that

u = RY Pu. By Proposition 3.1.1 and Corollary 3.1.3 we have Pu ∈ domR
(p,0)
Y .

Therefore (Sp,2P (D))⊥ ⊂ Im(R
(p,0)
Y ). �

In particular Proposition 3.3.2 implies that Im(R
(p,r)
Y ) ⊂ (Sp,2P (D))⊥.

By formula (3.1.4) the series RY defines the left inverse of P on (Sp,2P (D))⊥.
In the following proposition we find a condition for RY to be also a right inverse
operator of P .
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Proposition 3.3.3. kerR
(p,r)
Y = 0 if and only if PR

(p,r)
Y = Id|domR(p,r)

Y

.

Proof. If f ∈ domR
(p,r)
Y then RY f ∈ W p,2(E|D) and PRY f ∈ domR

(p,r)
Y by

(3.1.4). Because R
(p,r)
Y is a left inverse of P on (Sp,2P (D))⊥ and, due to Proposition

3.3.2, ImR
(p,r)
Y ⊂ (Sp,2P (D))⊥, we obtain R

(p,r)
Y PR

(p,r)
Y = R

(p,r)
Y . From this identity

we deduce that PR
(p,r)
Y = Id|domR(p,r)

Y

if R
(p,r)
Y is injective, while the converse

statement is obvious. �

Proposition 3.3.4. kerR
(p,r)
Y = kerTY ∩ domR(p,r)

Y (r ≥ 0).

Proof. Clearly kerTY ⊂ kerR
(p,r)
Y . The opposite inclusion follows from (3.3.1).

�

The following theorem is rather trivial because we have proved in §3.2 that the
operator TY : L2(F|D) →W p,2(E|D) is the adjoint operator (in the sense of Hilbert

Spaces Theory) to the operator P : W p,2(E|D) → L2(F|D) with respect to the

scalar product HP
p (., .) in W p,2(E|D) and the standard scalar product in L2(F|D)

(see Remark 3.2.15).

Theorem 3.3.5. Let r ≥ 0, m = p and f ∈ W r,2(F|D). Then Problem 3.3.1 is
solvable if and only if

(1) f ⊂ domRp,rY ;
(2)

∫
D

(g, f)xdx = 0 for every g ∈ kerTY ∩W r,2(F|D).

Proof. Necessity. Let Problem 3.3.1 be solvable. Then Proposition 3.1.3 and
Theorem 3.2.13 imply that Pu = PRY Pu for u ∈ W p,2(E|D), i.e, (1) holds. On

the other hand, due to Proposition 3.2.9, for every g ∈ L2(F|D) we have:

∫

D

(g, f)xdx =

∫

D

(g, Pu)xdx = HP
p (TY g, u),

i.e. (2) holds.
Sufficiency. Since, under the hypothesis of the theorem, RY f ∈ W p,2(F|D), by

Proposition 3.3.2

(3.3.3) RY f = lim
ν→∞

Mν
YRY f +RY PRY f = RY PRY f.

In particular, (f−PRY f) ∈ kerRp,rY ∩W r,2(F|D), and, due to Proposition 3.3.4,

(f−PRY f) ∈ kerTY ∩W s,q(E|D)
r,2

(F|D). On the other hand, using the hypothesis
of the theorem, we conclude that

∫

D

(f − PRY f, f − PRY f)xdx = 0.

Therefore f = PRY f , i.e. Problem 3.3.1 is solvable. �

Let us assume now that P is included into some elliptic complex of differential
operators on X :

(3.3.4) C∞(E)
P−→ C∞(F )

P 1

−−→ C∞(G)
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for a trivial vector bundle G = X × Ct and P 1 ∈ dop1(F → G). The assumptions
mean that

P 1 ◦ P = 0

and that

Ex
σp(P )(x,ζ)−−−−−−−→ Fx

σp1
(P 1)(x,ζ)−−−−−−−−→ Gx

is an exact sequence for every x ∈ X and ζ ∈ Rn\{0}. According to [Sa] (cf. also
[AnNa]) this is possible under rather general assumptions on P .

Then the condition P 1f = 0 is necessary in order that Problem 3.3.1 be solvable.
Let, as before, {Bj}p−1

j=0 be a Dirichlet system of order (p−1) on ∂D, {Cj}p−1
j=0 be

the Dirichlet system associated to {Bj}p−1
j=0 as in Lemma 1.1.6, and let, for r ≥ 0,

Hr,2(D) = {g ∈W r,2(F|D) such that P ∗g = 0, P 1g = 0 in D, weakly satisfying

the boundary conditions (tC∗
j g)|∂D = 0, 0 ≤ j ≤ p− 1}.

We call the Hr,2(D) harmonic spaces (for complex (3.3.4)). By the ellipticity as-
sumptions, Hr,2(D) ⊂ C∞(F|D). It is not difficult to show that for the Dolbeault

complex this definition of the harmonic space H0,2(D) is equivalent to the one given
in [Kohn] (see also [Hö1]).

Let us denote by Nr,2
m (D) the set of all f ∈ W r,2(F|D) for which Problem 3.3.1

is solvable:

Nr,2
m (D) ={f ∈ W r,2(F|D) : there exists a section u ∈Wm,2(E|D)

such that Pu = f in D}.
We obtain:

Proposition 3.3.6. We have

(1) Nr,2
m (D) ⊂ Sr,2P 1 (D) (m ≥ 0);

(2)
∫
D

(g, f)xdx = 0 for every f ∈ Nr,2
m (D) and every g ∈ Hr,2(D) (m ≥ p);

(3) Nr,2
m (D) ⊂ domRp,rY (m ≥ p);

(4) kerTY ∩ Nr,2
m (D) = 0 (m ≥ p).

Proof. (1) is trivial, because (3.3.4) is a complex; and we have proved that
(3) holds in Theorem 3.3.5. To prove (2), we fix f ∈ Nr,2

m (D) and a section u ∈
Wm,2(E|D) such that Pu = f in D.

For ε > 0 we set Dε = {x ∈ D : dist(x, ∂D) > ε}. Since the differential
complex (3.3.4) is elliptic, Hr,2(D) ⊂ C∞(F|D). Hence, for every g ∈ Hr,2(D), we
have: ∫

D

(g, f)xdx =

∫

D

(g, Pu)xdx = lim
ε→0

∫

Dε

(g, Pu)xdx =

= lim
ε→0

(∫

Dε

(P ∗g, u)xdx−
∫

∂Dε

GP ∗(∗Eu, g)xdx
)

=

= lim
ε→0

p−1∑

j=0

∫

∂Dε

< (∗Fj
Bju),

tC∗
j g >y ds = 0.

Therefore (2) holds.
Finally, if f ∈ kerTY ∩ Nr,2

m (D) then (due to Proposition 3.3.4) f ∈ kerRp,rY ∩
Nr,2
m (D). Therefore 0 = PRY f = f . �
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Theorem 3.3.7. Let r ≥ 0, m = p and f ∈ W r,2(F|D). Then Problem 3.3.1 is
solvable if and only if

(1) f ∈ Sr,2P 1 (D) ∩ domRp,rY ;

(2)
∫
D

(g, f)xdx = 0 for every g ∈ Hr,2(D).

Proof. The necessity follows from Proposition 3.3.6. In order to prove the
converse statement we will use the following lemma.

Lemma 3.3.8. Hr,2(D) = kerTY ∩ Sr,2P 1 (D) (r ≥ 0).

Proof. Let f ∈ Hr,2(D). Then f ∈ C∞(F|D). But for every f ∈ kerP ∗ ∩
C∞(F|D) ∩ L2(F|D) and x ∈ Y \∂D we have:

TY f(x) =

∫

D

< tP ∗(y)ΦY (x, y), f(y)>y dy = lim
ε→0

∫

Dε

< tP ∗(y)ΦY (x, y), f(y) >y dy =

(3.3.5) = lim
ε→0

∫

∂Dε

p−1∑

j=0

< tB∗
j (y)ΦY (x, y), tC∗

j f(y) >y ds.

Therefore, since the weak boundary values (tC∗
j f)|∂D equal to zero (0 ≤ j ≤ p−1),

the last limit in (3.3.5) is equal to zero.
Let us prove now the opposite inclusion. Since ΦY is a bilateral fundamental

solution of the operator P ∗P in Y then Φ̃Y (x, y) = ΦY (y, x) is a bilateral funda-
mental solution of the operator t(P ∗P ) on Y . In particular, for every v ∈ D(E∗

|D)

we have

v(y) =

∫

D

< ΦY (x, y), t(P ∗P )(x)v(x) >x dx.

For every given section f ∈ L2(F|D) we can find a sequence {fN} ⊂ C(F|D)

such that limN→∞ fN = f in the L2(F|D)- norm. Assuime moreover that f ∈
kerTY ∩W r,2(F|D). Then, for every v ∈ D(E∗

|D) we have

∫

D

< tP ∗(y)v(y), f(y) >y dy = lim
N→∞

∫

D

< tP ∗(y)v(y), fN(y) >y dy =

= lim
N→∞

∫

Dy

< tP ∗(y)

∫

Dx

< ΦY (x, y), t(P ∗P )(x)v(x) >x dx, fN(y) >y dy =

= lim
N→∞

∫

D

< TY fN (x), t(P ∗P )(x)v(x) >x dx.

By Lemma 3.2.7, TY : L2(F|D) →W p,2(E|D) is continuous and therefore {TfN}
converges in the W p,2(E|D)-norm to TY f = 0. This shows that

∫

D

< tP ∗(y)v(y), f(y)>y dy = 0 for every v ∈ D(F|D).

Hence P ∗f = P 1f = 0 if f ∈ kerTY ∩ Sr,2P 1 (D). Note that regularity theorem for

elliptic systems gives in particular kerTY ∩ Sr,2P 1 (D) ⊂ C∞(F|D).
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To complete the proof, we only need to show that (in the weak sense) (tC∗
j f)|∂D =

0 on ∂D (0 ≤ j ≤ p− 1) for f ∈ kerTY ∩ Sr,2P 1 (D). To this aim, we prove that

lim
ε→0

∫

∂Dε

< v(j), tC∗
j f(y) >y ds = 0

for every v(j) ∈ C∞
comp(F

∗
j ).

Let v(j) ∈ C∞
comp(F

∗
j ). Then we fix a domain Ω with D b Ω b Y , and find a

section v ∈ D(E∗
|Ω) such that tB∗

j v = v(j) on ∂D, and tB∗
i v = 0 on ∂D, if i 6= j

(see Lemma 1.1.5). Again we use representation formula:

v(y) =

∫

Ω

< ΦY (x, y), t(P ∗P )(x)v(x) >x dx.

Since P ∗f = 0 and f ∈ C∞(F|D), arguing as before we have

lim
ε→0

∫

∂Dε

< v(j), tC∗
j f(y) >y ds = lim

ε→0

∫

∂Dε

p−1∑

i=0

< tB∗
i v,

tC∗
i f(y) >y ds =

= lim
ε→0

∫

Dε

< tP ∗v, f >y dy =

∫

D

< tP ∗v, f >y dy =

= lim
N→∞

∫

Ω

< TY fN (x), t(P ∗P )(x)v(x) >x dx.

Lemma 3.2.7 implies that limN→∞(TY fN )|Ω converges in W p,2(F|Ω) to (TY f)|Ω.
Due to Proposition 3.2.1 and Remark 3.2.8, TY f = 0 in D implies TY f = 0 in Y .
Therefore

lim
ε→0

∫

∂Dε

< v(j), tC∗
j f(y) >y ds = 0.

The proof of the lemma is complete. �

Now we turn to the proof of Theorem 3.3.7. Using foormula (3.3.3), the hypoth-
esis of the theorem we see (as in the proof of Theorem 3.3.5) that (f − PRY f) ∈
kerRp,rY ∩W r,2(F|D). Now, due to Proposition 3.3.4, (f−PRY f) ∈ kerTY ∩Sr,2P 1 (D).
On the other hand, using Lemma 3.3.8 and the hypothesis of the theorem, we con-
clude that ∫

D

(f − PRY f, f − PRY f)xdx = 0.

Therefore f = PRY f , i.e. Problem 3.3.1 is solvable. �

As one can see from the proof of Theorems 3.3.5 and 3.3.7, if the equation Pu = f
is solvable in W p,2(E|D) then we obtain a formula for a solution of the equation:

u = RY f =
∞∑

ν=0

GνY TY f.

In the case where P = ∂ and GY is the Martinelli- Bochner integral such a formula
was obtained by Romanov [Rom2].
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We conjecture that when the Poincarè lemma (local solvability) is valid for an el-
liptic complex, a solution inW p,2(E|D) can be found for every datum f inW p,2(F|D)
satisfying the integrability conditions. If this is the case, the formula above pro-
duces rather explicitely a way to obtain a solution by successive approximations.

Remark 3.3.9. Proposition 3.3.2 and Theorem 3.2.13 imply that the solution
u = RY f of Problem 3.3.1 belongs to (Sp,2P (D))⊥ where (Sp,2P (D))⊥ is the orthog-

onal (with respect to HP
p (., .)) complement of Sp,2P (D) in W p,2(E|D), and is the

unique solution belonging to this subspace.

We note that the general term GµY TY f of the series RY f is infinitesimal in
W p,2(E|D) for every f ∈ L2(F|D). This is a consequence of the theorem on it-
erations.

Proposition 3.3.10. For every f ∈ L2(F|D), limν→0 GνY TY f = 0 in the W p,2(E|D)

norm, i.e. TY f ∈ (Sp,2P (D))⊥.

Proof. It follows from Proposition 3.2.9 that

HP
p (TY f, v) =

∫

D

(f, Pv)xdx = 0,

if v ∈ Sp,2P (D). �

We also have

Proposition 3.3.11. Let f ∈ L2(F|D). Then a necessary and sufficient condi-

tion for the convergence of the series RY in W p,2(E|D) is the convergence of the
series

(3.3.6)

∞∑

µ=0

‖GµY TY f‖2
W p,2(E|D).

Proof. Since the scalar product HP
p (., .) is equivalent to the usual one in

W p,2(E|D) the convergence of the series (3.3.6) is equivalent to that of the series

∞∑

µ=0

HP
p (GµY TY f,GµY TY f).

Then the statement follows because GY is non negative and self-adjoint with respect
to the scalar product HP

p (·, ·). �

æ

§3.4. On the Poincarè Lemma for elliptic differential complexes

We investigate now conditions for the vanishing of the cohomology groups

H(W r,2(F|D)) = Sr,2P 1 (D)/Nr,2
p (D)

of the complex (3.3.4).
From Theorem 3.3.7 and Proposition 3.3.6 of the previous section we have
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Corollary 3.4.1. H(W r,2(F|D)) = 0 (r ≥ 0) if and only if

(1) Sr,2P 1 (D) ⊂ domRp,rY ;

(2) Hr,2(D) = 0.

Remark 3.4.2. We note that conditions (1) and (2) of Corollary 3.4.1 are ap-
plied not only to the domain D but also to the compatibility operator P 1. Indeed,
the ellipticity of the complex does not guarantee that the P 1 is the right compati-
bility operator. For example, the complex

0 → C∞(Λ0)
d0−→ C∞(Λ2)

∆2d
1

−−−→ C∞(Λ1) → 0

in R2, with d0 =

( ∂
∂x1
∂
∂x2

)
, d1 = ( ∂

∂x2
, − ∂

∂x1
), and the Laplace operator ∆2, is

elliptic. However the Poincarè Lemma is not valid for this complex.

Let us clarify the conditions in Corollary 3.4.1.

Proposition 3.4.3. Sr,2P 1 (D) ⊂ domRp,rY if and only if the natural map i :
Hr,2(D) → H(W r,2(F|D)) is bijective.

Proof. It follows from statement (4) of Proposition 3.3.6, that the natural map

i : kerTY ∩ Sr,2P 1 (D) → H(W r,2(F|D)) is always injective.

Assume now that Sr,2P 1 (D) ⊂ domrRY . Then formula (3.3.3) and Proposition

3.3.4 imply that, for every f ∈ Sr,2P 1 (D), the section (f−PRY f) belongs to kerTY ∩
Sr,2P 1 (D). Obviously, (f − PRY f) belongs to the same cohomology class as f . By

Lemma 3.3.8, Hr,2(D) = kerTY ∩ Sr,2P 1 (D). Then the map i is surjective and, due
to Proposition 3.3.6, is also injective.

On the other hand, if the natural map i : Hr,2(D) → H(W r,2(F|D)) is surjective

then, again using Lemma 3.3.8, for every f ∈ Sr,2P 1 (D), there exist sections f̃ ∈
kerTY ∩ Sr,2P 1 (D) and u ∈ W p,2(E|D) such that f = f̃ + Pu. In particular, due

to Proposition 3.3.4, we obtain that RY f = RY (f̃ + Pu) = RY Pu. Now using
Corollary 3.1.3 we conclude that the series RY Pu converges in the W p,2(E|D)-

norm. Hence RY (f̃ + Pu) also converges in W p,2(E|D)-norm. Therefore, since

PRY f = PRY Pu = Pu and Pu = f−f̃ ∈W r,2(F|D), we obtain that f ∈ domRp,rY .
�

The triviality of the cohomology group H(W r,2(F|D)), implies, in particular,

that the range Im(P p,r) of the map P p,r : W p,2(E|D) → W r,2(F|D) is closed in

W r,2(F|D). In the following statement Im(P p,r) stands for the closure of the range

Im(P p,r) in W r,2(F|D).

Proposition 3.4.4. The range Im(P p,r) is closed if and only if Im(P p,r) ⊂
domRp,rY (r ≥ 0).

Proof. Let f ∈ domRp,rY . Then f − PRY f belongs to kerRY by (3.3.3). Since
kerRY = kerTY by Proposition 3.3.4, we obtain that domRp,rY = kerTY ⊕Im(P p,r).

If we assume that Im(P p,r) ⊂ domRp,rY we obtain a sum decomposition

(3.4.1) Im(P p,r) = (kerTY ∩ Im(P p,r)) ⊕ Im(P p,r).
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On the other hand, if f ∈ (kerTY ∩ Im(P p,r) then there exists a sequence
{uN} ⊂ W p,2(E|D) such that limN→∞ PuN = f in the L2(F|D)-norm. Hence, due
to Proposition 3.2.9,

(3.4.2) ‖f‖2
L2(F|D) = lim

N→∞

∫

D

(f, PuN)xdx = lim
N→∞

HP
p (TY f, uN ) = 0.

Therefore
(kerTY ∩ Im(P p,r)) = 0

and, by (3.4.1), the range Im(P p,r) is closed.

Conversely, by (3) in Proposition 3.3.6 we have Im(P p,r) = Nr,2
p (D) ⊂ domRp,rY

and therefore the conclusion is obviously necessary. �

Decomposition (3.4.1) becomes clearer if we remember that TY = P ? where
P ? : L2(F|D) → W p,2(E|D) is the adjoint (in the sense of Hilbert spaces ) of

the operator P with respect to the scalar product HP
p (., .) in W p,2(E|D) and the

standard one in L2(F|D) (see Remark 3.2.15).
Using the integrals TY and GY we obtain simpler conditions for the first coho-

mology group of the complex (3.3.4) to be trivial in the case r = 0 and m = p.
This is the case where solutions can be obtained with maximal global regularity.
This applies for instance to the de Rham complex, but does not to the Dolbeault
complex (see Example 3.6.4).

To simplify notations we will write Im(P ) instead of Im(P p,0).

Proposition 3.4.5. H(L2(F|D)) = 0 if and only if

(1) the range Im(P ) of the map P : W p,2(E|D) → L2(F|D) is closed in L2(F|D);

(2) H0,2(D) = 0.

Proof. Necessity. Let H(L2(F|D)) = 0 then S0,2
P 1 (D) = Im(P ). Hence, since

S0,2
P 1 (D) is a closed subspace of L2(F|D), Im(P ) is closed. The necessity of condition

(2) of the theorem follows from Proposition 3.3.6.
Sufficiency. Let the range Im(P ) of the map P : W p,2(E|D) → L2(F|D) be closed

in L2(F|D). Then the continuous map

P : (Sp,2P (D))⊥ → Im(P )

is one-to-one. Now, since Im(P ) and (Sp,2P (D))⊥) are closed subspaces of L2(F|D)

and W p,2(E|D) respectively, the open map theorem implies that there exists a
positive constant c such that

‖v‖W p,2(E|D) ≤ c‖Pv‖L2(F|D)

for every v ∈ (Sp,2P (D))⊥).
Therefore the Hermitian form

H̃P
p (u, v) =

∫

D

(Pu, Pv)xdx

is a scalar product on (Sp,2P (D))⊥; and the topology induced in (Sp,2P (D))⊥ by this
scalar product is equivalent to the original one.
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Let f be a section in S0,2
P 1 (D). Then the integral

∫

D

(f, Pu)xdx (v ∈ (Sp,2P (D))⊥))

defines a continuous linear functional on (Sp,2P (D))⊥). Now, using Riesz represen-

tation theorem, we conclude that there exists u ∈ (Sp,2P (D))⊥ such that

(3.4.3)

∫

D

(f, Pv)xdx =

∫

D

(Pu, Pv)xdx

for every v ∈ (Sp,2P (D))⊥. But then (3.4.3) holds for every v ∈W p,2(E|D).

Furthermore, since for every w ∈ C∞
0 (F ∗

|D) the section (∗−1
F w) belongs toW p,2(E|D),

we have ∫

D

< tP ∗w, f >x dx =

∫

D

(f, P (∗−1
F w))xdx = 0,

i.e. P ∗(f − Pu) = 0 in D. Thus, since f ∈ S0,2
P 1 (D), we conclude that (f − Pu) ∈

kerP 1 ∩ kerP ∗ ∩ L2(F|D) ⊂ C∞(F|D).
Finally, if we prove that the weak boundary values (tC∗

j (f − Pu))|∂D = 0 then

(f − Pu) ∈ H0,2(D) and, due to condition (2) of the theorem, Pu = f in D.
To this aim we fix a section v(j) ∈ C∞

comp(F
∗
j ) and find a section v ∈ D(E∗

|D)

such that tB∗
j v = v(j) on ∂D, and tB∗

i v = 0 on ∂D, if i 6= j (see Lemma 1.1.5). It

is clear that (∗−1
E v) ∈W p,2(E|D). Therefore, using (3.4.3) we obtain that

lim
ε→0

∫

∂Dε

< v(j), tC∗
j (f − Pu) >y ds =

= lim
ε→0

∫

∂Dε

p−1∑

i=0

< tB∗
i v,

tC∗
i (f − Pu) >y ds =

=

∫

D

< tP ∗v, (f − Pu) >y dy =

∫

D

((f − Pu), P (∗−1
E v))ydy = 0.

The proof of the theorem is complete. �

Corollary 3.4.6. H(L2(F|D)) = 0 if and only if

(1) Im(P ) ⊂ domRp,0Y ;
(2) H0,2(D) = 0.

Proof. It follows form Propositions 3.4.4 and 3.4.5. �

Theorem 3.4.7. The following conditions are equivalent:

(1) H(L2(F|D)) = 0;

(2) there exists a constant C > 0 such that for every g ∈ S0,2
P 1 (D)

‖g‖L2(F|D) ≤ C‖TY g‖W p,2(E|D);

(3) there exists a constant C > 0 such that for every g ∈ S0,2
P 1 (D)

‖g‖L2(F|D) ≤ C‖PTY g‖L2(F|Y ).
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Proof. Let H(L2(F|D)) = 0. Then S0,2
P 1 (D) = Im(P ) = Im(P ). Hence, be-

cause TY : L2(F|D) →W p,2(E|D) is the adjoint (in the sense of Hilbert spaces ) of

the operator P with respect to the scalar product HP
p (., .) in W p,2(E|D) and the

standard one in L2(F|D) (see Remark 3.15), the ranges of P and TY are closed (see,
for example, [Hö1], Theorem 1.1.1), i.e. statement (2) holds.

If (2) holds then the range Im(TY ) is closed. Therefore, from Remark 3.2.15 and
Theorem 1.1.1 of [Hö1], the range Im(P ) is closed. Moreover (2) and Lemma 3.3.8
imply that H0,2(D) = 0, i.e., due to Proposition 3.4.5, condition (1) is satisfied.

Finally, Lemmata 3.2.7 and 3.2.5 imply that S(TY g) = (TY g)
+. In particular

this means that

HP
p (TY g, TY g) =

∫

Y

(PTY g, PTY g)xdx = ‖PTY g‖2
L2(F|Y ).

Therefore Proposition 3.2.12 implies that (2) and (3) are equivalent. �

Example 3.4.8. Let {Ei, P i} be a short elliptic Hilbert complex of operators
with constant coefficients:

0 → C∞(E◦)
P ◦

−−→ C∞(E1)
P 1

−−→ C∞(E2) → 0

(see [T5], [AnNa]). Then, for any domaind D with connected boundary ∂D ∈ C∞,
Hr,2(D) = 0 (r ≥ 0).

Indeed, since the complex is elliptic, P 1 is an operator with surjective symbol.
Then, according to [T6], for a section f ∈ S0,2

P 1 (D) and a convex domain G (with

D b G b Rn) one can find a sequence {fN} ⊂ C∞(E1
|G)∩SP 1(G) such that fN → f

in the L2(E1
|D)-norm. Because G is convex and {Ei, P i} is the complex of Hilbert,

there exist sections uN ∈ C∞(E0
|G) with PuN = fN in G. Hence f = limN→∞ PuN

in the L2(E1
|D)-norm. Now, arguing as in the proof of Proposition 3.4.4 (see (3.4.2)),

we obtain H0,2(D) = 0.
Since Hr,2(D) ⊂ H0,2(D), we conclude that Hr,2(D) = 0.
In particular, f ∈ domRp,rY ∩SP 1(D) implies the solvability of Problem 3.3.1 (cf.

[Rom2] for the Cauchy-Riemann system in C2).

æ

§3.5. Applications to a P - Neumann problem

In this section we show how Theorem 3.2.13 can be used to study a P - Neumann
problem associated to elliptic differential operator P ∈ dop(E → F ) (see also §3.8).

As in §1.1, {Bj}p−1
j=0 is a Dirichlet system of order (p − 1) on ∂D and {Cj}p−1

j=0

the one which is associated to {Bj}p−1
j=0 as in Lemma 1.1.6.

Problem 3.5.1. Let r ≥ 0 and ψj ∈ W r−p+j+1/2,2(Fj|∂D) (0 ≤ j ≤ p − 1) be

given sections. We want to find ψ ∈W p,2(E|D) such that





P ∗Pψ = 0 in D,
tC∗

j Pψ = ψj on ∂D (0 ≤ j ≤ p− 1),

(Pψ) ∈ W r,2(F|D).
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The equation P ∗Pψ = 0 in D has to be understood in the sense of distributions,
while the boundary values are intended in the variational sense :
(3.5.1)
∫

∂D

p−1∑

j=0

< (∗Fj
)Bjv, ψj >y ds(y) =

∫

D

(Pψ, Pv)ydy for every v ∈ C∞(E|D).

In particular we obtain

Proposition 3.5.2. A necessary condition in order that Problem 3.5.1 be solv-
able for given ψj ∈W r−p+j+1/2,2(Fj|∂D) (0 ≤ j ≤ p− 1) is that

(3.5.2)

∫

∂D

p−1∑

j=0

< (∗Fj
)Bjv, ψj >y ds(y) = 0 for every v ∈ Sp,2P (D).

Proof. Indeed, because C∞(E|D) is dense in W p,2(E|D), formula (3.5.1) ex-

tends by continuity to v ∈W p,2(E|D). �

Proposition 3.5.3. Let ψj = 0 (0 ≤ j ≤ p − 1). Then ψ ∈ W p,2(E|D) is a

solution of Problem 3.5.1 if and only if ψ ∈ Sp,2P (D).

Proof. Obviously, a section ψ ∈ Sp,2P (D) is a solution of Problem 3.5.1 with
ψj = 0 (0 ≤ j ≤ p− 1). Conversely, if ψ is a solution of Problem 3.5.1 with ψj = 0

(0 ≤ j ≤ p−1) then TY Pψ = 0. Hence ψ = GY ψ = limν→∞Mνψ, i.e. ψ ∈ Sp,2P (D).
�

The operator P ∗P is a elliptic with C∞ coefficients, and the ranks of the symbols
of the boundary operators (tC∗

j ) are maximal in a neighbourhood of ∂D. Never-

theless, since, in general, the space Sp,2P (D) is not finite dimensional, Proposition
3.5.3 implies that the boundary value Problem 3.5.1 may be not elliptic.

In the following theorem we set

T̃Y (⊕ψj) =

∫

∂D

p−1∑

j=0

< tB∗
j (y)Φ(x, y), ψj(y) >y ds(y).

Theorem 3.5.4. Problem 3.5.1 is solvable if and only if the series
∑∞
µ=0 GµY T̃Y (⊕ψj)

converges in the W p,2(E|D)-norm and P
∑∞
µ=0 G

µ
Y T̃Y (⊕ψj) ∈W r,2(F|D).

Proof. Let Problem 3.5.1 be solvable and let ψ ∈ W p,2(E|D) be a solution.

Then T̃Y (⊕ψj)) = TY Pψ, and, due to Theorem 3.2.13, the seriesRY Pψ =
∑∞
µ=0 GµY T̃Y (⊕ψj)

converges in theW p,2(E|D)-norm. Moreover, by Theorem 3.2.13, P
∑∞
µ=0 G

µ
Y T̃Y (⊕ψj) =

Pψ ∈W r,2(F|D).

Conversely, assume that the series
∑∞
µ=0 G

µ
Y T̃Y (⊕ψj) converges in theW p,2(E|D)-

norm, and that P
∑∞
µ=0 G

µ
Y T̃Y (⊕ψj) ∈W r,2(F|D). Let us we set ψ =

∑∞
µ=0 G

µ
Y T̃Y (⊕ψj).

Then P ∗Pψ = 0 in D. Hence to prove that ψ is a solution of Problem 3.5.1 we
need only to prove only that tC∗

j Pψ = ψj on ∂D (0 ≤ j ≤ p− 1).



§3.5. APPLICATIONS TO A P - NEUMANN PROBLEM 123

We note now that

GY ψ = GY
∞∑

µ=0

GµY T̃Y (⊕ψj) =
∞∑

µ=0

GµY T̃Y (⊕ψj) − T̃Y (⊕ψj) = ψ − T̃Y (⊕ψj).

Hence we obtain, using (3.1.2) and Stokes’ formula :

T̃Y (⊕ψj) = TY Pψ = T̃Y (⊕tC∗Pψ) in Y.

Finally (1.3.5) implies that

(ψj − tC∗
j Pψ)|∂D = (tC∗

j P T̃Y (⊕(ψj − tC∗
j Pψ))−)|∂D−

−(tC∗
j P T̃Y (⊕(ψj − tC∗

j Pψ))+)|∂D = 0.

Theorem 3.5.4 is proved. �

Proposition 3.5.5. Let ψj ∈W−p+j+1/2,2(Fj|∂D) (0 ≤ j ≤ p− 1). If Problem
3.5.1 is solvable then the series

ψ =
∞∑

ν=0

(GY )ν T̃Y (⊕ψj),

converging in the W p,2(E|D)-norm, is the (unique) solution of Problem 3.5.1 be-

longing to (Sp,2(D))⊥.

Proof. See the proof of Theorem 3.5.4. �

In the case where P = ∂ (the Cauchy-Riemann system) in Cn such a formula
was obtained by Kytmanov (see [Ky], p.177). For the matrix factorizations of the
Laplace operator see §3.8.

In the remaining part of this section we will show how the P -Neumann problem
3.5.1 connects to the solvability of the equation Pu = f and to the closedness of
the image of the operator P .

Let us first investigate criterions for f ∈ domRp,rY (see Theorem 3.3.7). To this
purpose we consider the following problem.

Problem 3.5.6. Given a section v ∈ (Sp,2(D))⊥∩W r+p,2(E|D), find a section

ϕ ∈W p,2(E|D) such that {
TY Pϕ = v,

(Pϕ) ∈W r,2(F|D).

Theorem 3.5.7. Let f ∈ W r,2(F|D) (r ≥ 0). The following conditions are
equivalent:

(1) f ∈ domRp,rY ;

(2) for every v ∈ Sp,2∆ (D) we have




∫ 1

−0

dλ(HP
p (EλTY f,v))

1−λ <∞,

P (
∫ 1

−0
dEλ(TY f)

1−λ ) ∈W r,2(F|D);

(3) The P -Neumann Problem 3.5.1 is solvable for {ψj = (tC∗
j P (TY f)+)|∂D}(0≤j≤p−1);

(4) Problem 3.5.6 is solvable for v = TY f .
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Proof. (1) ⇔ (2). The statement follows from the following chain of equalities:

∞∑

µ=0

GµY (TY f) = lim
ν→∞

ν−1∑

µ=0

∫ 1

−0

λµdEλ(TY f) =

= lim
ν→∞

∫ 1

−0

ν−1∑

µ=0

λµdEλ(TY f) = lim
ν→∞

∫ 1

−0

(1 − λν)dEλ(TY f)

1 − λ
.

(1) ⇔ (3). Lemma 3.2.10 and Theorem 3.2.13 imply that

RY f =

∞∑

µ=0

GµY TY f = TY PTY f +

∞∑

µ=0

GµY TY P (S(TY f)) =

= TY PTY f +
∞∑

µ=0

GµY TY P ((TY f)+) = TY PTY f +
∞∑

µ=0

GµY T̃Y (⊕tC∗
j P (TY f)+).

But this means that the series
∑∞
µ=0 G

µ
Y T̃Y (⊕tC∗

j P (TY f)+) converges in theW p,2(E|D)-

norm, and P
∑∞
µ=0 GµY T̃Y (⊕tC∗

j P (TY f)+) ∈W r,2(F|D) if and only if f ∈ domRp,rY .
Therefore the statement follows from Theorem 3.5.4.

(1) ⇔ (4). Let f ∈ domRp,rY then (3.3.3) implies that (f − PRY f) ∈ kerTY ∩
W r,2(F|D), that is ϕ = RY f , because kerTY = kerRp,rY by Proposition 3.3.4.

Conversely, if (4) holds then Theorem 3.2.13 implies that the series RY Pϕ =
RY f converges in the W p,2(E|D)-norm, and PRY f = PRY Pϕ = Pϕ ∈W r,2(F|D).
Therefore f ∈ domRp,rY .

The proof of Theorem 3.5.7 is complete. �

Remark 3.5.8. We emphasize that the Neumann Problem 3.5.1 is the P -
Neumann problem associated with the differential complex {Ei, P i} (see, for exam-
ple, [T5], p. 136) at step i = 0. However, as a rule, in order to solve the equation
Pu = f , the P -Neumann problem was studied in the case i = 1.

Proposition 3.5.9. Let u ∈ Sp,2(D)⊥ and ψj = (tC∗
j PS(u))|∂D (0 ≤ j ≤

p − 1). Then the necessary condition (3.5.2) for the solvability of Problem 3.5.1

holds, i.e. for every v ∈ Sp,2P (D) we have

∫

∂D

p−1∑

j=0

< (∗Fj
Bjv, ψj >y ds(y) = 0.

Proof. Indeed, formula (3.5) implies that

∫

∂D

p−1∑

j=0

< ∗Fj
Bjv, ψj >y ds(y) =

∫

∂D

p−1∑

j=0

< ∗Fj
Bjv,

tC∗
j PS(u)) >y ds(y) =

= −
∫

Y \D
(PS(u), PS(v))ydy = −HP

p (u, v) = 0

for every v ∈ Sp,2P (D). �

Because S(TY f) = (TY f)+, Propositions 3.3.10 and 3.5.9 imply that condition
(3.5.2) holds for ψj = (tC∗

j P (TY f)+)∂D (0 ≤ j ≤ p− 1).
Now let us see the connection between the P -Neumann problem and the closed-

ness of the range of the operator P .
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Proposition 3.5.10. Im(TY ) = Im(TY P ) = (Sp,2P (D))⊥.

Proof. Proposition 3.3.10 and Lemma 3.2.7 imply that Im(TY ) ⊂ (Sp,2P (D))⊥.

Because (Sp,2P (D))⊥ is a closed subspace of W p,2(E|D), Im(TY P ) ⊂ Im(TY ) ⊂
(Sp,2P (D))⊥.

Conversely, formula (3.1.2) and Corollary 3.1.3 imply that

v =
∞∑

ν=0

GνY TY Pv =
∞∑

ν=0

(Id− TY P )νTY Pv

for every v ∈ (Sp,2P (D))⊥). Therefore (Sp,2P (D))⊥ ⊂ Im(TY P ) ⊂ Im(TY ). �

Proposition 3.5.11. The range Im(TY ) is closed if and only if the range
Im(TY P ) is closed.

Proof. Let Im(TY P ) be closed. Then, due to Proposition 3.5.10,

(Sp,2P (D))⊥ = Im(TY P ) = Im(TY P ) ⊂ Im(TY ) ⊂ (Sp,2P (D))⊥.

Hence the inclusions are equivalent and the range Im(TY ) is closed.
Conversely, if the range Im(TY ) is closed then Proposition 3.4.7 and Theo-

rem 1.1.1 of [Hö1] imply that the range Im(P ) is closed. Therefore Im(TY P ) =

Im(TY P ) because TY is in this case a topological homomorphism. �

Proposition 3.5.12. The range Im(P ) is closed if and only if the P -Neumann
Problem 3.5.1 is solvable for all ⊕ψj ∈ ⊕W−p+j+1/2,2(Fj|∂D) satisfying (3.5.2).

Proof. Let ⊕ψj ∈ ⊕W−p+j+1/2,2(Fj|∂D). Then T̃Y (⊕ψj) ∈ W p,2(E|D) (see
book [ReZs], 2.3.2.4). Moreover, if ⊕ψj satisfies (3.5.2) then, due to (1.3.5), we
have

HP
p (T̃Y (⊕ψi), v) =

∫

∂D

p−1∑

i=0

< ∗Fi
Biv,

tC∗
i P T̃Y (⊕ψi)− − tC∗

i P T̃Y (⊕ψi)+ >y ds =

∫

∂D

p−1∑

i=0

< ∗Fi
Biv, ψi >y ds = 0

for every v ∈ Sp,2P (D). That is, T̃Y (⊕ψj) ∈ (Sp,2P (D))⊥. On the other hand,
if Im(P ) is closed then, according to Propositions 3.4.7, 3.5.10, and 3.5.11, and

Theorem 1.1.1 of [Hö1] Im(TY P ) = (Sp,2P (D))⊥. In particular it means that there

exists a section ϕ ∈ W p,2(E|D) such that TY Pϕ = T̃Y (⊕ψj). Therefore, from
Theorem 3.2.13 and Corollary 3.1.3, the series

∞∑

ν=0

GνY TY Pϕ =

∞∑

ν=0

GνY T̃Y (⊕ψj)

converges in the W p,2(E|D)-norm. Now using Theorem 3.5.4 we conclude that
Problem 3.5.1 is solvable.

Conversely, let v ∈ (Sp,2P (D))⊥. Then (tC∗
j PS(v))|∂D ∈ W−p+j+1/2,2(Fj|∂D),

and, due to Proposition 3.5.9, (⊕tC∗
j PS(v))|∂D satisfies (3.5.2). Hence, if Problem
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3.5.1 is solvable for all ⊕ψj satisfying (3.5.2), there exists a section ψ ∈ Sp,2∆ (D)
such that (⊕tC∗

j Pψ)|∂D = (⊕tC∗
j PS(v))|∂D. In particular, from Lemma 3.2.10, we

have

v = TY Pv + TY PS(v) = TY Pv + T̃Y (⊕tC∗
j PS(v)) = TY P (v + ψ).

Therefore Im(TY P ) = (Sp,2P (D))⊥, i.e. ImTY P is closed, and, due to Proposi-
tions 3.4.7, 3.5.11 and Theorem 1.1.1 of [Hö1], Im(P ) is closed. �

æ

§3.6. Examples of applications to P -Neumann problems

Using Proposition 3.5.12 we can obtain a result on the solvability of the P -
Neumann Problem 3.5.1 in the case where P is determined elliptic.

Corollary 3.6.1. Let P be a determined elliptic operator in X such that the
operators P and P ∗P have bilateral fundamental solutions on X. Then Problem
3.5.1 is solvable for every ⊕ψj ∈ ⊕W−p+j+1/2,2(Fj|∂D) satisfying (3.5.2).

Proof. According to Corollary 1.1.9, for every f ∈ L2(F|D) there exist a

W p,2(E|D) solution of the equation Pu = f . In particular, Im((P ) is closed, and
therefore, the statement follows from Proposition 3.5.12. �

We note that in Corollary 3.6.1 we obtain maximal Sobolev regularity for the
solutions of the boundary value Problem 3.5.1. However the nullspace of the prob-
lem may be not finite dimensional (see Proposition 3.5.3) and hence this may be
not an elliptic boundary value problem.

Example 3.6.2. Let P = ∆ be Laplace operator in Rn. Then P ∗P = ∆2 and
hence the operators P and P ∗P have bilateral fundamental solutions in X .

Let D b Rn be a domain with C∞-smooth boundary ∂D. As a Dirichlet system
on ∂D we can take the system {B0 = 1, B1 = ∂

∂n}. Then, by simple calculations,

the system {C0 = − ∂
∂n , C1 = 1} is the system associated to {B0 = 1, B1 = ∂

∂n} in
Lemma 1.1.6 Therefore Corollary 3.6.1 implies that the problem





∆2ψ = 0 in D,

− ∂
∂n

∆ψ = ψ0 on ∂D,

∆ψ = ψ1 on ∂D,

ψ ∈W 2,2(D)

is solvable for all (complex valued) data ψ0 ∈ W−3/2,2(∂D), ψ1 ∈ W−1/2,2(∂D)
satisfying

∫

∂D

(
ψ0(y)v(y)− ψ1(y)

∂v

∂n
(y)

)
ds(y) = 0 for every harmonic W 2,2(D)−function v.
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Example 3.6.3. Let P be the Cauchy - Riemann system on the plane C1 ∼= R2,
i.e. P = ∂

∂x1
+
√
−1 ∂

∂x2
. In the complex form with z = x1+

√
−1x2, z = x1−

√
−1x2,

∂
∂z

= 1
2
( ∂
∂x1

+
√
−1 ∂

∂x2
), ∂

∂z
= 1

2
( ∂
∂x1

−
√
−1 ∂

∂x2
), we have P = 2 ∂

∂z
, P ∗ = −2 ∂

∂z
.

Then P ∗P = −∆ is the Laplace operator in R2 and hence the operators P and
P ∗P have bilateral fundamental solutions on X .

Let D b R2 be a domain with C∞-smooth boundary ∂D. As a Dirichlet system
on ∂D we can take the system {B0 = 1}. Then, setting

{
ρ(x) = −dist(x, ∂D), x ∈ D,

ρ(x) = dist(x, ∂D), x 6∈ D,

the function ρ belongs to the class of functions defining the domainD (D = {x ∈ X :

ρ(x) < 0}), |dρ| =
√∑2

j=1(
∂ρ
∂xj

)2 = 1 in a neighbourhood of ∂D and the system

{C0 = 2∂ρ∂z} is the system associated to {B0 = 1} in Lemma 1.1.6. Therefore
Corollary 3.6.1 implies that the problem





−∆ψ = 0 in D,

4∂ρ
∂z

∂ψ
∂z

= ψ0 on ∂D,

ψ ∈W 1,2(D)

is solvable for all (complex valued) data ψ0 ∈W−1/2,2(∂D), satisfying
∫

∂D

ψ0(y)v(y)ds(y) = 0 for every holomorphic W 1,2(D) − function v.

The problem above is nothing but the ∂ -Neumann problem for functions in C1.

Consider now situation where the operator P is overdetermined (elliptic).

Example 3.6.4. Let P be the Cauchy - Riemann system in Cn ∼= R2n (n > 1),

i.e. P =




∂
∂x1

+
√
−1 ∂

∂xn+1· · ·
∂
∂xn

+
√
−1 ∂

∂x2n


. In the complex form with zj = xj +

√
−1xn+j ,

zj = xj −
√
−1xn+j ,

∂
∂zj

= 1
2( ∂
∂xj

+
√
−1 ∂

∂xn+j
) , ∂

∂zj
= 1

2 ( ∂
∂xj

−
√
−1 ∂

∂xn+j
), we

have P = 2




∂
∂z1· · ·
∂
∂zn


 (= 2∂), P ∗ = −2




∂
∂z1· · ·
∂
∂zn


 (= 2∂). Then P ∗P = −∆ is the

Laplace operator in R2n and hence the operator P ∗P has a bilateral fundamental
solution in X . However, due to the removability theorem for compact singularities
of holomorphic functions in C

n, the Cauchy-Riemann system in C
n has no right

fundamental solution.
It is known that if the domain D is not pseudo-convex then the range Im(P ) :

W 1,2(D) → [L2(D)]n may be not closed. But even in a strictly convex domain D
we can not achieve maximal global regularity for solutions of the equation ∂u =
f ∈ [L2(D)]n.

Indeed, let D be the ball B(0, R) in C2 with centre at 0 and radius 0 < R <∞.

Then f =

(
0
1

R−z1

)
∈ [L2(D)]2 and the function u = z2

R−z1 ∈ L2(D) is a solution

of the equation ∂u = f in D. Because

∂u

∂z1
=

z2

(R− z1)2
6∈ L2(D)
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we conclude that u 6∈W 1,2(D).
Assume that there exists a function v ∈ W 1,2(D) satisfying ∂v = f . Then

v = u + h where h is a holomorphic L2-function in the ball D and ∂v
∂z1

∈ L2(D).
Hence

‖ ∂v
∂z1

‖2
L2(D) = limε→0‖

∂v

∂z1
‖2
L2(Dε) = limε→0(‖

∂u

∂z1
‖2
L2(Dε) + ‖ ∂h

∂z1
‖2
L2(Dε)+

−1

4

∫

Dε

∂u

∂z1
(
∂h

∂z1
)dz ∧ dz − 1

4

∫

Dε

∂u

∂z1
(
∂h

∂z1
)dz ∧ dz) <∞.

On the other hand,

−1

4

∫

Dε

∂u

∂z1
(
∂h

∂z1
)dz ∧ dz =

=
1

2
√
−1

∫

|z1|≤R−ε

∫ (R−ε)2−|z1|2

r=0

∫

|z2|=r

∂u

∂z1
(
∂h

∂z1
)

√
−1dz2

z2
rdrdz1 ∧ dz1 = 0

because 1
z2

∂u
∂z1

, ( ∂h∂z1 ) are anti-holomorphic with respect to z2 and hence

∫

|z2|=r

∂u

∂z1
(
∂h

∂z1
)
dz2

z2
= 0 (0 < r < R).

Therefore we obtain

‖ ∂v
∂z1

‖L2(D) = limε→0(‖
∂u

∂z1
‖2
L2(Dε) + ‖ ∂h

∂z1
‖2
L2(Dε)) <∞

contradicting ‖ ∂u
∂z1

‖2
L2(D) = ∞.

Thus we proved that for every ball D = B(0, R) ⊂ C2 there exists a closed
differential (0, 1)-form f with coefficients in L2(D) for which there is no W 1,2(D)-
solution of the equation ∂u = f (cf. s. 3.8.2 below and [Sh6] for th Sobolev spaces
and [Ke] for an analogous result for Hölder spaces).

Now using results of [Kohn] (on triviality of the ”harmonic” spaces H̃0,2(D)),
Proposition 3.5.13 and Lemma 3.5.5 we conclude that the image Im(∂) : W 1,2(D) →
[L2(D)]2 is not closed.

Let ρ be as in Example 3.6.3 then ρ belongs to the class of functions defining the

domain D (D = {x ∈ X : ρ(x) < 0}), |dρ| =
√∑2n

j=1(
∂ρ
∂xj

)2 = 1 in a neighbourhood

of ∂D ∈ C∞ and the system {C0 = 2( ∂ρ
∂z1

, . . . , ∂ρ
∂zn

)} is the system associated to

{B0 = 1} in Lemma 1.1.6.
Therefore, even if D is a ball, the boundary value problem

{
−∆ψ = 0 in D,

4
∑n
j=1

∂ρ
∂zj

∂ψ
∂zj

= ψ0 on ∂D,

is not solvable in W 1,2(D) for all (complex valued) data ψ0 ∈ W−1/2,2(∂D) satis-
fying

∫

∂D

ψ0(y)v(y)ds(y) = 0 for every holomorphic W 1,2(D) − function v.
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The problem above is nothing but the ∂ -Neumann problem for functions in Cn.
Results about the solvability of this problem could be found, for example, in [Ky].

It is easier to prove that we can not achieve the maximal global regularity in
the case where boundary of D is more ”flat”. For instance, if D is the bidisk in
C2 with centre at 0 and radius 0 < R < ∞, then arguing as before one sees that

for f =

(
0
1

(R−z1)δ

)
∈ [L2(D)]2 (1/2 < δ < 1) there is no W 1,2(D)-solution of the

equation ∂u = f in D.

Example 3.6.5. Let X = Rn and P =




∂2

∂x2
1· · ·

∂2

∂x2
n


. Then P ∗P = −∑n

j=1
∂4

∂x4
j
. It

is clear that P ∗P has a bilateral fundamental solution on X but the operator P
has only a left one.

However, it is not difficult to see that in every domain D, where we can find a
solution with maximal (global) regularity of the equation grad(u) = f in D, we can
also solve with maximal (global) regularity the equation Pu = f . For instance, we
can do it in every convex domain with ∂D ∈ C2.

As a Dirichlet system on ∂D we can take the system {B0 = 1, B1 = ∂
∂n}. If

the function ρ is as in Example 3.6.3, then ρ belongs to the class of functions

defining the domain D (D = {x ∈ X : ρ(x) < 0}), |dρ| =
√∑n

j=1(
∂ρ
∂xj

)2 = 1 in a

neighbourhood of ∂D and the system of boundary differential operators

{C0 = −
(
∂ρ

∂x1

∂

∂x1
, . . . ,

∂ρ

∂xn

∂

∂xn

)
, C1 =

((
∂ρ

∂x1

)2

, . . . ,

(
∂ρ

∂xn

)2

)

)
}

is the system associated to {B0 = 1, B1 = ∂
∂n

} in Lemma 1.1.6.
Therefore Proposition 3.5.12 implies that the problem





∑n
j=1

∂4

∂x4
j
ψ = 0 in D,

−∑n
j=1

∂ρ
∂xj

∂3ψ
∂x3

j
= ψ0 on ∂D,

∑n
j=1(

∂ρ
∂xj

)2 ∂
2ψ
∂x2

j
= ψ1 on ∂D,

ψ ∈W 2,2(D)

is solvable for all (complex valued) data ψ0 ∈ W−3/2,2(∂D), ψ1 ∈ W−1/2,2(∂D)
satisfying

∫

∂D

(
ψ0(y)v(y)− ψ1(y)

∂v

∂n
(y)

)
ds(y) = 0 for evey S2,2

P (D) − function v

in every convex domain D with a C∞-smooth boundary ∂D.
Obviously, S2,2

P (D) consists of all polynomials of the form

∑

k 6=i
ak,ixkxi +

n∑

j=1

bjxj + c

where ak,i, bj, c ∈ C1.

æ
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§3.7. Applications to the Cauchy and Dirichlet problems

We have proved the solvability of the Dirichlet problem for an determined elliptic
operator P ∗P = ∆ ∈ do2p(E → E) in Lemma 3.2.2. Let us now obtain a formula
for the solution of this problem. In the following proposition GY (⊕ψj) stands for
the integral

GY (⊕ψj)(x) = −
∫

∂D

p−1∑

j=0

< Cj(y)
tP ∗(y)ΦY (x, y), ψj >y ds.

Proposition 3.7.1. Let the operator P satisfy the Uniqueness Condition in the
small on X and ∂D be connected. Then, if ψj ∈ Wm−j−1/2,2(Fj|∂D) (0 ≤ j ≤
p− 1, m ≥ p), the series

ψ =

∞∑

ν=0

(TY P )νGY (⊕ψj),

converging in the W p,2(E|D)-norm, is the (unique)Wm,2(E|D)-solution of the Dirich-
let problem for the operator P ∗P and the data ψj (0 ≤ j ≤ p− 1).

Proof. We proved in Lemma 3.2.2 that for sections ψj ∈ Wm−j−1/2,2(Fj|∂D)

(0 ≤ j ≤ p − 1) there exists a unique solution ψ ∈ Wm,2(E|D) of the Dirichlet
problem. Theorem 3.2.13 and Corollary 3.1.3 imply that

ψ = lim
ν→∞

(TY P )νψ +

∞∑

ν=0

(TY P )νMψ =

= lim
ν→∞

(TY P )νψ +
∞∑

ν=0

(TY P )νGY (⊕ψj).

On the other hand, under the hypothesis of the proposition S̃p,2P (D) = W p,2
0 (E|D)

(see Remark 3.2.14), and therefore limν→∞(TY P )νψ = 0, i.e.

ψ =
∞∑

ν=0

(TY P )νGY (⊕ψj),

which was to be proved. �

This formula may be useful in cases where the Green function is known for a large
domain Y (for instance where Y is a ball in Rn, ∆ is the usual Laplace operator
and D b Y is a domain with connected boundary, for which the Green function is
not known).

We consider now the degenerate Cauchy problem for the operator P with the
Cauchy data given on the whole boundary (i.e. S = ∂D) (cf. Problem 2.4.1 and
Theorem 2.4.2).

Problem 3.7.2. Let ψj ∈ Wm−j−1/2,2(Fj|∂D) (0 ≤ j ≤ p− 1, m ≥ p) be given

sections. It is required to find a section ψ ∈Wm,2(E|D) such that

{
Pψ = 0 in D,

Bjψ = ψj on ∂D, (0 ≤ j ≤ p− 1).
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Proposition 3.7.3. Let u ∈ Wm,2(E|D). The following conditions are equiva-
lent:

(1) u ∈ Sm,2P (D);
(2) GY u = u in D;
(3) TY Pu = 0 in D.

Proof. Formula (3.1.2) implies that (2) and (3) are equivalent. Let GY u = u in

D then, due to Theorem 3.2.13 u = (limν→∞ GνY ) ∈ Sp,2P (D). Since u ∈Wm,2(E|D)

we conclude that u ∈ Sm,2P (D). �

Proposition 3.7.4. Let u ∈ Sm,2∆ (D). The following conditions are equivalent:

(1) u ∈ Sm,2P (D);

(2) GY u = 0 in Y \D;
(3) TY Pu = 0 in Y \D.

Proof. Formula (3.1.2) implies that (2) and (3) are equivalent. Let TY Pu = 0
in Y \D then, TPY u = 0 in D and the statement follows from Proposition 3.7.3.
�

Corollary 3.7.5. Let ψj ∈Wm−j−1/2,2(Fj|∂D) (0 ≤ j ≤ p−1). Then Problem

3.7.2 is solvable if and only if GY (⊕ψj) = 0 in Y \D.

Proof. If Problem 3.7.2 is solvable and ψ ∈ Sm,2P (D) is the solution then

GY (⊕ψj) = GY ψ. Using Theorem 1.1.7 we conclude that GY (⊕ψj) = 0 in Y \D.

Conversely, if GY (⊕ψj) = 0 in Y \D then (1.3.5) mplies that

(BjGY (⊕ψj)−)|∂D =

(3.7.1) (BjGY (⊕ψj)−)|∂D − (BjGY (⊕ψj)+)|∂D = ψj (0 ≤ j ≤ p− 1).

We set now ψ = GY (⊕ψj)−. The Theorem on boundedness for potential (co-

boundary) operators in Sobolev spaces (see [ReSz], 2.3.2.5) implies that ψ ∈ Sm,2∆ (D).

On the other hand (3.7.1) implies that GY ψ = GY (⊕ψj), i.e. GY ψ = 0 in Y \D.
Therefore the statement follows from Proposition 3.7.4. �

For the Cauchy-Riemann system and the Martinely-Bochner integral Corollary
3.7.5 was obtained by Kytmanov (see [Ky], p. 170), and for matrix factorizations
of the Laplace operator in Rn it was proved by one of the authors (see [Sh3]).

In [ShT2] (see also Theorem 2.4.2) necessary and sufficient conditions for the
solvability of the Cauchy Problem 3.7.2 were obtained in terms of the Green oper-
ator G in the case where the coefficients of the operator P are real analytic or, if P
is determined elliptic, where the Uniqueness Condition in the small on X holds for
the operator P (see Remark 3.2.14). æ

§3.8. Examples for the matrix
factorizations of the Laplace operator in Rn

In this section we illustrate the theorem on iterations on the concrete examples
(cf. [Sh3], [Sh6]). We consider the situation where X = R

n, E = R
n × C

k,
F = Rn × Cl, l ≥ k, and P is a matrix factorization of the Laplace operator in Rn

(see Definition 2.14.1.2).
Throughout of this section Φ = ϕnIk, where ϕn is the standard fundamental

solution of the convolution type of the Laplace operator in Rn and G, T are the
corresponding integrals with kernel Φ.
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§3.8.1 The operator G in W 1,2(E|D).

Example 3.8.1.1. Let P is a matrix factorization of the Laplace operator in

Rn, Y = X = Rn. Denoting by S̃1,2
∆ (Rn\D) the subspace of harmonic in Rn\D

functions which are zero at infinity, and then arguing as in §3.2 we obtain (cf. [Sh3])
that

lim
ν→∞

Gν = Π(Sp,2P (D)),

lim
ν→∞

(TP )ν = Π(W 1,2
0 (E|D)) + Π(S̃p,2P (Rn\D)),

where S̃p,2P (Rn\D) is the space of functions satisfying Pu = 0 in Rn\D which are
zero at infinity.

Example 3.8.1.2. A.V. Romanov (see [Rom2]) obtained Theorem 3.2.13 for

P = 2




∂
∂z1· · ·
∂
∂zn




in Cn (n ≥ 2). He had P ∗P = −∆2n,

(Gu)(z) = (Mu)(z) =
(n− 1)!

(2π
√
−1)n

∫

∂D

n∑

j=1

(−1)j−1
ζj − zj

|ζ − z|2nu(ζ)dζ[j] ∧ dζ,

(TPu)(z) =
(n− 1)!

(2π
√
−1)n

∫

D

n∑

j=1

ζj − zj

|ζ − z|2n
∂u

∂ζ
(ζ)dζ ∧ dζ

is the Martinelli-Bochner integral, where zj = xj +
√
−1xj+n, ζj = yj +

√
−1yj+n,

x, y ∈ R2n, and dζ[j] = dζ1∧ . . .∧ dζj−1∧dζj+1 . . .∧dζn. In this case, if ∂D is con-
nected, the theorem on removable compact singularities of holomorphic functions
implies that Sm,2P (Cn\D) = {0} (m ≥ 1).

Example 3.8.1.3. If P be the gradient operator in Rn (n ≥ 3) then P ∗P =
−∆n,

Gu)(x) =
1

σn

∫

∂D

n∑

j=1

(−1)j−1 yj − xj
|y − x|nu(y)dy[j],

(TPu)(x) =
1

σn

∫

∂D

n∑

j=1

yj − xj
|y − x|n

∂u

∂yj
(y)dy

where σn is the area of the unit sphere Rn. In this case Sm,2P (D) = C1, and, if ∂D

is connected, Sm,2P (Rn\D) = {0} (m ≥ 1).

Example 3.8.1.4. Let x ∈ R4n (n ≥ 1), qj = xj +
√
−1xj+2n,

∂
∂qj

= 1
2 ( ∂
∂xj

−√
−1 ∂

∂xj+n
) ∂
∂qj

= 1
2
( ∂
∂xj

+
√
−1 ∂

∂xj+n
) (1 ≤ j ≤ 2n), and let

Qj = 2

(
∂
∂qj

∂
∂qj+n

− ∂
∂qj+n

∂
∂qj

)
, Q =



Q1

· · ·
Qn


 .
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Then Q∗Q = −I2∆4n and, if rj = yj +
√
−1yj+2n (1 ≤ j ≤ 2n), y ∈ R4n, and

D(q, j) =

(
(−1)2n+j−1dq ∧ dq[j] (−1)n+j−1dq[j + n] ∧ dq

(−1)3n+j−1dq ∧ dq[j + n] (−1)j−1dq[j] ∧ dq

)
,

(Gu)(r) =
(−1)n(2n− 1)!

(2π)2n

n∑

j=1

D(q, j)

(
qj − rj qj+n − rj+n

−(qj+n − rj+n) qj − rj

)
u(q)

|q − r|4n ,

(TQu)(r) =
(−1)n(2n− 1)!

2(2π)2n

n∑

j=1

(
qj − rj qj+n − rj+n

−(qj+n − rj+n) qj − rj

)
(Qju)(q)

|q − r|4n dq∧dq.

Example 3.8.1.5. Let Λq be the bundle of (complex valued) exterior forms of
degree q over Rn (Λq 6= 0 only for 0 ≤ q ≤ n); let dq ∈ do1(Λ

q → Λq+1) be the
exterior derivative operator, and d∗q ∈ do1(Λ

q+1 → Λq) be the formal adjoint oper-
ator of dq. Then for the ”laplacians” of the de Rham complex (d∗qdq + dq−1d

∗
q−1) ∈

do2(Λ
q → Λq) we have (d∗qdq + dq−1d

∗
q−1) = Ii(q)∆n (see [T5], p.85). Therefore the

operators Pq =

(
dq
d∗q−1

)
∈ do1(Λ

q → (Λq+1,Λq−1)) are matrix factorizations of the

Laplace operator in Rn. The space Sm,2P ∗
q Pq

(D) is the space of the differential forms

of degree q whose coefficients are harmonic W 1,2(D)-functions.
Let n = 3 and q = 1, D = B1 be the unit ball in R3. Then l = 4, k = 3 and

Pq =




∂
∂x2

− ∂
∂x1

0
∂
∂x3

0 − ∂
∂x1

0 ∂
∂x3

− ∂
∂x2

− ∂
∂x1

− ∂
∂x2

− ∂
∂x3


 .

It is easy to check that the vector x ∈ Sm,2P ∗
q Pq

(B1) belongs to Sm,2Pq
(Rn\B1) with

S(u) = x
|x|3 and m ≤ 0. Hence kerG = Sm,2Pq

(Rn\B1) 6= 0 in this case.

Example 3.8.1.6. Let Λt,q be the bundle of (complex valued) exterior forms
of bidegree (t, q) over Cn, Λt,q 6= 0 only for 0 ≤ q ≤ n, 0 ≤ t ≤ n. Let ∂t,q ∈
do1(Λ

t,q → Λt,q+1) be the Cauchy- Riemann operator extended to forms of bidegree

(t, q), and let ∂
∗
t,q ∈ do1(Λ

t,q+1 → Λt,q) be the formal adjoint operator of ∂t,q. Then

for the ”laplacians” of the Dolbeault complex (∂
∗
t,q∂t,q+∂t,q−1∂

∗
t,q−1) ∈ do2(Λ

t,q →
Λt,q) we have c(t, q)(∂

∗
t,qdq + ∂t,q−1∂

∗
t,q−1) = Ii(t,q)∆2n (see [T5], p.88). Therefore

the operators Pt,q =
√
c(t, q)

(
∂t,q
∂
∗
t,q−1

)
∈ do1(Λ

t,q → (Λt,q+1,Λt,q−1)) are matrix

factorizations of the Laplace operator in R
2n. The space Sm,2P ∗

t,qPt,q
(D) is the space

of the differential forms of bidegree (t, q) whose coefficients are harmonic W 1,2(D)-
functions.

In Example 3.6.4 we have seen that we can not obtain solutions of ∂-problem
with maximal global regularity. Let us obtain a formula for solutions (as in §3.3)
with loosing some global regularity.

In the following theorem D is a bounded domain in Cn (n > 1), and Gt,q, Tt,q
are the integrals defined by (3.1.1) for P = Pt,q and Φ = Ii(t,q)ϕ2n.
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Theorem 3.8.1.7. Let D be a strictly pseudo- convex domain with a boundary
∂D ∈ C∞ (or a pseudo -convex domain with a real analytic boundary). Then for

any ∂- closed form f ∈ W 1,2(Λt,q+1
|D ) the series u =

∑∞
µ=0 G

µ
t,qTt,q

(
f
0

)
converges

in the W 1,2(Λt,q|D)- norm, and

∂t,qu = f, ∂
∗
t,q−1u = 0

where

(
f
0

)
∈W 1,2((Λt,q+1

|D ,Λt,q−1
|D )).

Proof. In view of the hypotheses on the domainD, results established in [Kohn]

imply that for any ∂- closed form f ∈ W 1,2(Λt,q+1
|D ) there exists a unique solution

Nf ∈ W 2,2(Λt,q+1
|D ) of the ∂- Neumann problem, and ∂t,q(∂

∗
t,qNf) = f in D. It

is clear that (∂
∗
t,qNf) ∈ W 1,2(Λt,q+1

|D ), and Pt,q(∂
∗
t,qNf) =

(
f
0

)
. Then Corollary

3.2.4 implies that

(∂
∗
t,qNu) = limν→∞Gνt,q(∂

∗
t,qNf) +

∞∑

µ=0

Gµt,qTt,q
(
f
0

)

and the series f converges in the W 1,2(Λt,q|D)- norm. Therefore one easily obtains

u = (∂
∗
t,qNf) − limν→∞Gνt,q(∂

∗
t,qNf) and Pt,qu = Pt,q(∂

∗
t,qNf) =

(
f
0

)
. �

From the proof one can see that the statement holds if for the form f ∈W 0,2(Λt,q+1
|D )

there exists a form u ∈W 1,2(Λt,q|D) such that ∂t,qu = f, ∂
∗
t,q−1u = 0.

Remark 3.8.1.8. Proposition 3.2.5 implies that the series u is the unique solu-
tion of the ∂-equation which belongs to N1,2(D) ⊕ (S1,2

Pt,q
(D))⊥, where the orthog-

onal complement is understood in the sense of the special scalar product HP (., .)

in S1,2
∆nIk

(D) (cf. §3.2).

In the case when f is a (0,1)-form Theorem 3.8.1.7 was obtained by A.V. Ro-
manov [Rom2]. In this case the theorem holds for a pseudo -convex domain D with
∂D ∈ C∞.

Similar results can be stated for the de Rham complex and for a convex domain
D. We consider now interesting case in which D may be non convex.

Definition 3.8.1.9. We say that the Cauchy data v(q) for u ∈W 1,2(Λq+1
|D ) with

respect to the operator d∗q are equal to zero if, for any w ∈ D(Λn−q),
∫
∂D

Gd∗q (w, u) =
0.

In the following theorem Hq+1(Λq+1
|D ) = {v ∈ W 1,2(Λq+1

|D ) : dq+1v = d∗qv =

vq(v) = 0} are the harmonic spaces and Gq, Tq are the integrals defined by (3.1.1)
for P = Pq, and Φ = Ikϕn.

Theorem 3.8.1.10. Let D be a bounded domain in Rn (n ≥ 3) with a boundary

∂D ∈ C2 and let f ∈ W 1,2(Λq+1
|D ) be a closed form such that

∫
D

(g, f)x = 0 for
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any g ∈ Hq+1(Λq+1
|D ). Then the series u =

∑∞
µ=0 Gµq Tq

(
f
0

)
converges in the

W 1,2(Λq|D)- norm, and

dqu = f d∗q−1u = 0

where

(
f
0

)
∈W 1,2((Λq+1

|D ,Λq−1
|D )).

Proof. This follows from [T5] (p.136) like Theorem 3.8.1.7 from [Kohn]. �

Remark 3.8.1.11. If D is convex then Hq(Λq|D) = 0 for q > 0.

§3.8.2 The operator G in the space Ss,2Ik∆n
(BR).

We denote by BR the ball in Rn with centre at zero and radius 0 < R <∞, by
σn the area of the unit sphere ∂B1 and by dσ the standard volume form on ∂BR.

Let Ss,2Ik∆n
(BR) be the closed subspace of W s,2(E|BR

) (s ≥ 0) formed by vector
functions with harmonic components.

For s ≥ q, we provide W s,2(E|BR
) with the scalar product (cf. 2.8.2)

(u, v)Ss,2
Ik∆n

(BR) =

∫

|y|≤R

k∑

j=1

(uj , vj)Ss,2
∆n

(BR)(u, v ∈ Ss,2Ik∆n
(BR)).

Hence, for s ∈ Z+, Ss,2Ik∆n
(BR) is a Hilbert space with the induced from W s,2(E|BR

)
Hilbert structure. Moreover, from Proposition 2.8.2.3, the scalar products define a
topology, equivalent to the original one in Ss,2Ik∆n

(BR) (s ≥ 0).

Now, for a vector u ∈ S0,2
Ik∆n

(BR) we denote by Gu its Green’s integral in BR
associated with the operator P and the standard fundamental solution ϕn(x) of the
Laplace operator in Rn:

Gu(x) =
1

Rσn
lim
r→R

∫

|y|=r

(
∑

i=1

P ∗
i (yi − xi)

)
∑

j=1

Pjyj


 u(y)

|y − x|n dσ(y) (|x| 6= R).

It follows from [ReSz], that the integral G defines a bounded linear operators
(s ≥ 0)

Gs : Ss,2Ik∆n
(BR) → Ss,2Ik∆n

(BR).

In this section we are interested in the spectrum of the operators Gs in Ss,2Ik∆n
(BR).

We follow in this section the approach of Romanov for the Martinelli-Bochner in-
tegral and s = 1/2 (see [Rom1]). For this purpose we will use the following lemma.

Lemma 3.8.2.1. For every homogeneous harmonic polynomial hν of degree ν ≥
0 in Rn we have

(3.8.2.1) Gh0 = h0, Ghν(x) = hν(x) −
(
∑

i=1

P ∗
i xi

)
(Phν)(x)

n+ 2ν − 2
(ν ≥ 1).

Proof. Since P is a matrix factorization of the Laplace operator in Rn, we have

(
∑

i=1

P ∗
i xi

)
∑

j=1

Pjxj


 = |x|2Ik.
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Hence

Ghν(x) =
R

σn

∫

|y|=R

hν(y)

|y − x|n dσ(y)−

−
(
∑

i=1

P ∗
i xi

)
1

Rσn

∫

|y|=R

(
∑

i=1

Pjyj

)
hν(y)

|y − x|n dσ(y) =

=
R2

R2 − |x|2
∫

|y|=R
P(x, y)hν(y)dσ(y)−

(3.8.2.2) −
∑
i=1 P

∗
i xi

R2 − |x|2
∫

|y|=R
P(x, y)(

(
∑

i=1

Pjyj

)
hν(y)dσ(y)

where P(x, y) is the Poisson kernel for the ball BR:

P(x, y) =
1

Rσn

R2 − |x|2
|x− y|n .

Because the Poisson integral gives the solution of the Dirichlet problem for the
ball BR, we conclude that

(3.8.2.3)
R2

R2 − |x|2
∫

|y|=1

P(x, y)hν(y)dσ(y) =
R2 hν(x)

R2 − |x|2 .

On the other hand one easily checks that the function (cf. Lemma 2.8.2.1)

H(ν, j, r)(x) = xjh
(r)
ν −

( |x|2 −R2

n+ 2ν − 2

)
∂h

(r)
ν

∂xj

is the harmonic extension of the function yjh
(r)
ν (y) from ∂BR to the ball BR. There-

fore ∑
i=1 P

∗
i xi

R2 − |x|2
∫

|y|=1

P(x, y)

(
∑

i=1

Pjyj

)
hν(y)dσ(y) =

(3.8.2.4) =
(
∑
i=1 P

∗
i xi) (

∑
i=1 Pjxj) hν(x)

R2 − |x|2 +
1

n+ 2ν − 2

(
∑

i=1

P ∗
i xi

)
Phν(x).

Now, using (3.8.2.2), (3.8.2.3) and (3.8.2.4) we see that (3.8.2.1) holds. �

We extract from Lemma 3.8.2.1 an information about the spectrum of the oper-
ator G0.

Lemma 3.8.2.2. There exists an orthonormal basis {h(i,R)
ν } in S0,2

Ik∆n
(BR) (ν ≥

0, 1 ≤ i ≤ k(n+2ν−2)(n+ν−3)!
ν!(n−2)!

) consisting of homogeneous harmonic polynomials

with
Gh(i,R)

ν = λ(i,R)
ν h(i,R)

ν , 0 ≤ λ(i,R)
ν ≤ 1.
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Proof. Let us denote by Sk(ν) the vector space of all the k-vectors of homogo-
neous harmonic polynomials of degree ν. It is a finite dimensional vector space

with dimSk(ν) = k(n+2ν−2)(n+ν−3)!
ν!(n−2)!

(see [So]). Lemma 3.8.2.1 implies that

G|Sk(ν) : Sk(ν) → Sk(ν)

is a bounded linear operator.
Since Sk(ν) is finite dimensional, it is a (complex) Hilbert space with the scalar

product (., .)L2(BR). On the other hand, due to Lemma 3.8.2.1 and Stokes’ formula,

(Ghν , gν)L2(BR) = (hν , gν)L2(BR) −
∫

|y|≤R
(gν)

∗(y)

(
∑

i=1

P ∗
i yi

)
(Phν)(y)

n+ 2ν − 2
dy =

(3.8.2.5) = (hν , gν)L2(BR) −
R2 (Phν , P gν)L2(BR)

(n+ 2ν − 2)(n+ 2ν)
.

In particular, this means that the operator G|Sk(ν) is selfadjoint. Hence we conclude
that spectr G|Sk(ν) ⊂ [−m,m], where m is the operator norm of G|Sk(ν).

Since the space Sk(ν) is finite dimensional, there exist k(n+2ν−2)(n+ν−3)!
ν!(n−2)! eigen-

vectors of the operator G|Sk(ν) (corresponding to eigenvalues λ
(i,R)
ν ), which form an

orthogonal (with respect to (., .)L2(BR)) basis in Sk(ν).

For ν = 0, h
(i)
0 =

√
RnVn1i, λ

(i)
0 = 1 (1 ≤ i ≤ k), where 1i is k-vector with

components 1ji = δij and Vn is the volume of the unit ball in Rn.
Let ν ≥ 1 (ν ≥ 2 if n = 2). Because Sk(ν) is finite dimensional, it is a (complex)

Hilbert space with the scalar product (cf. §3.2)
(3.8.2.6)

HP (hν , gν) =

∫

BR

(Pgν)
∗(y)(Phν)(y)dy+

∫

Rn\BR

(PS(gν))
∗(y)(PS(hν))(y)dy (hν ∈ Sk(ν))

where S(hν) = Rn+2ν−2 hν(x)
|x|n+2ν−2 is a harmonic function outside of the ball BR with

zero at infinity and S(hν) = hν on ∂BR. Then, due to Proposition 3.2.9

(3.8.2.7) HP (Ghν , gν) =

∫

Rn\BR

(PS(gν)
∗(y)PS(hν))(y)dy,

and, in particular, 0 ≤ HP (Ghν , hν) ≤ HP (hν , hν). Hence we conclude that 0 ≤
λ

(i,R)
ν ≤ 1 (1 ≤ i ≤ dimSk(ν)).

For the case n = 2, ν = 1, we have λ
(i)
1 = 1 − µ

(i)
1 /2, where µ

(i)
1 are eigenvalues

of the symmetric block-matrix Q =

(
Ik P ∗

1 P2

P ∗
2 P1 Ik

)
, ‖Q‖ = max|qmN | ≤ 1, i.e.

0 ≤ λ
(i)
1 ≤ 1.

Because of Lemma 2.8.2.2 it is possible to choose in the space S0,2
Ik∆n

(BR) a

basis {h̃(i)
ν } with h̃

(i)
ν ∈ Sk(ν) and 1 ≤ i ≤ dimSk(ν). Therefore, because spherical

harmonics of different degrees of homogeneity are orthogonal in S0,2
Ik∆n

(BR), we

can choose an orthogonal basis {h(i,R)
ν } (ν ≥ 0, 1 ≤ i ≤ dimSk(ν)) in S0,2

Ik∆n
(BR),

consisting of the eigenfunctions of the operator G. �
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Lemma 3.8.2.3. h
(i)
ν =

√
Rn+2νh

(i,R)
ν and λ

(i)
ν = λ

(i,1)
ν = λ

(i,R)
ν ; λ

(i)
ν = 1 if and

only if Ph
(i)
ν = 0. Moreover, h

(i)
ν is an orthogonal basis in Ss,2Ik∆n

(BR) (s ≥ 0).

Proof. This is an immediate sequence of the homogeneity of the polynomials,
formulae (3.8.2.6), (3.8.2.7) and Proposition 2.8.2.3. �

The following theorem was proved for the Martinelli-Bochner integral in the ball
and s = 1/2 in Romanov ([Rom1]).

Theorem 3.8.2.4. The operator Gs : Ss,2Ik∆n
(BR) → Ss,2Ik∆n

(BR) is a bounded
linear selfadjoint operator with spectr Gs ⊂ [0, 1].

Proof. According to Lemmata 3.8.2.2, 3.8.2.3, for a vector u ∈ Ss,2Ik∆n
(BR), we

have

(Gu, u)Ss,2
Ik∆n

(BR) =

∞∑

ν=0

dimSk(ν)∑

i=1

λ(i)
ν |C(i)

ν (u)|2‖h(i)
ν ‖2

Ss,2
Ik∆n

(BR)
≥ 0,

‖Gu‖2
Ss,2

Ik∆n
(BR)

=

∞∑

ν=0

dimSk(ν)∑

i=1

(λ(i)
ν )2|C(i)

ν (u)|2‖h(i)
ν ‖2

Ss,2
Ik∆n

(BR)
≤ ‖u‖2

Ss,2
Ik∆n

(BR)

because 0 ≤ λ
(i)
ν ≤ 1 for the eigenvalues of the operators Gs. Here C

(i)
ν (u) are the

Fourier coefficients of u with respect to the orthogonal system {h(i)
ν }. Therefore Gs

is a selfadjoint operator with spectr Gs ⊂ [0, 1]. �

Because of the orthogonality and the completeness of the system {h(i)
ν }, 0 ≤

λ
(i)
ν ≤ 1 are the only eigenvalues of the operators Gs.
Remark 3.8.2.5. In a similar way, using the topological isomorphism between

the Hilbert space Ss,2Ik∆n
(BR) and the space of harmonic W s,2(E|Rn\BR

)-functions

(s ≥ 0, n ≥ 3), one can also easily obtain information on the spectrum of Green’s in-

tegral G(c) = G|Rn\BR
. For this it is enough to note that the system {ϕn(x),

h(i)
ν (x)

|x|n+2ν−2 }
(1 ≤ i ≤ k(n+2ν−2)(n+ν−3)!

ν!(n−2)!
, ν ≥ 1) is the system of eigenvalues of the operator G(c):

G(c)ϕn = 0, Gc
(

h
(i)
ν

|x|n+2ν−2

)
=

(1 − λ
(i)
ν ) h

(i)
ν

|x|n+2ν−2
.

In the case n = 2, it is necessary to consider the integral G(c) in the space of har-
monic W s,2

loc (E|R2\BR
)-functions, regular at infinity with respect to the fundamental

solution ϕ2 (see [Ta], p.45). �

Example 3.8.2.6. Let P = ∇n (n ≥ 2) be the gradient operator in Rn (l = n,
k = 1). Then, due to Lemma 3.8.2.1 and Euler formula for homogeneous functions,
for every homogeneous harmonic polynomial hν we have

Ghν =
n+ ν − 2

n+ 2ν − 2
hν .

Arguing as before, we obtain that the multiplicity of the eigenvalue 1
2 <

n+ν−2
n+2ν−2 ≤

1 is (n+2ν−2)(n+ν−3)!
ν!(n−2)!

<∞ and that spectr G consists of the eigenvalues n+ν−2
n+2ν−2

and

the limit point 1/2, if n ≥ 3.
In the degenerate case n = 2 the spectrum spectr G consists only of two eigenval-

ues: 1/2 (eigenvalue of the infinite multiplicity corresponding to ν > 0) and simple
eigenvalue 1 (corresponding to ν = 0), i.e G is not compact. �
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Example 3.8.2.7. Let P = 2∂ be the (doubled) Cauchy-Riemann system in
Cm (m ≥ 2) written in the complex form with the complex coordinates zj , zj
(1 ≤ j ≤ m). Then n = 2m, l = m, k = 1 and G is the Martinelli-Bochner integral.

Romanov (see [Rom1]) studied the spectrum of the operator G in the Hardy
spaces H2(B1) (∼= h1/2,2(BR)) and H2(Cm\B1) (∼= h1/2,2(Cm\BR)). He proved
that harmonic homogeneous polynomials

hrt =
∑

|α|=r

∑

|β|=t
cαβz

αzβ

with multi-indices α = (α1, ..., αn), β = (β1, ..., βn) and degree of the homogeneity
ν = r + t, are the eigenvalues of the operator G:

Ghrt =
m+ r − 1

m+ r + t− 1
hrt,

and that we can always choose an orthogonal basis {h̃rt} (r ≥ 0, t ≥ 0) in H2(B1)
(∼= h1/2,2(BR)) consisting of polynomials of the type hrt.

One easily checks that this implies that all rational numbers of the interval [0, 1]
are eigenvalues of infinite multiplicity of the Martinelli -Bochner integral G, and

that spectr Gs = spectr G(c)
s = [0, 1]. In particular, the operators Gs and G(c)

s are
not compact.

In the degenerate case m = 1 we have n = 2, l = 1, k = 1 and G is the
Cauchy integral. The spectrum spectr G consists only of two eigenvalues (both are
of infinite multiplicity): 1 (eigenvalue corresponding to zν , ν ≥ 0), and 0 (eigenvalue
corresponding to zν , ν > 0), i.e G is not compact.

Kytmanov [Ky] proved that the (doubled) singular Martinelli-Bochner integral

Gb(z) = 2G(z) (z ∈ ∂B1)

defines a selfadjoint bounded linear operator in the Lebesgue space L2(∂B1), with

Gbhrt =
m+ r − t− 1

m+ r + t− 1
hrt.

Hence all the rational numbers of the interval (−1, 1] are eigenvalues of infinite
multiplicity of the singular Martinelli-Bochner integral Gb, and spectr Gb = [−1, 1].
�

Now we will use the information about the spectrum of the operators Gs :
Ss,2Ik∆n

(BR) → Ss,2Ik∆n
(BR) (s ≥ 0) to obtain Theorem on Iterations (cf. §3.1, §3.2).

Due to Theorem 1.4.4, for u ∈ Ss,2Ik∆n
(BR) (s ≥ 0) there exists weak boundary

value Pu|∂BR
belonging to the Sobolev space W s−3/2,2(E|∂BR

). Let us denote by
τPu the single layer potential:

(τPu)(x) =
1

R
lim
r→R

∫

|y|=r


∑

j=1

P ∗
j yj


ϕn(x− y)(Pu)(y)dσ(y).

By Stokes’ formula we have

(3.8.2.8) (Gu)(x) + (τPu)(x) =

{
u(x), x ∈ BR,

0, x ∈ X\BR
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for every u ∈ Ss,2Ik∆n
(BR). Therefore the integral τP defines linear bounded opera-

tors τsP from Ss,2Ik∆n
(BR) to Ss,2Ik∆n

(BR).
In particular, it is possible to consider iterations Gν = G ◦ G ◦ · · · ◦ G , (τP )ν =

(τP ) ◦ (τP ) ◦ (. . . ) ◦ (τP ) (ν ≥ 1 times) of the integrals G and τP in these spaces.

As before, Ss,2P (BR) is the closed subspace of Ss,2Ik∆n
(BR) consisting of solutions of

the system Pu = 0 in BR. Then Π(Ss,2P (BR)) stand for the orthogonal projections

from Ss,2Ik∆n
(BR) to Ss,2P (BR).

Since Ss,2Ik∆n
(BR) is topologically isomorphic to Ss,2Ik∆n

(Rn\BR) (n ≥ 3), we as-

sociate u ∈ Ss,2Ik∆n
(BR) a (unique) vector function S(u) ∈ Ss,2Ik∆n

(Rn\BR) with

u = S(u) on ∂BR.

In the case where n = 2 we associate u ∈ Ss,2Ik∆n
(BR) a (unique) vector function

S(u), harmonic in R2\BR, regular at infinity with respect to ϕn (see [Ta4]) and
such that u = S(u) on ∂BR.

Then we can consider Ss,2P (Rn\BR) = {u ∈ Ss,2Ik∆n
(BR) : PS(u) = 0 in R

n\BR}
as a closed subspace of Ss,2Ik∆n

(BR) and Π(Ss,2P (Rn\BR)) stands for the orthogonal

projection from Ss,2Ik∆n
(BR) to Ss,2P (Rn\BR).

For the Martinelli-Bochner intefgral and s ∈ Z+ this fact was mentioned in [Ky].

Theorem 3.8.2.8 (on Iterations). Let s ≥ 0. Then

lim
ν→∞

Gsν = Π(Ss,2P (BR)), lim
ν→∞

(τsP )ν = Π(Ss,2P (Rn\BR))

in the strong operator topology in Ss,2Ik∆n
(BR).

Proof. It follows immediately from Theorem 3.1.2 and Theorem 3.8.2.4. �

Let us consider, for s ≥ m ≥ s− 1 the linear closed densely defined operator

Ps,m : W s,2(E|BR
) →Wm,2(F|BR

).

And let now domPs,m = {u ∈W s,2(E|BR
) : (Pu) ∈Wm,2(F|BR

)}. It is easy to see
that domPs,m is a Hilbert space with the scalar product

(u, v)W s,2(E|BR
) + (Pu, Pv)Wm,2(F|BR

) (u, v ∈ domPs,m).

Let T be the following integral:

Tf(x) =
1

σn

∫

BR




n∑

j=1

P ∗
j (yj − xj)


 f(y)

|y − x|n dy (f ∈ L2(F|BR
)).

The integral T defines bounded linear operators Tm : Wm,2(F|BR
) →Wm+1,2(E|BR

)
(see Lemma 3.2.7). Hence the composition TP defines a bounded linear operator
TmPs,m : domPs,m →Wm+1,2(E|BR

).

Now we can define an extension G̃s of the operator Gs : Ss,2Ik∆n
(BR) → Ss,2Ik∆n

(BR)
for u ∈ domPs,m. Indeed, if u ∈ domPs,m then there exists a sequence uN ∈
Cs(E|BR

) such that

lim
N→∞

‖u− uN‖|W s,2(E|BR
) + ‖Pu− PuN‖|Wm,2(F|BR

) = 0.



§3.8. EXAMPLES FOR THE MATRIX FACTORIZATIONS OF THE LAPLACE OPERATOR141

Then, for u ∈ domPs,m, we set

G̃su = lim
N→∞

1

Rσn

∫

|y|=R

(
∑

i=1

P ∗
i (yi − xi)

)
∑

j=1

Pjyj


 uN (y)

|y − x|n dσ(y).

Stokes’ formula and the continuity of the operator Tm imply that, for u ∈ domPs,

(3.8.2.9) G̃su = lim
N→∞

(uN − TPuN ) = u− (TmPs,m)u.

Hence the operator G̃s is well defined and does not depend on the choice of the
sequence uN .

Lemma 3.8.2.9. G̃u = Gu for u ∈ Ss,2Ik∆n
(BR) ∩ domPs,m.

Proof. It follows from Stokes’ formula, that TPu = τPu for u ∈ Ss,2Ik∆n
(BR) ∩

domPs,m. Hence (3.8.2.8) and (3.8.2.9) imply that Gu = G̃u. �

Then Lemma 3.8.2.9 and Theorem 3.8.2.8 imply the folowing result (similar to
Corollary 3.1.3).

Corollary 3.8.2.10. For every u ∈ domPs,m we have

u = lim
ν→∞

G̃νu+

∞∑

µ=0

G̃µTPu = lim
ν→∞

(TP )νu+

∞∑

µ=0

(TP )µ(G̃u),

where the limits and the series converge in the W s,2(E|BR
)-norm.

Now we obtain a formula for solutions of Pu = f in BR whenever they exists in
domPs,m (cf. §3.3).

Corollary 3.8.2.11. Let f ∈ Wm,2(F|BR
) such that Pv = f in BR with v ∈

domPs,m (s− 1 ≤ m ≤ s). Then the series
(3.8.2.10)

u =

∞∑

µ=0

GµTf = Tf +

∞∑

ν=1

dimSk(ν)∑

i=1,Ph
(i)
ν 6=0

(n+ 2ν − 2)(n+ 2ν)C
(i)
ν (G̃Tf)

‖Ph(i)
ν ‖2

L2(B1)

h(i)
ν ,

where
C(i)
ν (G̃Tf) =

=
1

Rσn

1

(n+ 2ν)(n+ 2ν − 2)

∫

|y|=R




n∑

m=1

P ∗
m

∂

∂ym

h
(i)
ν (y)

|y|n+2ν−2






n∑

j=1

Pjyj


 (Tf)(y)dσ(y)

are the Fourier coefficients of the vector G̃Tf with respect to the orthogonal basis

{h(i)
ν } in S0,2

Ik∆n
(BR), converges in the W s,2(E|BR

)-norm and Pu = f in BR.

Proof. The formula

u =
∞∑

µ=0

GµTf = Tf +
∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

C
(i)
ν (G̃Tf)

1 − λ
(i)
ν

h(i)
ν
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follows from Corollary 3.8.2.10 and the fact that

(3.8.2.11) Π(Ss,2P (BR))G̃Tf = lim
ν→∞

G̃ν(G̃Tf) = lim
ν→∞

G̃ν(G̃Tf − G̃2Tf) = 0.

In order to finish the proof we note that, according to (3.8.2.5),

‖Ph(i)
ν ‖2

L2(B1)

1 − λ
(i)
ν

= (n+ 2ν − 2)(n+ 2ν). �

We emphasize that the coefficients C
(i)
ν in (3.8.2.11) do not depend on s and m.

In the next section we discuss in detail the existence of W s,2(E|BR)-solutions of the

equation Pu = f and obtain a formula for its solutions with data in Wm,2(F|BR
)

(m ≥ 0).

§3.8.3 On the solvability of the system Pu = f in BR in a ball.
As in §§3.3, 3.4, in this section we obtain a criterion for the existence ofW s,2(E|BR

)-
solutions of the system (cf. §3.3, §3.4).

Pu = f in BR

and a formula for its Wm+1,2
loc (E|BR)-solutions with the datum f ∈ Wm,2(F|BR

)
(m ≥ 0).

Because P is a system of partial differential operators with constant coefficients
and injective principal symbol, it can be included into an elliptic Hilbert compati-
bility complex

(3.8.3.1) 0 → C∞(E)
P−→ C∞(F )

P 1

−−→ C∞(G)
P 2

−−→ . . . .

with P ◦ = P . This means that P 1 is a differential operator with constant coeffi-
cients of order p1 ≥ 1,

P i+1 ◦ P i = 0

and that

C
k σ(P )(ζ)−−−−−→ C

l σp1
(P 1)(ζ)−−−−−−−→ C

N

is an exact sequence for every ζ ∈ Rn\{0}.
One easily sees that the condition P 1f = 0 is a necessary one for the solvability

of the equation Pu = f .
Let us denote by Sm,2P 1,P ∗(BR) the following closed subspace of Wm,2(F|BR

):

Sm,2P 1,P ∗(BR) = {g ∈Wm,2(F|BR
) : P 1g = 0, P ∗g = 0 inBR}.

Lemma 3.8.3.1. The system {Ph(i)
ν }

Ph
(i)
ν 6=0

is an orthogonal basis in the Hilbert

space Sm,2P 1,P ∗(BR). Moreover there exist constants C̃1(m,n), C̃2(m,n) > 0 such that

C̃1(m,n)‖Ph(i)
ν ‖2

Wm,2(F|BR
) ≤ ν2m‖Ph(i)

ν ‖2
L2(F|BR

) ≤ C̃2(m,n)‖Ph(i)
ν ‖2

Wm,2(FBR
).
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Proof. It follows from the Stokes’ formula and Lemmata 3.8.2.1, 3.8.2.2 that

(Ph(i)
ν , Ph(j)

µ )L2(BR) =

∫

|y|=R
(h(j)
µ )∗(y)

(
n∑

m=1

P ∗
mxm

)
Ph(i)

ν (y)dσ(y) =

= (n+ ν − 1)(1 − λ(i)
ν )(h(i)

ν , h(j)
µ )L2(F|BR

).

Therefore the system {Ph(i)
ν } is orthogonal L2(F|BR

).
On the other hand, using the Stokes’ formula and the homogeneity of the poly-

nomials, one easily has, for ν ≥ m,

∑

|α|=m
(DαPh(i)

ν , DαPh(j)
µ )L2(BR) = (ν −m)

∑

|β|=m−1

(DβPh(i)
ν , DβPh(j)

µ )L2(∂BR) =

(ν −m)(n+ ν + µ− 2m+ 1)

Rn+µ+ν−2m+1

∑

|β|=m−1

(DβPh(i)
ν , DβPh(j)

µ )L2(F|BR
).

This formula implies immediately the orthogonality in W 1,2(F|BR
) and arguing by

induction we obtain the orthogonality in Wm,2(F|BR
) ( m ∈ Z+).

The estimates follows immediately from the calculations above.
Since the compatibility complex (3.8.3.1) is elliptic, for every g ∈ Sm,2P 1,P ∗(BR),

there exists v ∈Wm+1,2
loc (BR), satisfying Pv = g in BR (see, for example, [AnNa]).

In particular, for every 0 < r < R, v ∈ Ss,2Ik∆n
(Br),

v =
∞∑

ν=0

dimSk(ν)∑

i=1

c(i)ν (v, r)h(i)
ν ,

where the series converges in the W s,2(E|Br
)-norm (and hence, due to Stiltjes-

Vitaly Theorem, uniformly together with all the derivatives on compact subsets of
Br),

g = Pv =
∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

c(i)ν (v, r)Ph(i)
ν .

Because of Lemma 3.8.2.3, the coefficients c
(i)
ν (v, r) do not depend on r. More-

over, due to the orthogonality the system {Ph(i)
ν }

λ
(i)
ν 6=1

, c
(i)
ν (v, r) depend only on g

and do not depend on v. Hence the statement of the lemma holds. �

Now, for m ≥ 0 (m 6∈ Z+) we provide the space Sm,2P 1,P ∗(BR) with the Hermitian

form

(u, v)Sm,2

P1,P∗ (BR
) =

∞∑

ν=0

dimSk(ν)∑

i=1

K(i)
ν (f)K

(i)
ν (g)ν2m (f, g ∈ Sm,2P 1,P ∗(BR)),

where K
(i)
ν (f) are the Fourier coefficients of the vector-function f with respect to

the orthonormal basis {Ph(i)
ν } in S0,2

P 1,P ∗(BR).

The following proposition follows from Lemma 3.8.3.1 and Proposition 2.8.2.3.
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Proposition 3.8.3.2. For every m ≥ 0, the Hermitian form (., .)Ss,2
Ik∆n

(BR) is

a scalar product in Sm,2Ik∆n
(BR) defining the topology, equivalent to the original one.

Moreover, the system {Ph(i)
ν }

Ph
(i)
ν 6=0

is an orthogonal basis in the Hilbert space

Sm,2P 1,P ∗(BR) and there exist constants C̃1(m,n), C̃2(m,n) > 0 such that

C̃1(m,n)‖Ph(i)
ν ‖2

Wm,2(F|BR
) ≤ ν2m‖Ph(i)

ν ‖2
L2(F|BR

) ≤ C̃2(m,n)‖Ph(i)
ν ‖2

Wm,2(F|BR
).

In the following corollaryK
(i)
ν (f−PTf), are the Fourier coefficients of the vector

f − PTf with respect to the orthogonal system {Ph(i)
ν }

Ph
(i)
ν 6=0

in L2(F|BR
):

K(i)
ν (f − PTf) =

((f − PTf), Ph
(i)
ν )L2(F|BR

)

‖Ph(i)
ν ‖2

L2(F|BR
)

.

Corollary 3.8.3.3. For every f ∈ Wm,2(F|BR
), with P 1f = 0 in BR the

vector-function

u = Tf +
∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

K(i)
ν (f − PTf)h(i)

ν ,

where the series converges in W s,2(E|Br
)-norm for every 0 < r < R, satisfies

Pu = f in BR.

Proof. Since T : Wm,2(F|BR
) → Wm+1,2(E|BR

), using Stokes’ formula one
easily checks that

P ∗(f − PTf) = 0, P 1(f − PTf) = 0 in BR.

Moreover, Proposition 3.8.3.2 implies that, for every m ≥ 0,

((f − PTf), Ph
(i)
ν )L2(F|BR

)

‖Ph(i)
ν ‖2

L2(F|BR
)

=
((f − PTf), Ph

(i)
ν )Wm,2(F|BR

)

‖Ph(i)
ν ‖2

Wm,2(F|BR
)

(Ph(i)
ν 6= 0).

Now, arguing as in the proof of Lemma 3.8.3.1, we obtain that the statement of
the corollary holds. �

Theorem 3.8.3.4. Let m ≥ 0 and 0 ≤ s ≤ m+1. Then the following conditions
are equivalent:

(1) for every f ∈Wm,2(F|BR
), with P 1f = 0 in BR there exists u ∈W s,2(E|BR

),
satisfying Pu = f in BR;

(2)
∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

R2νν2s

∣∣∣∣∣
C

(i)
ν (G̃Tf)

1 − λ
(i)
ν

∣∣∣∣∣

2

<∞

for every f ∈Wm,2(F|BR
), with P 1f = 0 in BR.
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(3)
∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

R2νν2s
∣∣∣K(i)

ν (f − PTf)
∣∣∣
2

<∞

for every f ∈Wm,2(F|BR
), with P 1f = 0 in BR;

(4) there exists a constant C1 > 0 such that

max
λ
(i)
ν 6=1

1

1 − λ
(i)
ν

≤ C1ν
2−2s+2m for every ν ≥ 1, 1 ≤ i ≤ dimSk(ν);

(5) there exists a constant C2 > 0 such that

min
Ph

(i)
ν 6=0

‖Ph(i)
ν ‖2

L2(F|B1
) ≥ C2ν

2s−2m for every ν ≥ 1, 1 ≤ i ≤ dimSk(ν).

Proof. If for every f ∈Wm,2(F|BR
), with P 1f = 0 in BR, there exists a section

u ∈ W s,2(E|BR
), satisfying Pu = f in BR then, according to Corollary 3.8.2.11,

the series
∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

C
(i)
ν (G̃Tf)

1 − λ
(i)
ν

h(i)
ν

converges in the W s,2(E|BR
)-norm for every f ∈Wm,2(F|BR

), with P 1f = 0 in BR.
Therefore, (see Proposition 2.8.2.3 and Lemma 3.8.2.3)

∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

R2νν2s

∣∣∣∣∣
C

(i)
ν (G̃Tf)

1 − λ
(i)
ν

∣∣∣∣∣

2

<∞

for every f ∈Wm,2(E|BR
), with P 1f = 0 in BR, i.e (1) implies (2).

Because of the orthogonality and the homogeneity of the system {Ph(i)
ν },

C
(i)
ν (G̃Tf)

1 − λ
(i)
ν

= K(i)
ν (f − PTf), (Ph(i)

ν 6= 0 in BR).

Hence (2) and (3) are equivalent.
Let (3) holds. We fix f ∈ Wm,2(E|BR

), with P 1f = 0 in BR. Then, according
to Corollary 3.8.3.3, the vector-function

u = Tf +

∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

K(i)
ν (f − PTf)h(i)

ν ,

satisfies Pu = f in BR and, with a constant C2(s, n) > 0 depending only on s and
n (see Proposition 2.8.2.3),

‖u‖2
W s,2(E|BR

) ≤ ‖Tf‖2
W s,2(E|BR

)+
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+
1

C1(s, n)

∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

R2νν2s
∣∣∣K(i)

ν (f − PTf)
∣∣∣
2

<∞,

i.e. (3) implies (1).

Condition (5) implies that, with a constant C̃(m,n) > 0 depending only on m
and n (see Lemma 3.8.2.3 and Proposition 2.8.2.3),

∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

R2νν2s
∣∣∣K(i)

ν (f − PTf)
∣∣∣
2

≤

≤ 1

C2

∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

∣∣∣K(i)
ν (f − PTf)

∣∣∣
2

R2νν2m‖Ph(i)
ν ‖2

L2(B1)
≤

≤ C̃2(m,n)

C2

∞∑

ν=1

dimSk(ν)∑

i=1,λ
(i)
ν 6=1

∣∣∣K(i)
ν (f − PTf)

∣∣∣
2

‖Ph(i)
ν ‖2

Wm,2(F|BR
) <∞,

i.e. (5) implies (3).
Further, Proposition 3.8.3.2 and Corollary 3.8.3.3 imply that the image ImP of

the operator

P : Ss,2Ik∆n
(E|BR

) → Sm,2P 1,P ∗(F|BR
)

is closed. Then (1) yields that there exists a constant C0 > 0 such that

‖u‖2
W s,2(E|BR

) ≤ C0‖Pu‖2
Wm,2(F|BR

)

for every u ∈
(
Ss,2P (BR)

)⊥
, with (Pu) ∈ Wm,2(F|BR

), where
(
Ss,2P (BR)

)⊥
is the

orthogonal complement of Ss,2P (BR) in Ss,2Ik∆n
(E|BR

) (cf. [Hö]). In particular,

R2νν2s

C2(s, n)
≤ ‖h(i)

ν ‖2
W s,2(E|BR

) ≤ C0‖Ph(i)
ν ‖2

Wm,2(F|BR
) ≤

C0R
2ν ν2m

C̃1(m,n)
‖Ph(i)

ν ‖2
L2(F|B1

)

for every h
(i)
ν with λ

(i)
ν 6= 1. Therefore (1) implies (5).

Finally, (3.8.2.5) implies that (4) and (5) are equivalent. �

Corollary 3.8.3.5. One can find a finite number a ≥ −1 (depending on the
operator P ) that, for every f ∈W a+s,2(F|BR

) (s ≥ 0, a+s ≥ 0) satisfying P 1f = 0

in BR, there exists a W s,2(E|BR
)-solution u to Pu = f in BR.

Proof. It follows, for example, from Lemma 2.8.2.1 and Proposition 3.8.2.5

that the system {h(i)
ν } is a basis in the space C∞(E|BR

) ∩ SIk∆n
(BR) of harmonic

vector-functions in BR belonging to C∞(E|BR
). Then, for every u ∈ C∞

Ik∆n
(BR),

the series

u =

∞∑

ν=0

dimSk(ν)∑

i=1

C(i)
ν (u)h(i)

ν
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converges in C∞(E|BR
), and the series

u1 =
∞∑

ν=1

dimSk(ν)∑

i=1,Ph
(i)
ν 6=0

C(i)
ν (u)h(i)

ν

converges in W s,2(E|BR
) for every s ≥ 0. According to Sobolev Embedding The-

orems, u1 ∈ Cq(E|BR
) for every q ≥ 0, i.e. u1 ∈ C∞(E|BR

). Hence one easily

conclude that the series u1 converges in C∞(E|BR).

It is known (see, for example, [AnNa]) that, for every g ∈ C∞(F|BR
) satisfying

P 1g = 0 in BR, there exists a vector v ∈ C∞(E|BR
) with Pv = g in BR. Therefore

the operator

P∞ :
(
C∞
P (BR)

)⊥ → {g ∈ C∞(F|BR
) : P 1g = 0, P ∗g = 0 in BR}

(where
(
C∞
P (BR)

)⊥
stands for the closure of the linear span of the system {h(i)

ν }
Ph

(i)
ν 6=0

in C∞(E|BR
)) is injective, surjective and continuous. The Open Mapping Theorem

for the Frechet spaces implies the inverse operator P−1
∞ of P∞ is continuos too.

Now, using Theorem 3.8.3.4, one easily concludes that there exists such a finite
number a ≥ −1 (depending on the operator P ) that, for every f ∈ W a+s,2(F|BR

)

(s ≥ 0, a+s ≥ 0) satisfying the integrability conditions, there exists a W s,2(E|BR
)-

solution u to Pu = f in BR, unless the operator P−1
∞ is not continuos. �

Corollary 3.8.3.5 can be proved using Ehrenpreis Fundamental Principle (see
[Bj]).

Example 3.8.3.6. Let n1 ≥ 1, n2 ≥ 1, Q be l1 × k matrix factorization of the
Laplace operator in Rn1

x and q be l2×1 matrix factorization of the Laplace operator
in Rn2

y . Then the operator

P =

(
Qx

1
k qy ⊗ Ik

)

is a matrix factorization of the Laplace operator in R
n1+n2 .

We assume that either the dimension of the vector space SQ(Rn1) or the dimen-
sion of the vector space Sq(R

n2) is not finite. Then, Theorem 3.8.3.4 implies that,
for every m ≥ 0 and s > m+ 1/2, the image Im(Ps,m) of the operator

Ps,m : W s,2(E|BR
) →Wm,2(F|BR

)

is not closed (cf Example 3.6.4 and [Ke] for the Cauchy-Riemann system).
Indeed, let the dimension of the vector space SQ(Rn1) be not finite. We fix an

eigenfunction h̃1(y) of Green’s operator Gq corresponding to a ball in Rn2 and to an

eigenvalue λ̃1 6= 1. Because the dimension of the vector space SQ(Rn1) is not finite,

for any number N > 0 there exists a number ν ≥ N such that Qh̃ν(x) = 0 in BR,

and therefore there exists a harmonic homogeneous polynomial hν+1 = h̃1(y)hν(x)
in Rn1+n2 , with

GPhν+1 = λν+1hν+1,
1

1 − λν+1
=

n1 + n2 + 2ν

(n1 + n2)(1 − λ̃1)
.

Due to Theorem 3.8.3.4, Im(Ps,m) is not closed for every s > m+ 1/2.
The proof for the case, where the dimension of the vector space Sq(R

n2) is not
finite, is similar. �
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Example 3.8.3.7. Let n = 3, R3 = C1
z × Rx, l = 2, k = 1,

P =

(
2 ∂
∂z
∂
∂x

)
.

According to Example 3.8.3.6 we can not guarantee the existence of W s,2(BR)-
solutions of Pu = f for all data in Wm,2(F|BR

) satisfying the compatibility condi-
tions if s > m+ 1/2. However we can do it for s = m+ 1/2.

Indeed, one easily checks that harmonic homogeneous polynomials of the type

hν =
∑

r+t+N=ν

xNhr,t

(where hrt are the polynomials from Example 3.8.2.9) are dense in hs,2(BR). More-
over,

Ghν =
1 +N + 2r

1 + 2ν
hν .

Now Theorem 3.8.3.4 implies that for all Wm,2(F|BR
)-data satisfying the compati-

bility conditions there exist Wm+1/2,2(BR)-solutions of the equation Pu = f . �

As in §3.5, we can easily apply the spectral decomposition of the operator Gs
and Theorem 3.8.3.4 to the following P -Neumann Problem (cf. also [Ky], §§17–19).

Problem 3.8.3.8. Let ψ ∈ Wm−1/2,2(E|∂BR
) be a given vector, m ≥ 0 and

0 ≤ N ≤ m+ 1. It is requared to find u ∈WN,2(E|BR
) such that

(3.8.3.2)

{
∆nIku = 0 in BR

(
∑n
i=1 P

∗
i xi)Pu = ψ on BR.

It follows from the Stokes’ formula that the condition

(3.8.3.3)

∫

|y|=R
(h(i)
ν )∗(y)ψ(y)dσ(y) = 0 for all h(i)

ν with Ph(i)
ν = 0

is necessary, for Problem 3.8.3.8 to be solvable. Because the dimension of SP (Rn)
can be infinite, in general, Problem 3.8.3.8 is not an elliptic boundary value problem.

In the following corollary τ̃ψ stands for the integral

(τ̃ψ)(x) =
1

R

∫

|y|=R
ϕn(x− y)ψ(y)dσ(y)

and C
(i)
ν (τ̃ψ) stands for the Fourier coefficients of the vector τ̃ψ with respect to the

orthogonal basis {h(i)
ν } in S0,2

Ik∆n
(BR) (because ψ ∈Wm−1/2,2(E|∂BR

), using 2.3.2.5

in [ReSz], we conclude that τ̃ψ ∈ Sm+1,2
Ik∆n

(BR)).

Corollary 3.8.3.9. If Problem 3.8.3.8 is solvable for every ψ ∈Wm−1/2,2(E|∂BR
),

satisfying (3.8.3.3), then one of the conditions in Theorem 3.8.3.4 hold with s = N
and

(3.8.3.4) u =
∞∑

ν=1

dimSk(ν)∑

i=1,Ph
(i)
ν 6=0

(n+ 2ν − 2)(n+ 2ν)C
(i)
ν (τ̃ψ)

Rn+2ν ‖Ph(i)
ν ‖2

L2(B1)

h(i)
ν ,
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is its unique solution in
(
SN,2P (BR)

)⊥
. Back, if conditions of Theorem 3.8.3.4 hold

with s = (m+N+1)/2, Problem 3.8.3.8 is solvable for every ψ ∈Wm−1/2,2(E|∂BR
),

satisfying (3.8.3.3).

Proof. Since τPu = τ̃ψ for a solution u of Problem 3.8.3.8, using Corollary
3.8.2.9 one easily concludes that formula (3.8.3.4) holds.

Let Problem 3.8.3.8 be solvable for every ψ ∈ Wm−1/2,2(E|∂BR
), satisfying

(3.8.3.3). Then, it is easy to see that (3.8.3.3) holds for ψ = (
∑n
i=1 P

∗
i xi) f ∈

Wm−1/2,2(E|∂BR
) with f ∈ Sm,2P 1,P ∗(∂BR). Denoting by u ∈ SN,2Ik∆n

(BR) a solution

of Problem 3.8.3.8 for such a vector ψ, we obtain that τPu− τ̃ (
∑n
i=1 P

∗
i xi) f = 0.

Because of Lemma 3.8.2.1, Propositions 3.8.2.5 and 3.8.3.2, f = Pu, i.e. the con-
ditions of Theorem 3.8.3.4 holds with s = N .

Back, because ψ ∈ Wm−1/2,2(E|∂BR
), there exists a function v ∈ Sm,2Ik∆n

(BR)

such that v|∂BR
= ψ. Condition (3.8.3.3) implies = v ∈

(
Sm,2P (BR)

)⊥
. Hence we

can decompose v with respect to the orthogonal basis {h(i)
ν }

Ph
(i)
ν 6=0

in this space.

Denoting by C
(i)
ν (v) the corresponding Fourier coefficients, we set

ũ =
∞∑

ν=1

dimSk(ν)∑

i=1,Ph
(i)
ν 6=0

(n+ 2ν)C
(i)
ν (v)

‖Ph(i)
ν ‖2

L2(B1)

h(i)
ν .

One easily calculates that ũ = u is a solution of Problem 3.8.3.8, if condition (5) of
Theorem 3.8.3.4 holds with s ≥ (m+N + 1)/2. �

Corollary 3.8.3.10. For every ψ ∈ C∞(E|∂BR
), satisfying (3.8.3.3), there

exists u ∈ C∞
Ik∆n

(BR) satisfying (3.8.3.2).

In the case where P is the gradient operator in Rn, Problem 3.8.3.8 is the Neu-
mann Problem and (3.8.3.4) is a classical formula for its solutions (cf., for example,
[Vl], p. 426–428). For the Cauchy-Riemann system see [Ky], p. 181). æ

æ
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Analysis and Applications. Advances in Math. suppl. studies 7A (1981), 41–93.

[Ar] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–

404.

[Bz] Ju. M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators., Naukova

dumka, Kiev, 1965, pp. 800p; English transl. in Providence, AMS, 1968.

[Brg] S. Bergman, The kernel function and conformal mapping: Second (revised) edition.

(Mathematical Surveys, V), AMS, 1970.

[Bj] J.E.Bjork, Rings of differential operators, North Holland, New York, 1979.

[Bo] H.P. Boas, A geometric characterization of the ball and the Bochner-Martinelli kernel,

Math. Ann. 248 3 (1980), 275–278.

[Bu] L. Bungart, Boundary kernel functions for domains on complex manifolds, Pacif. J.
Math. 14 4 (1964), 1151–1164.

[Ca] T. Carleman, Les fonctions quasianalytiques., Gauthier-Villars, Paris, 1926.

[Ch] E.M. Chirka, Analytic representation of CR-functions, Mat. sbornik 98 (1975 4), 591–

623; English transl. in Math. USSR Sbornik 27 4 (1975), 526–553.

[DuSa] P.I. Dudnikov and S.N. Samborskii, Boundary value and initial-boundary value problem

for linear overdetermined systems of partial differential equations, Results of Sciences
and Technics, Modern Problems of Mathematics. Fundamental Trends, VINITI AN SSSR

65 (1991), 5–93. in Russian

[EgSb] Ju.V. Egorov and M.A. Shubin, Linear partial differential equations: Foundations of

classical theory, Results of Sciences and Technics, Modern Problems of Mathematics.
Fundamental Trends, VINITI 30 (1988), 264p.; English transl. in Springer, Berlin, 1992.

[Es] G.I. Eskin, Boundary value problem for elliptic pseudo-differential equations, Nauka,
Moscow, 1973; English transl. in Prov., AMS, 1981.

[FKun] V.A. Fok and F.M. Kuny, On the introduction of an ”annihilating” function in the
dispersion equations for gases, Dokl. AN SSSR. 127 (1959 6), 1195–1198. in Russian

[Fu] A.V. Fursikov, The Cauchy problem for elliptic equations of the second order in a condi-

tionally -correct formulating, Trudy Mosk. matem. ob-va 52 (1990), 138–174. in Russian

[Hd] J. Hadamard, Le problème de Cauchy et les equations aux derivées partielles linéares

hyperboliques, Gauthier - Villars, Paris, 1932.

[He] G.M Henkin, Method of integral representations in complex analysis, Results of Sciences

and Technics, Modern Problems of Mathematics. Fundamental Trends, VINITI AN SSSR
7 (1985), 23–124. in Russian

[HeLe] G.M. Henkin and J. Leiterer, Theory of functions on complex manifolds, Akademie-
Verlag, Berlin, 1984.
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– on iterations of Green’s integrals – – 100, 102, 112, 142
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– on the jump behaviour of Martinelli-Bochner integral – – 16, 26, 28
– – Green’s integrals – – 30, 33
on the existence of space bases with double orthogonality – – 56
– on the uniqueness for the Cauchy problem – – 48

Weak boundary values of elliptic systems – 28, 32, 34
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Index of Notations

R
n – – numerical real vector space of dimension n with the coordinates (x1, ..., xn)

Cn – – numerical complex vector space of dimension n with the coordinates
(z1, ..., zn), zj = xj +

√
−1xj+n, x ∈ R2n

Z – – the set of integer numbers

Z+ – – the set of non negative integer numbers

Zn+ – – the product of n copies of Z+

|α| = α1 + ...+ αn for a multi-index α = (α1, ..., αn) ∈ Z
n
+

1j ∈ Zn+ – – the multiindex with (1j)i = 0 for j 6= i, (1j)j = 1

xα = xα1 ...xαn for x ∈ Rn, α ∈ Zn+

B(x, r) – – the ball in R
n with centre at x and the radius r

X – – open subset of Rn

E = X × Ck, F = X × Cl – – trivial vector bundles over X

E∗ – – the dual bundle of E

(., .)x – – Hermitian metrics in the fibers of E or F (we do not indicate the
dependence on E or F for the simplicity of notations)

< f, g >x =
∑k
j gj(x)fj(x) – – the natural pairing E∗ ⊗E → C

dx – – the volume form on X

∂ = ( ∂
∂x1

, ..., ∂
∂x1

) – – the differentiation vector in R
n

D – – =
√
−1∂, or an open connected relatively compact subset of Rn

Dα =
√
−1

|α| ∂|α|

∂x
α1
1 ...∂xαn

n

Fj – – 11

∗E – – isomorphism between the bundles E and E∗ (we often will drop the index
E) –9

dop(E → F ) – – vector space of smooth partial linear differential operators of
order ≤ p between the bundles E and F – – 9

pdop(E → F ) – – vector space of pseudodifferential operators of order ≤ p
between the bundles E and F

P (x,D) – – differential operator in dop(E → F ), P (x,D) =
∑

|α|≤p Pα(x)Dα

with matrices Pα(x) of smooth functions on X – – 9

σ(P )(x, ζ) =
∑

|α|=p Pα(x)ζα with ζ ∈ Rn – – the principal symbol of P – – 9

P ′(x,D), tP (x,D) – – the transposed operator of the operator P – – 10

P ∗(x,D), – – the (formal) adjoint operator of the operator P – – 10

∆ = P ∗P – – the ”Laplacian”, associated with the operator P

Φ – – (bilateral) fundamental solution of the operator P ∗P – – 11

ΦY – – Green’s function of the operator P ∗P for the domain Y b X – – 103

L – – (left) fundamental solution of the operator P – – 12

SP (σ) – – space of local solutions of the system Pu = 0 on σ ⊂ X – – 10
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Sm,qP (σ) = SP (σ) ∩Wm,q(E|σ)

GP – – Green’s operator associated with the operator P – – 10

G – – Green’s integral associated with the operator P – – 12, 101

G(⊕fj) – – Green’s integral associated with the operator P and densities fj
(0 ≤ j ≤ p− 1) – – 29, 53, 65, 77, 88, 94

GY – – 107

TY – – 107

RY – – 113

{Bj}sj=0 – – Dirichlet system of order s – – 11

{Cj}p−1
j=0 – – Dirichlet system associated to the operator P and the system

{Bj}p−1
j=0 with respect to Green formula – – 11

HP
p (., .) – – special scalar product in W p,2(E|σ) associated with the operator P

– – 107

S(u) – – 107

σn – – area of the unit sphere in Rn

Csloc(E|σ), C
s(E|Ω) – – classes of s times continuously differentiable sections

(functions) on sets σ Ω ⊂ X– –8, 9

C∞
loc(E|σ), E(E|σ) – – class of infinitely differentiable sections (functions) on a

set σ ⊂ X – – 8, 9

C∞
◦ (E|σ), D(E|σ) – – the space of infinitely differentiable functions with compact

support on a set σ ⊂ X – – 8, 9

D′(E|σ) – – the class of distribution sections on an open set σ ⊂ X

E ′(E|σ) – – the class of distributions with compact support on σ ⊂ X

Lq(E|σ), L
q
loc(E|σ)– – Lebesgue spaces – – 9

Wm,q(E|σ), W
m,q
loc (E|σ) – – Sobolev spaces – 9

Bs,q – – Besov space – – 38, 53

Cm,λ – – space of Cm-functions with derivatives up to order m satisfying the
Hölder condition with degree 0 < λ < 1

M – – Martinelli-Bochner integral – – 13, 15, 100, 134, 141

h
(i)
ν – – spherical harmonics – – 66, 138

Pb – – tangential operator associated with P – – 86

{bν} – – basis with double orthogonality – – 42, 46, 55, 57, 71, 91
æ


