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ABSTRACT. Principles for applications of double orthogonality bases in the Cauchy
problem for systems with injective symbols are worked out. We obtain a solvability
condition and a Carleman formula for the solution of the problem.
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® INTRODUCTION

We shall be considering the Cauchy problem for solutions of a differential equa-
tion Pf = 0 where P € do,(E — F) is a differential operator with an injective
symbol on an open set X C R® . Here E = X x C¥ and F = X x C! are (trivial)
vector bundles over X whose sections of the class € over an open set ¢ C X are
interpreted as columns of functions from €(0), that is, €(E),) = [€(c)]¥, and simi-
larly for F', and the sign do,(E — F') means the vector space of all the differential
operators of type (E — F') and order < p.

In this way the differential operator P is given by an (I X k)-matrix of scalar
differential operators whose orders are less or equal than p on X, or P(x,D) =
> laj<p Palz) D where P, (z) are (I x k)-matrices of (infinitely) differentiable func-
tions on X. Then the injectivity of the symbol of the differential operator P means
that rankco(P)(z,() = k for all (z,() € X x R™\{0}.

The most important class of operators with injective symbols is the class of
elliptic differential operators corresponding to the case | = k. The model example of
other types of systems is the Cauchy-Riemann system in the space C™, of dimension
n > 1.

As in the last example, under sufficiently broad assumptions about the differen-
tial operator P, it is possible to include it in some elliptic complex of differential
operators on X, say, { E¢, P!} where E = X x C% are (trivial) vector bundles over
X which are different from zero only for 0 < i < N, and P’ € dopi(Ei — E”l)
where P? = P (see Samborskii [48]). We shall often use this identification, assuming
that the conditions on P are fulfilled.

If the differential operator P has injective symbol then P is hypoelliptic; that
is, for any distribution f € D’(FE) the singular supports of f and Pf (€ D'(F))
coincide. In particular, for any open set 0 C X all generalized solutions f € D'(E),)
of the system Pf = 0 on o are in fact (infinitely) differentiable.

Certainly, an open set is the natural domain of the system Pf = 0. However
some problems require the consideration of solutions on sets o C X which are not
open. Here we are interested not simply in restrictions of solutions to the given
set, but also in the so-called local solutions of the system Pf = 0 on o, that is,
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INTRODUCTION. 3

solutions of this system in a neighbourhood of . The space of local solutions of
the system Pf =0 on o will be denoted by S(o).

We always suppose that P satisfies the so-called uniqueness condition of the
Cauchy problem in the small on X:

(U)s if for a domain O C X we have f € S(O), and f =0 on a non-empty open
subset of O then f =0 in O.

We suppose now that D is a relatively compact domain in X with a sufficiently
smooth boundary, and that S is a set of positive ((n — 1)-dimensional) measure on
the boundary of D. The rough wording of the Cauchy problem for solutions of the
system Pf =0 in D with the data on S consists of the following.

PROBLEM 1. Let f, (|a] < p—1) be given sections of E over S. It is required
to find a solution f € S(D) whose derivatives D*f up to order (p — 1) have, in a
suitable sense, limit values D® fig on S such that D fig = fo (la <p—1).

Since the time of Hadamard, this problem has been known as the classic example
of an ill-posed problem (see Hadamard [14], p.39). However, despite Hadamard’s
bold thinking, we often come across with these problems in applications of mathe-
matics (see Hadamard [14], p.38). For example, the Cauchy problem for the Laplace
equation naturally arises in problems of the interpretation of electrical prospecting
data.

The Cauchy problem for the Laplace operator in various forms has been studied
by Mergeljan [38], Lavrent’ev [32],[34], Ivanov [17], Newman [41], Koroljuk [24],
Maz’ya and Havin [37], Jarmuhamedov [18], Shlapunov [55], and others. For holo-
morphic functions of one variable the Cauchy problem was considered in the papers
of Carleman [8], Zin [66], Fok and Kuny [12], Patil [42], Krein and Nudelman [26],
Steiner [59], and by other mathematicians. The Cauchy problem for the overdeter-
mined Cauchy-Riemann system was studied by Tarkhanov [62], Znamenskaya [67],
Aizenberg and Kytmanov [3], Karepov and Tarkhanov [19], Karepov [21], Shla-
punov and Tarkhanov [52],[53],[54], and others. The question of the regularization
of the Cauchy problem for the system of elasticity theory in space was studied by
Mahmudov [36]. The Cauchy problem for general systems of differential equations
with injective symbols has been investigated by Tarkhanov [61]-[64], Nacinovich
[40], and others.

What place does our paper occupy among those cited ? If we try to answer this
question we can say it is an attempt to elucidate new facts that the application of
bases with double orthogonality brings to the Cauchy problem for general systems
of differential equations with injective symbols (see Slepian and Pollak [56], Landau
and Pollak [29]-[30], Slepian [57]).

As to the results, we should like to comment upon two facts. Firstly, the solv-
ability conditions obtained are constructive, and simpler and more convenient than
those known so far (see Tarkhanov [62]). Secondly, a constructive formula for the
regularization (approximate solution) of the Cauchy problem for general systems of
differential equations with injective symbols has been devised. Earlier it was known
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that such a regularization (Carleman’s formula) existed (see Tarkhanov [61])). But
the hope for simplicity and a constructive approach existed only for the Cauchy-
Riemann system, or, more generally, systems factorizing the Laplace operator (see
Aizenberg [1], Jarmuhamedov [18], Mahmudov [36], and others).

In §1 we elaborate the operator-theoretical foundations of the application of bases
with double orthogonality to the problem of the continuation of classes of functions
from massive subsets to the whole set. In a paper dated 1927 Bergman (see [6],
p.14-20) developed the remarkable concept of the consequence of analytic functions.
These functions are orthogonal in pairs with respect to integration over two domains
one of which contains the closure of the other. He used this idea, at least in principle,
to study the criterion of analytic extension. This beautiful and potentially useful
idea did not receive sufficient recognition, probably because its practical application
requires the preliminary solution of an eigenvalue problem, which may be difficult
to solve. The idea of bases with double orthogonality appeared again in a series of
the papers by Slepian and Pollak [56], Landau and Pollak [29]-[30], and Slepian [57])
in the sixties independently of Bergman. Shapiro [49] is sure that Bergman knew
well that the phenomenon of double orthogonality had a more general character
than being simply a fragment of the study of analytic functions. These abstract
components are none other than the spectral theorem for a compact self-adjoint
operator which is sometimes credited to F. Riesz (see Riesz and Sz.- Nagy [46], s.
93). Krasichkov [25] has shown that the use of the spectral theorem leads quite
simply to an abstract Bergman theorem about the existence of bases with double
orthogonality (see also Shapiro [49],[50]). Our account in §1 reproduces Bergman’s
concept in general, except that we considering continuous systems of functions with
double orthogonality.

As Problem 1 may be unsolvable even in the class of all smooth (vector-) func-
tions f in D (not only those satisfying Pf = 0) there are formal difficulties in the
setting of the problem. To remove these difficulties it is necessary that the sections
fa(Ja| < p—1) should be restrictions to S of the corresponding derivatives of some
smooth section in D. This is connected with the correct setting of the Cauchy prob-
lem which corresponds to a suitable Green’s formula for solutions. The relevant
results are described in §2.

In §3 a solvability criterion for the Cauchy problem for elliptic systems in the
Hardy class H2(D) (see Tarkhanov [62]) is deduced in terms of bases with double
orthogonality on the boundary of D. The corresponding eigenvalue problem is
associated with a non-compact operator. Surface bases with double orthogonality
are continuous systems of generalized eigenvectors of this operator (see Berezanskii
[5], ch. V). Surface bases with double orthogonality in the Cauchy problem for
holomorphic functions of one variable seemed to have been first applied by Krein
and Nudelman [26]. Theorems on the jump of an integral of Green’s type with
density of this or that class imply that the behaviour of a solution f of Problem 1
near S is completely determined by the smoothness of the Cauchy data f, (|a] <
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p—1). In particular, if f, € C’p_l_'a'(E'%) (where S is the interior of § in 0D) then
f e CP~1(SU D) (see Tarkhanov [63]). As for the behaviour of f near some other

part olf ‘the boundary of D, it is determined by that class of functions (sections) in
which we seek the solution of the Cauchy problem. The application of space bases
with double orthogonality dictates the class that a solution belongs to. In fact it
is one of the Sobolev spaces WS’Q(E| p)- In §4 we investigate weak limit values on
the boundary of the domain D for solutions of systems with injective symbols in
the Sobolev class W*4(E|p). As a matter of fact, we present another view on the
results of Rojtberg [47] about values on the boundary of generalized solutions of

elliptic equations.

In §5 we prove a solvability criterion for the Cauchy problem for elliptic systems
in terms of the Green integral. Using the Cauchy data on S we construct a Green
integral satisfying Pf = 0 everywhere outside of S. Then the Cauchy problem
is solvable if and only if this integral continues across S from the complement of
D to this domain as a solution of the system Pf = 0 (¢ W*9(E|p)). Although
it is possible to obtain interesting examples directly from this, this result has an
auxiliary character. In spite of the simplicity of the idea, its proof is complicated by
some necessary facts from pseudo-differential operator theory on a manifold with
boundary. For example, one of these facts is the theorem on the boundedness of
potential operators in Sobolev spaces which was proved not long ago (see Eskin
[11], Rempel and Schulze [45] and others).

In §6 the extendibility condition (as a solution of the system P f = 0) across S of
the Green integral is expressed in terms of space bases with double orthogonality.
Its construction is connected with the solution of an eigenvalue problem for a certain
compact operator, so this part of the application of bases with double orthogonality
is most similar to the concept of Bergman [6]. We note that these ideas were
tested on the example of the Cauchy problem for holomorphic functions (see the
authors’ article [51]) and we find some hints in the considerations of Aizenberg and
Kytmanov [3].

The use of bases with double orthogonality not only gives information about
solvability conditions for the Cauchy problem, but leads to explicit formulae for
the regularization. A Carleman function of the Cauchy problem for solutions of
elliptic systems is constructed in §7.

Finally, in §8 we consider some examples of differential equations of the simplest
type. These are systems of the first order differential equations which are matrix
factorizations of the Laplace equation. A system of homogeneous polynomials in R"
possessing the double orthogonality property relative to integration over every ball
with centre at zero is constructed. Using it we obtain the solvability condition in
an explicit form and obtain a formula for the regularization of the Cauchy problem
for the simplest type systems in the special case. More exactly, S is a smooth
hypersurface in a ball B with centre at zero, and D is that one of the two domains
obtained by dividing B by S which does not contain the centre of the ball. The
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theorems on the solvability of the Cauchy problem and on the Carleman formula
for holomorphic functions of one variable obtained in this way are the simplest ones
(see Aizenberg and Kytmanov [3]). &
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PART 1.

ELLIPTIC SYSTEMS

§1. Bases with double orthogonality.

As Shapiro [49] has observed, Bergman’s problem is a special case of the question
of when a given element of a Hilbert space belongs to the image of some injective
compact operator with dense image.

In practice this problem appears usually in the following way. There is some
linear continuous mapping of Hilbert spaces, T : Hy — Hs, say. Further, in H; a
closed subspace ¥ is distinguished by some considerations. It is very helpful when
the image of 31 by the mapping T is closed in Hy. However this is not usually the
case. In any case we denote by X, the closure of this image. Hence Y5 also is a
Hilbert space with the hermitian structure induced from Hs.

PROBLEM 1.1. Let ho € Yo. It is required to find a vector hy € ¥1 such that
Thy = hs.

Except in trivial cases Problem 1.1 is incorrect. Therefore we can repeat the
words which have been written in connection with these problems in the paper by
one of the authors [62]. At the same time, the use of bases with double orthogonality
gives a more satisfactory approach to Problem 1.1. We describe this.

We denote by II the operator of the orthogonal projection on ¥; in H;, and by
M the operator T*T in Hy, where T* : Hy, — H; is the mapping adjoint to the
mapping T according to the theory of Hilbert spaces.

PROPOSITION 1.1. The restriction of the mapping IIM to 31 is a bounded linear
operator from 31 to Xq.

PROOF. In fact, the norm of the operator IIM is not greater than m = |7
even in Hy. [

PROPOSITION 1.2. The operator IIM : 31 — ¥4 is self-adjoint.

PROOF. The restriction to X1 of the operator IIM coincides with the restriction
to this space of the (evidently) self-adjoint operator IIMII. [
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8 PART I. ELLIPTIC SYSTEMS

PROPOSITION 1.3. The spectrum of the operator IIM : 31 — X1 belongs to the
segment [0; m].

PRrROOF. By Propositions 1.1 and 1.2 we can conclude that the spectrum of the
operator ITM belongs to the segment [—m;m|. On the other hand, this operator is
non-negative, because for h € ¥; we have

(IMh,h)gr, = (Mh,h)g, = |Th|[%, >0

This proves our statement. [

Problem 1.1 is definite if and only if the restriction of the operator 1" on ¥ is
injective. A corresponding conclusion follows for the operator I1M.

PrROPOSITION 1.4. The mappings IIM : 31 — ¥y and T : X1 — o are simul-
taneously injective or not injective.

Proor. It is sufficient to prove that the kernels of these operators coincide.
However, for h € 31, IIMh = 0 if and only if (Mh,g)y, = (Th,Tg)n, = 0 for all
g C Yo, that is, if and only if T'h = 0. This proves the proposition. [J

We can apply now the spectral theory of self-adjoint operators (see Riesz and Sz.-
Nagy [46], s. 107). Namely, let Ey (—oo < A < 00) be an orthogonal decomposition
of the unit in the Hilbert space ¥; corresponding to the operator IIM. In the
simplest case of a discrete spectrum Ai, Ao, ... we have E) = Z/\S X P where
pry, is the orthogonal projection to the eigen subspace of IIM corresponding to
the eigenvalue A;. In the general case F) is some family of orthogonal projections
concentrated on the spectrum of IIM, and growing from 0 to I while A\ changes
from —oo to +o00. This family has certain well known properties.

THEOREM 1.5 (ABSTRACT BERGMAN’S THEOREM). Problem 1.1 is solvable if
and only if

™1
(1.1) / Fd(EAHT*hQ,HT*hQ)Hl < 0.
0

PROOF. The condition (1.1) means that the vector IIT*hy € ¥; belongs to the
domain of the (left) inverse operator of the operator IIM : ¥; — ;. Hence one can
find an element h; € X1 such that IIMh; = IIT*hs. This implies that the vector
Mhy — T*hy = T*(Thy — hg) is orthogonal to the subspace 3 in Hj. In other
words we have (T*(Thy — h2),9)g, = (Thy — he), Tg)y, =0 for all g € 3. Under
the hypothesis, the vector hy belongs to the closure of the image of the mapping
T : 3, — 5. This means that one can find a sequence {f;} C o such that T'f;
converges to hs in Hy. Hence

”Thl — hg”%b = Jll)lgo(Thl — hg, T(hl — fj))Hg = lzmj_woO = 0,
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therefore Thy = hs. Thus, we see that the equalities IIM hy; = IIT*hy and Thy = ho
are equivalent. This completes the proof of the theorem. [

From the proof of Theorem 1.5 one can see a curious phenomenon. Namely, if
Problem 1.1 is solvable then its solution is unique. The formula for this solution is
given in the following theorem.

THEOREM 1.6 (ABSTRACT CARLEMAN’S FORMULA). Under condition (1.1) a
solution of Problem 1.1 is given by the formula

™1
(1.2) hy :/ TA(BAIT D).
-0

ProoF. Condition (1.1) guarantees the convergence of integral (1.2) in the weak
topology of the space ;. Therefore h; € 31 and we need only prove that IIMh; =
[IT*hsy. Now

m 1 m
TIMh; = / AL d(BAIT" hy) = / d(EXIIT* hy) = TIT* hs,
0 -0

which was to be proved. [

We emphasize once again that under condition (1.1) the integral in formula (1.2)
converges in the weak topology of the space ;.

If we use the representation of the projections Fy (—oo < A < 00) by means of
the eigen vectors of the operator IIM : 31 — 3, (see Berezanskii [5]. ch. V) then
we can see that it is possible to make formulae (1.1) and (1.2) more visible. For
let L1 C ¥ C L} where L; is a topological vector space such that the embedding
Ly C X, is quasi-kernel, and the operator IIM admits an extension IIM : L; — L;.
Having taken the transposed mapping to this mapping we obtain a continuation
of IIM to a continuous linear operator on L} which is denoted by IIM. Under

the above assumption on Ly, the operator IIM has a complete system of general-
ized eigenvectors {bg\z)}gﬁgm in L} (see Berezanskii [5], p.341). This means that

ﬁé/bf\i) = )\bg\i), and for any vectors h,g € Ly there is Parseval’s equality

(B@g)m = [ 300 0.5 mdo ().

Here E(A) = [, dE} is the spectral measure corresponding to the operator IIM,
and do () is a nonnegative Borel measure on the real axis. Using Parseval’s equality
for vectors from L; one can extend the ”Fourier transformation” (h, bg\l)) i, to
vectors from ¥; by continuity. Then we have (in the sense of the x-weak convergence
of the integrals in L))

A N
(1.3) Exh :/ > " (h b, b do(C) (he %),
0 4=1
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COROLLARY 1.7 (ABSTRACT BERGMAN’S THEOREM). Problem 1.1 is solvable
if and only if

. 2
(IIT*hay, b5 ) i,

(1.4) /T: Z do(\) < .

PROOF. Using the equality (1.3), we obtain

AT ,
d(E\IIT*ho, TIT*hy) = d / S T he, b)) i, [Pdo () =
—%0 =1

VDN )
DT Do, b3 ) [Pdor (3).

i=1
In view of Theorem 1.5, we obtain the statement of the corollary. [

COROLLARY 1.8 (ABSTRACT CARLEMAN’S FORMULA). Under condition (1.1)
a solution of Problem 1.1 is given by the following formula (where convergence is
understood in the x-weak topology of the space L) :

m T ; IIT*h b(l)
1.5 1 = g .
h bf\)( QA A)H g0
=0 =1

Proor. It is sufficient to calculate

n>\ . .
dEN(IIT*hy) = > b (IT*ho, b)) r, dor (V).

i=1
and to put it in formula (1.2). O

We consider an instructive example.

ExAMPLE 1.9. We suppose that the operator T : ¥; — ¥ is 1) injective, 2)
compact. Then, by Proposition 1.4 the operator IIM : 3; — 3; is injective, and
(the compactness of T" and) the boundedness of II7T™* implies that IIM : ¥; — ¥4
is compact. According to the spectral theorem for compact self-adjoint operators
(see Riesz and Sz.-Nagy [46], s. 93), IIM has in ¥; a countable complete system
of eigenvectors {b;}32, corresponding to positive eigenvalues {\;}. However sim-
ple calculations show that (Tb;,Tb;)m, = A;j(b;,b;)m,, that is, the system {T;}
is orthogonal in Y. Evidently this system is complete in >, hence it gives an
orthogonal basis in this space. We notice that the system {b;} C 3; possesses
the double orthogonality property : 1) relative to the scalar product (.,.)y, in ¥4

1
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and 2) relative to the scalar product (7.,7.)p, in 2. As we noted in the intro-
duction, Bergman was the first to devise these systems (see [6]), and Krasichkov
[25] proved the abstract existence theorem. The orthogonal decomposition of the
unit corresponding to the operator IIM : »; — 3 is now given by the opera-
tors Exh =3 <y, bj(h,bj)m, (see (1.3)). Relations (1.4) and (1.5) take the form

— (h27Tbj)H2
175512,

coefficients of the vector h € ¥y relative to the orthogonal system (basis) {Tb;} in
this space. [

0 2 _ oo 7. ; . 1
> j—1lejl® < ooand hy =377, ¢;b; respectively, where c; are Fourier

=1

In the general case a system {bg\l)} also keeps some properties of bases with
double orthogonality. We describe now an alternative method for its construction,
using this idea. In the following we shall not take enough care of the legality of
operations, because we want to make clear the idea only. The problem is first to
construct a basis in ¥5 and then to obtain by means of it a basis in ;. We consider
the operator TTIT™ : 35 — ¥5. Again we notice that it is a bounded self-adjoint
operator with the same spectrum, as IIM. This operator is always injective, and it
inherits the compactness property from 7" : ¥; — Ys. We notice that the mapping
[T : ¥9 — ¥ is adjoint to T : X1 — X5 in the sense of Hilbert spaces. To describe
the image of T one can use an orthogonal decomposition of the unit {I} in 3
corresponding to the operator TIIT*. Then the solvability condition for Problem
1.1 has the form ffg %d([)\hg, hs) < oo, and the solution is given by the formula

hy = IIT* fj) %dl,\(hg). F urther, the projection operators I, can be presented,
similarly to (1.3), by generalized eigen vectors of the operator TTIT* in L}, where
Ly C ¥o C L is a suitable equipment of the Hilbert space Y. Let {eg\i)} be a
complete system of these vectors in L. Then, if the operator T is injective, {bg\i)}

(where bg\i) = %HT*eg\i)) is a complete system of generalized eigen vectors of the
operator IIM. We leave the reader to write the formulae, similar to (1.4) and (1.5),

in terms of the system {eg\i)}.

ExAMPLE 1.10. Krein and Nudelman [26] have considered the Cauchy prob-
lem for holomorphic functions of the Hardy class H? in the lower half-plane with
Cauchy data on the segment [—1;1] of the real axis. They had H; = L*(R%),
Hy = L?([-1;1]), the Hardy space X1, and the operator of restriction 7' : ¥ — Ha.
In this case we have Y9 = Hs. The projection Il : H; — ¥ is given by means of
limit values on R! of the Cauchy type integral in the lower half-plane. The opera-
tor TTIT* : X9 — X5 is an integral operator (but it is not the Carleman operator)
with a simple spectrum. The complete system of generalized eigenfunctions of this
operator was earlier constructed by Koppelman and Pincus [23]. Having extrap-
olated it by the operator IIT* on the whole real axis, Krein and Nudelman [26]
obtained a continuous system of functions with double orthogonality in ;. They
also indicated a solvability condition, and a formula for the regularization of the
Cauchy problem. [J
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We finish this section with one more example connected with the Cauchy problem
for holomorphic functions when the support of the Cauchy data is a ”thin” set.

ExXAMPLE 1.11. Let o be a compact set of positive measure in R"”. We denote
by W, the set of Fourier transforms of functions from L2(o), that is, the set of
functions of the type f(¢) = (2711')” s e’ f(x)dx, where f € L%(o). According to
the theorem of Paley and Wiener, elements of W, are restrictions on R™ of (not
alll) entire functions of exponential order of growth in C™. For this reason W,
is called the Wiener class. By means of the Plancheral theorem it is easy to see
that W, is a closed subset of L?(R"). Let S C R™ be a given bounded set with
a non-negative Borel measure m. In order not to complicate the notation we use
the symbol L?(S) for the space of (classes of) functions which are measurable and
square-integrable relative to the measure m on S. As for the assumptions about
(S, m), we require that restrictions to .S of (infinitely) differentiable functions in R
should be contained in L?(S), and dense in this space. We consider the following
problem: for a given function f; € L?(S), find a function f € W, such that
fis = fo- To include it in the general scheme of Problem 1.1 we set H; = 31 = W,
Hy = L3(S), and define the operator T': H; — Ho as the restriction of functions on
S. One can show that the operator 7" has a dense image. For let ® be a continuous
linear functional on L?(S) which vanishes on the image of T. According to the
Riesz theorem, there is a function ¢ € L?(S) such that ®(f) = [g fedm for all
f € L?(S). Then one can consider ® in explicit form as a distribution with compact
support in R™. The condition ®;,,7 = 0 implies that the Fourier transform d of

the distribution ® vanishes on o. Since ® is an entire function, and the measure
of o is positive then d=0 everywhere in R”. From this we conclude that ® is the
zero distribution in R™, that is, the zero functional on L?(.S). Hence in our case we
have > = H,. It is not difficult to verify that the operator T is compact. We shall
assume its injectivity, in order that the Cauchy problem be defined. This simply
means that S is a set of uniqueness for the class W,. Then we have the situation
considered in Example 1.9. According to our earlier conclusions, if we denote by
{b;}, 7 = 1,2,..., a complete orthonormal system of eigenvectors of the operator
T*T in W, then the systems {Tb;}, j = 1,2, ..., will be an orthogonal basis in L*(S).
The condition of solvability and the formula for the regularization of solutions of the
Cauchy problem have the forms Y77 [¢;|* < oo and f = 3777, ¢;b; respectively,

(f0,Tb;) 2 s)

where ¢; = are Fourier coefficients of the function f relative to the

Hb] ||i2 (S)
orthogonal system {70} in L?(S). If S is a set of positive measure in R", then the
results of this example were obtained by Krasichkov [25]. [
ae

§2. The Cauchy problem for solutions
of systems with injective symbols
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We suppose that D € X is a domain with a boundary of class C? (for p = 1 it is
required that 9D € C?). For some of the results of the paper a higher smoothness
of the boundary is required, but always it is sufficient that 9D € C°.

We define the function p(x) by *dist(xz,0D) where the sign ”—" corresponds to
the case x € D, and "+ to the case # € X\D. Then, if a neighbourhood U of the
boundary 9D is sufficiently small, p € C¥ (U), and |dp| =1 in U.

Hence, for small |¢|, the domains D, = {z € D : p(z) < —e} have boundaries
of the class CP, and as ¢ — +0(—0) they approximate D from inside (outside).
Here the unit outward normal vector v(x) to the surface D at the point z is given
by the gradient Vp(z). The inner product ds = Vp|dv provides the volume form
induced by the volume dv(= dz) on X on every surface 0D..

We fix a Dirichlet system of order (p — 1) on 9D, say, B; € doy,(E — G;)
(0 < j < p-—1) where G; = U x C* are (trivial) bundles in U. The words
”Dirichlet system of order (p — 1) on dD” mean that 1) system B, is normal, that
is, the orders of the differential operators are pairwise different, and each of the
mappings o(Bj)(z, Vp(x)) is surjective for all z € 9D, 2) b; < p—1 for all j (see
Berezanskii [5], p.233).

We use the system of boundary operators {B,} to reformulate Problem 1 in the
following form.

PROBLEM 2.1. Let f; (0 < j < p—1) be sections of the bundles G; over the
set S. It is required to find a solution f € S(D) such that the expressions B;f
(0 <j <p-—1) have in a suitable sense limit values on S coinciding with f.

In order to justify the term ”the Cauchy problem” for Problem 2.1, we note that
the values of B;f (0 < j < p—1) on S determine all the derivatives of f up to
order p — 1 on S. At the same time Problem 2.1 is solvable in the class of smooth
(vector-) functions f, that is, it is not necessary to think about formal agreements
between the sections f; (0 < j <p—1).

The weak limit values B;f (0 < j < p — 1) on 0D are most important for
applications. We distinguish the maximal class of solutions f for which one can
speak of these limit values.

DEFINITION 2.2. The space Sp,g(D) consists of all solutions f € S(D) for which
the expressions B;f (0 < j < p—1) have weak limit values f; € D'(Gjop) on 0D
i the following sense

lim <g,Bjf(x —ev(z)) >ds= / < g, fj>ds forall g€ Cg,,,(GFlap)-
¢=0Jap oD

It is clear that, if f € S(D) N Cp_l(E@), the weak boundary values of the
expressions B; f (0 < j < p—1) on D exist and coincide with the usual restrictions
B; f. In order to relate the weak limit values of B, f (0 < j < p—1) on 0D to other
(radial, non-tangential, in some norm) limits, the Green formula and theorems on

the jump of the boundary integral in this formula are usually used. The construction
of the Green formula is based on the following lemma.
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LEMMA 2.3. If the neighbourhood U is sufficiently small, there is a Green oper-
ator Gp for the differential operator P in U which has the following form

p—1

d
Gplg, f) =Y < Cig,B;f >, ds + |d—g|AGV<g, 1)
=0

where C; € dop—1-p;(F* — G3) (0 < j <p—1) is some Dirichlet system of order
(p—1) on dD, and G, € do,_1((F*,E);y — A" ?).

PROOF. See Tarkhanov [63], Lemma 28.3. [

We have taken a liberty in wording Lemma 2.3. Namely, according to the usual
understanding, differential operators on X must have (infinitely) differentiable coef-
ficients, however the smoothness of the coefficients of the differential operators {C}}
and G, is finite. One may check what smoothness requirements for the coefficients
of {C}} are satisfied as a consequence of the supposed smoothness of the boundary
of D (and coefficients of the initial expressions {B,}). Certainly, these difficulties
are removed if 0D € C°°. For our purposes it is sufficient that the coefficients of
every differential operator B; belong to the class Cﬁ;l_bj , and the coefficients of
each differential operator C; belong to the class C% in the neighbourhood U.

Since the differential operator P(= P°) satisfies the condition (U)s (see the
introduction), the complex {E?, P’} has a fundamental solution in degree 0, say,
{®'}, ® € pdo_,, ,(E* — E*"1) where pdo,,(E* — E'~1) is the vector space of the
all pseudo- differential operators of type (E* — E*~1) and order m (see Tarkhanov
[63], Corollary 27.8). This means that ®**'P' 4+ P'~1®" = 1 — §% on CZ,,,(E")
where S* € pdo_.,(E* — E') are smoothing operators, and S° = 0. In particular,
the component ® = ®! is a left fundamental solution of the differential operator P.

THEOREM 2.4. For any solution f € Sp (D) we have the Green formula

f(x),x € D,

p—1
2.1 — < Ci®(x,y),Bif >, ds = —
2 /8DJ;) 790 8), Bif >y &3 {O,xeX\D.

PROOF. First, the theorem of Banach and Steinhaus implies that, for a solution
[ € S(D), the expressions B;f (0 < j < p — 1) have weak limit values f; €
D'(Gjjsp) on 0D if and only if

) Jim [ <.Bf > ds = /8 | <8.0; >0 ds forallg € CZ5,(G)).

We now choose a number € > 0 so small that 0D. C U. We represent the
solution f € S(D) in the domain D by the Green formula, having taken as Green’s
operator of the differential operator P the operator from Lemma 2.3. Then, since



§2. THE CAUCHY PROBLEM FOR SOLUTIONS OF SYSTEMS ... 15

the restriction of the differential dp on the surface 0D is equal to zero, we get
formula (2.1) where in place of D we have the domain D. Having made the limit
passage by € — +0, and having used equality (2.2) we obtain the theorem. [

Formula (2.1) gives the apparatus for the effective control of the heuristic con-
sideration that the behaviour of a solution f € Sp (D) near a point € 9D in the
closure of the domain is completely determined by the "smoothness” property near
x on 9D of the weak boundary values B; f (0 < j < p—1). Thus for f € D'(G;jsp)
(0<j<p—1)weset f=a@f; sothat f € D'(®G,sp), and

61(0) = [ 3 < C0)0an). S >y ds (% 0D)
=0

Let N be a relatively compact neighbourhood of the point z in X, and ¢, €
Co5mp(X) be a function supported on the e-neighbourhood of A" and beying equal
to 1 in N. Then, denoting by xp the characteristic function of the domain D, we
can rewrite formula (2.1) in the form xpf = —G(p (BB, f)) — G(1 — o) (B, f)).
The first summand in (2.1) depends only on the values of B;f (0 <j <p—1)in
the e-neighbourhood of the set N'N &D on the boundary, and the second one is an
infinitely differentiable section of E in N. Hence, the character of ”the transition”
of the solution f from N N D to its weak limit values on N N 9D is completely
determined by the jump behaviour of the surface integral G(¢.(®B;f)) in going
across NN dD. This integral is called the Green integral of the (vector-value)
distribution ¢ (@B, f).

COROLLARY 2.5. If for a solution f € Sp (D) we have B, f € C’ﬁ;B]’_l(Gw%)
j
(0<j<p—1) then f e C* Y(E ).

loc
ProoOF. Since differentiability is a local property then, as we said above, it is
sufficient to consider the case S = 0D. According to Lemma 28.2 of Tarkhanov
63], we can find a section f € CP~(E) such that B;f =B;f (0<j<p—1)on
OD. Then Theorem 2.4 and Lemma 2.3 imply that xp f = — [, Gp(®(z,y), Fw)).
In particular, the integral [, Gp(®(z,y), f(y)), being considered for z € X\D, is
equal to zero. Therefore it extends continuously together with its derivatives up to
order (p—1) to the closure of X\ D. But then, from Lemma 29.5 (Tarkhanov [63]),
it is easy to show that (see, for example, Lemma 1.1 in the paper of Shlapunov [55])
the integral [, Gp(®(z,y), f(y)) (z € D) extends continuously together with its
derivatives up to order (p — 1) to the closure of D. Hence f € Cﬁ;l(E@), which

which was to be proved. [

o
|DUS

In Definition 2.2 of the space Sp (D) we used a Dirichlet system {B,}, and
it seems that the set of elements of Spp(D) depends essentially on the choice
of this system. The fact that this is not so is unexpected. We shall say that a
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solution f € S(D) has finite order of growth near the boundary (9D) if for any
point 0 € D there are a ball B(z°, R), and constants ¢ > 0 and v > 0 such that
|f(z)] < cdist(x,0D)" for all z € B(xz°, R) N D. In view of the compactness of
0D, the constants ¢ and v can be chosen so that the estimate holds for all z € 9D.
The following theorem for harmonic functions was proved by Straube [60].

THEOREM 2.6. A solution f € S(D) belongs to Sp (D) if and only if it has
finite order of growth near 0D.

PROOF. Necessity. Any distribution on 0D locally has finite order of singularity,
and the kernel ®(z, y) is infinitely differentiable everywhere outside of the diagonal
{z = y}, and on the diagonal this kernel has the same type of singularity as the
well known fundamental solution of (p/2)-th degree of the Laplace operator. So
the necessity of the condition of the theorem follows from formula (2.1).

Sufficiency. Let f € S(D) have finite order of growth, say, v, near the boundary.
It is clear that together with Pf = 0 we have P*Pf = 0 where P* is (formally)
adjoint to the differential operator P. The operator P*P is an elliptic operator
of order 2p. We can complete the system {Bj}g;l to a Dirichlet system of order
(2p—1) on 0D, say, {Bj}?’;_ol, and then we can try to prove that any expression B, f
(0 < j <2p—1) has a weak limit on 0D according to Definition 2.2. When this is
proved, we shall have obtained formally more than we require. Of course, it comes
to the same thing, because the differential operator P and the system {B; }?;S are
arbitrary. So, without loss of generality, we can require that the differential operator
P is elliptic. But we can not assume for P*P the condition (U)g on X. Therefore
for P one can only guarantee the existence of a parametrix ® € pdo_,(F — E),
that is, in particular, ®P = 1 — S for some smoothing operator S € pdo_..(E —
E). We now consider this situation. Rojtberg [47] showed that one can naturally
define a regularization f of the solution f as a continuous linear functional on the
space CS/(Eﬁ) for a suitable s’ depending on the order of singularity of f near the
boundary (7). Then f = f in D, and f € W_S’q/(E|D) (= stq(E|*D)’)), where
s> ¢+ (y—1),and % + % =1 (¢ > 1). Further, for the solution f there are limit
values of the expressions B;f (0 < j < p—1) on 0D, these being understood in
the following sense. There is a sequence f*) € C> (E@) such that f*) converges

to f in W‘S’q/(E|D), and Pf(") converges to zero in W_S_p’q/(Fw). Moreover, for

any such sequence f*) the sequences B;f ) (0 < j < p—1) are fundamental in
1 ’
the spaces B 7% (G;jop), and therefore they converge in these spaces to

limits f;. Rojtberg called these sections f; (0 < j < p — 1) the limit values of the
expressions B; f (or equivalently of B;f) on dD. Now we want to show that the
sections f; (0 < j < p—1) are the weak limits of the expressions B; f in the sense
of Definition 2.2. To this end we write for the sections f*) the Green formula in
the domain D, that is,

—s—p—b;—

xpf® = —G(@B,;f") + ®(xpPf®) + S°(xp ™)
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(see, for example, formula (9.13) in the book of Tarkhanov [65]). If we calculate
the limits of the left and right hand side of this equality, for example in the weak
topology of the space D'(E|x\sp) then we obtain

f(x),x € D,

(2.3) —G(@f;) +S°(xpf) = { 0.2 € X\D.

We have convinced ourselves that the solution f is represented by the limit values
on the boundary of the expressions B; f (0 < j < p—1) according to Rojtberg [47],
and by the regularization f in D by Green formula (2.3). The second summand
on the left hand side of this formula is an infinitely differentiable section of E
everywhere on the set X. Therefore the result follows from the following lemma.

LEMMA 2.7. We suppose that D € X is a domain with an infinitely differentiable
boundary, and f; € D'(Gjop) (0 < j < p—1) are given sections on OD. Then, for
all sections g; € D(G75p) (0<j <p—1) we have

lim [ < g5 By (G(f)) (e+en(x) By (G(f)) (x—ev(z)) > ds = / < gt > ds.l

ProOF. We fix a section g; € D(G7 ) and we find a section g € Cj (F*) such
that Cjg = g;, and Cjg = 0 for 7 # j on 0D. It is not difficult to construct such a
section g, for example, using the formulae for the jumps in crossing 0D of a Green

type integral with a smooth density. Then using Lemma 2.3 we can write

dim | <9 [Bi(G(D)( +ev(@) = Bi(G())(x = ev(@))] >o ds =

p—1 p—1
= lim [/aD Y < Cig, Bi(Gf) >a ds—/aD Y < Cig,Bj(Gf) >, ds] =

e——+40
5 ]:O € ]:O
= lim Gp(g,Gf).
e=t0Ja(D_\D.)

Repeating the considerations on p.291 in the book of Tarkhanov [63] we obtain
that the last limit exists, and that it is equal to

/ < Cjg,f; >z ds :/ < gj, [; >a ds,
oD 0D

which was to be proved. [

As one can see from the proof of the lemma, it holds also for a domain D
with a boundary of finite, perhaps, very high degree of smoothness. The same
considerations can be applied to the smoothness of the sections g; in (2.4). These
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depend on the orders of singularity of the given sections f; (0 < j < p — 1) which
are finite since the surface 9D is compact.

We can now complete the proof of Theorem 2.6. In fact, if g € D(G’J‘f| sp) Where
0 < j <p-—1, then, from formula (2.3) and Lemma 2.7, we obtain

lim < g, Bjf(zx —ev(x)) > ds =
e—+0 oD

= lim | <g,-B;(G(®f;))(x —ev(z)) + B;(S°(xpf)(x — ev(w)) >4 ds =
e oD

= lim | <g,-B;(G(&f;))(x —ev(z)) + B;(S°(xpf)(x +ev(w)) >u ds =
e oD

= lim [ <g,-Bi(G(@f;)(w —ev(@)) + B;(G(&f;) @ + ev(x) >, ds =
e oD

:/ <g]7f] >xd87
oD

that is, f € Sp,g(D). Hence Theorem 2.6 is completely proved. [

We note that Lemma 2.7 is similar to the theorem on the weak jump of the
Bochner - Martinelli integral which was proved by Chirka [9]. We denote by S/ (D)
the subspace of S(D) which consists of solutions of finite order of growth near the
boundary of D. As we have just proved, for any Dirichlet system of order (p — 1)
on dD, say, {B;}, we have S/ (D) = Sp (D). For several reasons, it is convenient
to consider the Cauchy Problem 2.1 in a subspace of S/(D). We indicate now a
class of boundary sets S for which Problem 2.1 has no more than one solution in

SH(D).

THEOREM 2.8. Suppose that for a solution f € S7(D) the boundary values B; f
(0 <j <p-—1) vanish on a set S C D which has at least one interior point. Then
f=01inD.

PROOF. Denote, as above, by G(®B;f) the integral on the left hand side of
formula (2.1). Let 2° € S, and B = B(2% ) be an open ball in X such that
BNoD C S. Weset O = DUB. Then G(©B,f) € C;.(E|p) satisfies PG(DB; f) =
0 in the domain O C X, and it vanishes on the non-empty open subset B\ D of this
domain. Since the uniqueness property of the Cauchy problem in the small on X
holds for P then G(®B;f) =0 in O. In particularly, f = 0 in D, which was to be

proved. [

e
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§3. A criterion of the solvability of the Cauchy
problem for elliptic systems in terms of surface bases.

In [62] the maximal subclasses of S7(D) of solutions f, for which one can speak
of the boundary values of the expressions B;f (0 < j < p — 1) on 0D belonging
to the range of usual (not generalized) sections of G;, was distinguished. These
are the so-called Hardy spaces Hp 5(D) (1 < ¢ < co) which are modelled on the
pattern of the classical Hardy spaces of holomorphic functions. One could say that
H3 (D) consists of all solutions f € Sp (D) for which the weak limit values of
the expressions Bjf (0 < j < p —1) on 9D belong to LQ(Gj‘aD). In particular,
with the topology induced by L*(®G;jop) the space Hp 5(D) is a Hilbert space (see
below ). In this section we indicate an application of the abstract theory of §1 to the
Cauchy Problem 2.1 in the Hardy class H 123’ (D). So, let P be an elliptic differential
operator whose transposed operator (P’) satisfies the uniqueness condition for the
Cauchy problem in the small on X. We consider the following problem.

PROBLEM 3.1. Let f; € L*(Gjjs) (0 < j <p—1) be known sections on S. It is
required to find a solution f € HI%’B(D), satisfying B;f = f; (0<j<p—1) on S.

As was noticed by M.M. Lavrent’ev, the fundamental result about the solvability
of Problem 3.1 is the following.

LEMMA 3.2. If the complement of S on 0D has at least one interior point then
Problem 3.1 is densely solvable.

ProoF. We denote by H the vector space LQ(GBGﬂ s)- Having provided each of
the bundles G; with some Hermitian metric (., .), we can define the conjugate linear
isomorphism x : G; — G} by < xp, f >,= (f,¢)z- The vector space H is a Hilbert
space with the scalar product (®&f;, By;)n = Z?;é 5(fi,pj)zds. We consider in
H the subset H, which is formed by elements of the form @B;f where f € S(D).
We obtain more than is asserted in the lemma if we prove that H( is dense in H.
Using the Hahn-Banach theorem it is sufficient to show that if ® is a continuous
linear functional on H which is equal to zero on Hy, ® = 0. Let ® be such a
functional. According to the theorem of Riesz, there are elements ¢; € L?(Gj|s)
(0 <j <p-—1) such that ®(&f;) = (®f;, Bp,) for all ®f; € H. Having extended
each of the sections @; by zero to dD\S we obtain the sections ¢ € L*(Gjjap)
(0<j<p-—1), and we set g; = *p;, that is, g; € LQ(G}“aD). Since the functional

® vanishes on Hy, we have [, Z?;é < gj,Bjf >, ds =0 for all f € S(D). We
can now use Theorem 29.9 from the book of Tarkhanov [63] and conclude that
there exists a section g € HQ,’C(D) for which Cjg=9¢; (0<j <p—1)ondD. In
particular, C;g =0 (0 < j <p—1) on 0D\S. According to Theorem 2.8, g =0 in
D, so that & = 0, which was to be proved. [

To apply the results of §1 to Problem 3.1 some information about the orthogonal
projection in L*(®Gjjsp) on the subspace formed by elements of the form &B; f,
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where f € HIQD’ (D) is needed. We can obtain it by the very general theory of
functional spaces with reproducing kernels (see Aronszajn [4]). We now explain
this. We consider the space H = H3 5(D) together with the hermitian form

(3.1) (f.v) = Z /a By Big)ads (fo € (D)

on it. Theorem 2.8 implies that any solution f € HI%’ (D) is completely defined
by the restrictions of the expressions B;f (0 < j < p—1) to 0D. Hence the form
(3.1) defines a scalar product on Hp, 5(D).

LEMMA 3.3. HIQ_ZB(D) is a separable Hilbert space.

PrOOF. We can identify the pre-Hilbert space H?D’ (D) with the subspace of
L*(®G;)op) formed by the elements of the form ®&B; f, where f € H%B(D). How-
ever by Theorem 29.3 of see Tarkhanov [63] one can quite simply notice that this
subspace is closed. In fact, it is the intersection of kernels of special continuous lin-
ear functionals on L?(®G}op). Hence, H3 (D) inherits the properties of a closed
subset of the separable Hilbert space. This proves the the lemma. [

Let x be a fixed point of the domain D. We consider the functional 599 ) (1<
j < k) on H (D) given by (5§Uj)f = fUN(z) (1 < j < k) where fU)(z) is the
j-th component of f at the point z. Formula (2.1) implies that this functional
is continuous on H% (D). Moreover, a stronger property than continuity holds.

Namely, for any compact K C D there is a constant C'x such that H(Séj )H < Ck
for x € K. Hence, H?D’ (D) is a space with a reproducing kernel (see Aronszajn
[4]). We can now use the Riesz theorem on the general form of a continuous linear

functional on a Hilbert space and thus find (unique) elements K¢ e H p(D)
(1 < j < k) such that f@(z) = (£, K9y for all f € H. We denote by K7
(1 < j,i < k) the i-th component of the vector-valued function ngcj ). The (well

defined) matrix K(z,y) = ||IC§5” ) (y)| is called the reproducing kernel of the domain
D relative to HI%’ (D). Its properties are well-known.

PROPOSITION 3.4. The matriz K(z,y) is hermitian, that is, K(z,y)* = K(y, ).

Proor. If 1 < j,7 < k then

K@) = (KP, KDY = (K, K§ ) = K8 (),

which was to be proved. [
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PROPOSITION 3.5. trk(z,z) = H(Sg(cj)H.

PrOOF. We have,
k .
tri(z, z) = > (K, K g =169,
7j=1

which was to be proved. [

PROPOSITION 3.6. If {e,} is an orthonormal basis of the space Hp (D) then

for all z € D we have K = S e(yj)( Je, (1 < j < k) where the series converges
in the norm of H. As a series of (vector-) functions of two variables (x,y) € Dx D,
it converges uniformly on compact subsets of D x D.

PROOF. For a fixed 2 € D the Fourier series of the element K¢ € Hg 5(D)
(1 < j < k) with respect to the basis {e, } has the form kY = S 1(IC§cj), ey)HeEy.

To prove the first part of the proposition we notice that (IC;J ), ev)H = e )( ). We
suppose now that K; (i = 1,2) are compact subsets of D, and that constants C;

(i = 1,2) are chosen so that ||5g(cj)|| < (; for x € K;. Then for x € K,

<Gl Ze“ W)I* = ¢ Z e ()

Hence here we have > 7 |e(9)( )2 < C;for x € K; (i =1,2). Thus, if (z,y) €
Ky x K5, we obtain

00 1/2 / o 1/2
Z\e“) |<<Z\e<” ) (Z\exy)ﬁ) < /kC1Cs.

v=1

This proves the absolute and uniform convergence on compact subsets of D x D
of the series for ICgcJ ), which was to be proved. [

The formula for the reproducing kernel mentioned in Proposition 3.6 could be
written in the form K(z,y) = Y oo, e,(x)* ® e,(y). The a priori estimations for
a solution of an elliptic system imply that this series here converges uniformly
together with all its derivatives on compact subsets of D x D, that is, K is an
infinitely differentiable section of E X E over D x D.
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THEOREM 3.7. For all solutions f € HIQ{B(D) the following formula holds
p—1
(3.2) f(z) = / Y <*BjK(x,.),Bjf >y ds (x€D).
oD .
7=0

ProoOF. We simply rewrite the reproducing property of the kernel I in detail.
O

For holomorphic functions of several variables Theorem 3.7 is due to Bungart
[7].

COROLLARY 3.8. In the space L2(®Gj|3D) the operator of the orthogonal projec-
tion on the subspace 31 formed by elements of the form ®©B; f where f € HI%’B(D),
has the form

(3.3) H(@fj) = @Bj (/a i < *B,-IC(.I, -), fi >y dS) (@fj € Lz(@GﬂaD).

D i—o

PROOF. Let {e,} be an orthonormal basis of the space Hf (D). Then, from
equality (3.1), {®#Bje, } is an orthonormal basis of the subspace X1 in L?(®G;op).
Hence if &f; € L?(®Gjj9p) then

o

I(®f;) = > _(Bf; ®Bjev)12(06, 0p)(@Bjen) =

v=1

= ®B, (Z(eafj(y), OB, (y)(e)(z) © ey<y>>>L2<@Gj,aD><@Bjey>> .

v=1

The first part of Proposition 3.6 implies that the sign of summation over v can
be taken inside sign of the scalar product. This gives at once formula (3.3), which
was to be proved. [

We outline a scheme of application of the theory of §1 to the Cauchy Problem
3.1. We set Hy; = L*(®G,jpp) and Hy = L*(®Gj|s). The hermitian structures on
these spaces are introduced as was explained in the proof of Lemma 3.2. Then H;
and Hs are Hilbert spaces. The operator T : H;y — Hs is given by the restrictions
of sections. Then the adjoint operator T is simply the extension of sections from S
to OD\S by zero. Further, we consider in H; the subspace 3; formed by elements
of the form ©B; f where f € HI%’B(D). We have already noted that 3 is a closed
subspace of H; representing H 1237 (D). We denote by II the operator of orthogonal
projection on ¥; in H;. This is the integral operator given by formula (3.3).
Lemma 3.2 means that the operator T": 3; — H> has a dense image, therefore we
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set 2o = Hy. We must consider the mapping II7*7T : 3; — %1, which is given by
the integral (3.3) except that the domain of integration is S instead of dD. If the
set S has at least one interior point (on 0D) then, from Theorem 2.8, the operators
T :%, — Y9 and IIT*T : ¥ — 37 are injective. Even in the simplest situations
the operator IIT*T is not compact, moreover, it is not Carleman operator (see
Berezanskii [5], ch.V, 14). Let {bg\z)} be a complete system of generalized eigen
vectors of the operator IIT*T in L} where L C X1 C L} is a suitable equipment of
31. Then Corollaries 1.7 and 1.8 imply the following results.

THEOREM 3.9. We assume that the complement of S in D has at least one
interior point. Then for the solvability of Problem 3.1 it is necessary and sufficient
that

: N* (T (@), 5
(3.4) /_ )J\ ?do(N) < oo

PROOF. It is sufficient to note that in this case we have m = |T||? =1. O

It is clear that Theorem 3.9 has only theoretical value, but is not in the least
a practical, because its application depends on the singular eigenvalue problem for
the operator IIT*T. Therefore cases where one succeeds in calculating the system
{bf\z)} in an explicit form are very interesting. There is such a situation in one of
the simplest Cauchy problems for holomorphic functions, considered by Krein and
Nudelman [26] (see Example 1.10). A corresponding result holds for Carleman s
formula.

THEOREM 3.10. Let OD\S have a non-empty interior (in 0D). Then under
condition (3.4) the solution of Problem 3.1 is given by the formula

gy p)
(3.5) flz) = — / —12 ®C;®(z,.)), b)) m, (T (@f;)’bk )Hlda()\)

PROOF. It is sufficient to substitute the expressions @B, f(y) (y € D), obtained
by Corollary 1.8, in Green formula (2.1). O

A similar formula could be constructed on the basis of the integral representation
(3.2). &

§4. Weak values of solutions in L9(D) on the boundary of D

Again let P be a differential operator with an injective symbol on X, not nec-
essarily satisfying the condition (U)g, and f be a solution of the system Pf = 0
in D of Lebesgue class LY(E|p) where 1 < ¢ < oo. What can one say of the limit
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values on 0D of the expressions B;f (0 < j < p— 1)? Extrapolating the situation
for holomorphic functions one can say that the class of solutions S(D)N LY(E p)
is wider than HI%’ (D). Moreover, a priori it is not clear, whether the solution
f € S(D)NLYE|p) has finite order of growth near 0D, that is whether the ex-
pressions B, f (0 < j < p— 1) have weak limit values on 0D. Estimates of growth
near 9D of solutions f € S(D) N L*(E|p) could be obtained from the asymptotic
behaviour of the reproducing kernel of the domain D with respect to the Hilbert
space S(D) N L*(E|p). However even in the case of the Cauchy-Riemann system
this asymptotic behaviour is not known for all domains (see Henkin [15], p.68). In
this section we prove that for any solution S(D)N L'(E|p) there are weak limit
values of the expressions B; f (0 <j <p-—1) on the boundary. Then the theorem
of Rojtberg [47] allows us to know the smoothness of these values on 9D.

So, we fix f € S(D)NLY(Ep), where 1 < ¢ < oo, and a number j (0 <
j < p—1). Putting aside for the meanwhile the questions of the correctness of
the definition, we associate a vector-valued distribution f; € D'(Gjjpp) with the
solution f in the following way. Let g; € C’bﬂ'“(G’J‘f'aD). Using Lemma 28.2 of
Tarkhanov [63], we find a section g € C}, (F*) such that Cjg = g;, and C;jg = 0
for i # 7 on 0D. Then we set

(4.1) < g, f; >= —/ < P'g,f>,dv (g; € C**(Gjop)
D

LEMMA 4.1. Definition (4.1) is correct, that is, it does not depend on the choice
of the section g € C, (F*) for which Cjg = g;, and C;g =0 for i # j on dD.

PROOF. It is sufficient to show that, if for a section g € C? (F*) the boundary
values on 0D of the expressions Cjg (0 < j < p — 1) are equal to zero, then
fp <Pg,f>dv=0.

First of all we replace the section g by another section with the same differential
P’g, and with derivatives up to order (p — 1) are equal to zero on 9D. For this
we represent the section g in D by means of the homotopy formula on a manifold
with boundary (see, for example, Tarkhanov [63], (12.3)). Bearing in mind the
connection between the Green operators of the differential operator P and the
transposed of P, and using Lemma 2.3 we have

(4.2) o' (xpP'g) + PV'® (xpg) + S' (xpg) = xpY-

Let v € W?P4(E?") (where ¢ >> 1) be an extension of the section ®(xpg)
from X\ D to the whole set X. The number ¢ can be chosen as large as we want,
however for our purposes it is sufficient that ¢ > n, and ¢ > ¢’ where ¢’ is dual
to the index ¢, that is, 1/¢ + 1/¢’ = 1. Then, if we consider the section g =
®(xpP'g) + PY'v + SV (xpyg), we can say that ¢ € WPI(F*), and P'§ = P'y.
Moreover, from formula (4.2), § = 0 outside of D, but since § € C*~'(F*) we have

loc

DG =0 (lJa] < p—1) on 0D. Then, replacing if necessary g by g, we assume
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without loss of generality that the derivatives of g up to order (p — 1) vanish on
0D. In this case there is some loss of smoothness of g, but this is not important
for us. Further, we use the lemma of Bochner which says that for any € > 0 there
is a function ¢. € D(X) (0 < . < 1) with support in the e-neighbourhood of the
boundary 0D which is equal to unit in some smaller neighborhood of 9D, and for
which [D%p,| < cqe?l everywhere in R™ where the constant ¢, does not depend
on ¢ (see Hérmander [16], theorem 1.4.1). We have

(4.3) / <Pg,f>,dv= / < P'(1—9)g, > dv+/ < P'(peg), f >z dv
D D D

Since the section (1 — ¢.) has compact support in D then, from Stokes’ formula,
the first summand on the right hand side of (4.3) disappears. As for the second
summand we can write
(4.4)

/ _ 1\l o 163 a—pBpT
/D<P(90€g>7f>mdv Z( 1) Z (ﬁ)/D\DE<D QOED (Pag>7f>mdv-l

lof <p 1BI<|al

We want to prove that the right hand side converges to zero, as ¢ — +0. For
to do this it is sufficient to estimate the typical summand in (4.4): [ p\p. <
DPp.D*B(PTg), f >, dv (8 # 0). Having used the Holder inequality, and taking
into consideration the estimates of the derivatives of the function ¢. we obtain with
a constant ¢ > 0 which does not depend on ¢ such that

<

/ < DPp. D (PP ), f >, dv
D\D.

<1 D%0: D (Py o)l e ry I lLaEonn,) <

|D\De

(4.5) < ¢ 1Pl HDa_BQHLq’(F* Il La(Epyp.)

[D\De

Since g € CP_'(F*), and D7g = 0 (]y| < p — 1) on 9D, using the localization
process and the repeated use of the Newton-Leibniz formula, it is not difficult to

see there is a constant cy > 0 such that for all sufficiently small § > 0 we have

a=B, | p—1—|al+18]+1/q ,
(4.6) 1Dl a (Fion,) < c20 9l s.q (Fio\py)

Similar considerations can be found in the book of Mihailov [39] (p.148). Now
we choose € > 0 sufficiently small and integrate inequality (4.6) with respect to §
from 0 to . Then using the Fubini theorem we obtain the inequality

a—f3 ! p—|al+]Bl+1/q
| D 9||Lq’(F|*D\D8 < cpE ||g||WP»q'(F|*D\D8)
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where ¢, = ¢2/((p — 1 — |a| 4 |8] + 1/¢q)¢’ + 1)*/7'. Substituting this estimate in
(4.5), we obtain

| < DPp.D*F(PLg), f >, dv| <
D\D.

< iy VY gl B0,

So we can find a constant ¢ > 0 depending only on the norms of the coefficients
of the differential operator P in the domain D such that for all sufficiently small
e > 0 we have

(4.7)

/ < Plg, f>,dv
D

< c”g”Wp,q’(E‘*D\DE)HfHLq(ED\DE)

The property of the absolute continuity of a Lebesgue integral with respect
to a domain of integration implies that for any ¢ in the range 1 < ¢ < oo the
expression on the right hand side of (4.7) converges to zero as ¢ — +0. Therefore
Jp < P'g, f > dv =0, which proves the lemma. [

As one can see, if ¢ = 1 in the proof of Lemma 4.1 the arguments fail. Thus in
this case the definition (4.1) needs some modification. Namely, it is necessary to
change the smoothness of the sections g; in (4.1) by ”40”, that is, we must take,
for example, g € be+1”\(G;f|aD), where A > 0. The distributions f; € D'(Gjjop)
(0 < j <p—1) constructed in (4.1) we now take as the weak limit values of the
expressions Bjf on dD. It is clear that if f € Cp_l(E@) then f; is simply the
pointwise restriction of B; f on 0D. However in the general case the identification of
f; (0 <j < p—1) with the weak limit values of the expressions B;f (0 < j <p—1)
on 0D by definition (4.1) is difficult. Later on we shall show that this identification
is valid, but now we begin with the justification of the naturality of definition (4.1).

LEMMA 4.2. For any solution f € S(D)NLY(E|p) (1 < q < o0) the following
Green formula holds:

p—1
(4.8) / g < Cjg,B;f >; ds = —/ <Pg f>dv (g€ Cp(F|%)).
oD * D
j=0

PROOF. For each number 1 < j < p — 1 we construct a section g¥) € CcP (F*)
such that C;g) = C;g, and C;g\9) = 0 for i # j on dD. We set gy = g — g\¥) —
... — ¢~ Then gy € CﬁC(F%), Cog®) = Cyg, and C;g(®) = 0 for i # 0 on ID.
Hence, according to definition (4.1) we can write

p—1 p—1
o D

b j=o i=0
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:—/ < Plg, f>,dv,
D

which was to be proved. [

Formula (4.8) holds also for solutions f € S(D) N L'(E|p), however with sections
g whose smoothness is greater than ”+0", that is, for g € CP*(F*) where A > 0.

LEMMA 4.3. For any solution f € S(D)NL'(E|p) the Green formula (2.1)
holds.

PROOF. Let = be a fixed point belonging to X\0D. We take some function
¢ € D(X) which is equal to 1 in a neighbourhood of 9D, and vanishes on some
neighborhood of the point . It is clear that ¢® € CX.(E, ® F*), therefore formula
(4.8) implies that

p—1
(49) / Z < qu),ij >, ds = —/ < p/(goq), f >, dv.
oD = D

We choose ¢ > 0 so small that ¢ = 1 in some neighbourhood of ”the piece”
D\D.. Since P'®(z,.) = 0 everywhere outside of the point z, it follows that the
integral on the right hand side of formula (4.9) is equal to the similar integral
taken over the domain D.. But f € S(D.), therefore the last integral is equal to
— faDg Gp(®(x,.), f), that is, (xp f)(x), which was to be proved. [

We can now formulate the principal result of this section. As before, we denote
by B*%(Gjsp) the usual Besov spaces of sections of the bundles G; over 9D (see
Kudrjavtsev and Nikolskii [27]). In particular, if s is not an integer or q = 2
then B*4(Gjsp) = W*9(Gjop). If 1 < g < oo then in definition (4.1) we can
take g; € Bbﬂ'+1/q/’q(Gj|aD) (0 < j < p-—1). Lemma 2.2 from the paper of
Rojtberg [47] guarantees existence of a section g € stq(ngD) such that Cjg = g,,
and C;g = 0 for ¢ # j on 0D. Then one can substitute g into the right part
of (4.1). Moreover, the above-mentioned lemma of Rojtberg [47] says that the
mapping g; — ¢ is continuous. Using Holder’s inequality it is easy to conclude that
Bf e B_bﬂ'_l/q/’q/(GﬂaD) (0 < j <p-—1) (see our paper [51]). However we obtain
a more general result directly from the fundamental theorem of Rojtberg [47].

THEOREM 4.4. For a solution f € S(D) N L'(E|p) the limit values of the expres-
sions Bjf (0 <j <p—1) on 0D defined by formula (4.1) are the weak limit values.
Moreover f € W*4(Ep) (1 < q < oo) if and only if Bjf € B5~%~Y%4(G,5p)
0<j<p-1).

PrROOF. Again we shall try to reduce the proof to the corresponding fact for
solutions of elliptic systems. We fix a section f € S(D) N LY(E|p), ¢ > 1, satisfying
Pf =01in D. Then f must also satisfy Af = 0 where A = P*P is an elliptic
differential operator of type E — E, and of order 2p on X. The system {Bj};’;(l)
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can be replaced with a Dirichlet system of order (2p — 1) on 9D in the following
way. WesetB =Bjfor0<j<p-—1, andB =%"1C;_,«Pforp<j<2p—1.
Then {B } is a Dirichlet system of order (2p — 1) on 0D, and the Dirichlet
system {C } P51 corresponding to it by Lemma 2.3 (with P = A) has the form
C’ =-CjxPxlfor0<j<p-—1, andC’ = —xBj_,x 1forp<j<2p-—1.
We now use a relation (which is similar to (4 1) to define the limit values of the
expressions /BVJ f(0<j<2p—1)on dD in our new situation. More precisely,
these expressions are only interesting for (0 < 7 <p—1). So, let g € Cb‘“(G*'aD)

(0 < j < p—1). Using Lemma 28.2 of Tarkhanov [63] we find a section G € C (E*)

loc
such that C; « Px~1 G =g, and C;G =0 for i # j (0 <4 < 2p—1) on dD. Then
we set

(410) <, B,f 5= —/D <NG, [ >pdv, (g5 € CH NG p)).

However, if we define B, f on 0D by means of formula (4.1), the choice of ¢ in
Lemma 4.1 is unimportant. In particular, nothing prevents us from taking g =
*P %71 G in (4.1). Then we obtain equality (4.10). Hence the definition of the
limit values of B;f (0 < j < p—1) on 9D does not depend on whether f is a
solution of the system Pf = 0 or Af = 0. So, replacing the operator P by A
we may suppose without loss of a generality that P is elliptic. But then the first
part of Theorem 4.4 follows from Lemmata 4.3 and 2.7. For, from Lemma 4.3, the
solution f is represented by the limit values of the expressions B;f (0 < j <p—1)
on 0D which are defined in accordance with equality (4.1) by means of the Green
formula (2.1). And Lemma 2.7 asserts that the weak jump in going across D of
the expressions B;G(®B;f) (0 < j < p — 1) coincides with B;f. Hence the limit
values of the expressions B;f (0 < j <p—1) on 0D exist, and they coincide with
the limit values calculated by the formula (4.1). This proves the first part of the
theorem for solutions f € LY(E|p) (¢ > 1), and for ¢ = 1 we must make obvious
modifications. To prove the second part of the theorem we assume in addition that
feS(D)NW*4(E p) where 1 < ¢ < co. Rojtberg [47] proved that there are limit
values of the expressions B;f (0 < j <p —1) on 0D in the following sense. There
is a sequence f*) ¢ C’OO(E@) such that f) converges to f in W*4(E|p) and
Pf converges to zero in W*™P4(F|p). Moreover, for any such a sequence f ) the
sequence ij(”) (0 <j <p-—1) is fundamental in Besov space Bs_bj_l/q’q(GﬂaD),
and therefore it converges in this space to a limit f;. Arguing as in the proof of
Theorem 2.6 we see that the solution f is represented by the boundary values f; by
means of the Green formula (2.3). Then Lemma 2.7 again shows that the sections
[ (0 <j <p—1) are the limit values on 0D of the expressions B, f. So the weak
limit values of the expression B;f (0 < j < p—1) on 0D belong to the Besov space
Bt 199(Gap).

Conversely, if such an inclusion holds then formula (2.1) and the theorems on
boundedness of potential (or co-boundary) operators on a manifold with boundary
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(see Rempel and Schulze [45], 2.3.2.5) imply that f € W*9(E p). This proves
Theorem 4.4. U

This theorem, in particular, shows that for a solution f € S(D)NL'(Ep) defi-
nition (4.1) of the boundary values B, f (0 < j < p—1) on dD does not depend on
the choice of the differential operator P. &

§5. The Green integral and solvability of
the Cauchy problem for elliptic systems

In this and the following 3 sections we assume that P is an elliptic differential
operator such that the transposed operator P’ satisfies the uniqueness condition of
the Cauchy problem in the small on X.

Theorem 4.4 explains that if we solve Problem 2.1 (of Cauchy) in the class
S(D)NLY(E p) (or, more generally, in the class of sections satisfying Pf = 0 in D
which have finite order of growth near the boundary of D) then we can hope only for
generalized limit values of the expressions B;f (0 < j < p—1) on 0D. Therefore,
since distributions have restrictions only on open subsets of the domain, it is natural
to assume that S is an open connected piece (subdomain) of the boundary of D.

This situation can be realized in the following way. There is some domain O € X,
and S is a smooth closed hypersurface in O dividing this domain into two connected
components: O~ = D and Ot = O\D.

In the wording of the following problem there are Besov spaces B~% ~1/4:4(@ j|§)
whose definition may be not clear. We define these spaces in the following way. In
Besov space B¥~%~1/24(G; 5p) (defined by one of the usual method) we consider
the subspace ¥ formed by all the sections which are equal to zero on S. For s < 0
this means that < g, f >= 0 for all g € B‘S’q/(G;|aD) with suppg C S. It is

easy to see that ¥ is closed. The corresponding quotient space (with the quotient
topology) we denote by Bs—bj—l/q,q(gj‘g)

PROBLEM 5.1. Let f; € B*%~1449(G;5) (0 < j < p—1) be known sec-
tions on S where s € Zy, and 1 < q < oo. It is required to find a section
feS(D)NW*4(Ep) such that B;f = f; (0<j<p—1)onS.

Under the formulated conditions the operator P has a right fundamental solution
on X. In other words there is an operator ® € pdo_,(F — E) such that ®P = 1-8°
on CZ,,,(E) where §° € pdo_o(E — E) is some smoothing operator. Then
PSY =0 on generalized sections of E with compact supports (that is, on £'(E)).

Using the "initial” data of Problem 5.1 we construct the Green integral in a
the special way. That is, we denote by f; € Bs_bf_l/q’q(Gﬂ@D) 0<j<p-1)
an extension of the section f; to the whole boundary. If, for example, s = 0 and
fi € L*(Gjjs) (0 < j < p—1), then it is possible to extend them by zero on dD\S.
In any case the extensions could be chosen so that they will be supported on a
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given neighbourhood of the compact S on dD. Then we set f: @E, and

(5.1) G(f(x) = /BD < C;0(x,.), f; >y ds (x#€ D)

It is clear that G(f) is a solution of the system Pf = 0 everywhere in X\0D.
In particular, if we denote by F* the restrictions of a section F € D’ (E|0) to the

sets OF, then G(f)* € S(O%).
THEOREM 5.2. If the boundary of the domain D 1is sufficiently smooth then, for

Problem 10.1 to be solvable, it is necessary and sufficient that the integral G(f) ex-
tends from O™ to the whole domain O as a solution belonging to S(O) NW*1(E)p).

PROOF. Necessity. Suppose that there is a section f € S(D)NW*4(E p) such
that B;f =f; (0<j<p—1)on S.
We consider the following section in the domain O (more exactly, in O\S):

(10.2)
Gf(x)+ f(x),x € O~.

Using the boundedness theorem for potential operators in Sobolev spaces on
manifolds with boundary (see Rempel and Schulze [45], 2.3.2.5) we can conclude

that G(f)* € W*4(E|p+) (differentiability max(s, p— s) is sufficient). This means
FE e WH1(BEjpx).

On the other hand, we consider the difference A = G(®B;f) — G(f). Let p. €
D(X) be any function supported on the e-neighbourhood of the set 9D\ S, and equal
to 1 in some smaller neighbourhood of this set. Since B;f = J?J (0<j<p—1)on
S then we can write

Alz) = /8 DZ < C0(@,.),0-(Byf — [}) >y ds (x & D).

The right hand side of this equality is a solution of the system Pf = 0 everywhere
in the domain O except the part of the e-neighbourhood of the boundary of S on
0D which belongs to O. Therefore, since € > 0 is arbitrary, A € Sp(O).

Now using the expression for the integral G(@B; f) from the Green formula (2.3)

and puting G(f) = G(®B;f) — A in inequality (5.2) we obtain
F(z)=—-A(z) (ze€ O\S)

Since S°(xpf) € S(X) the section F extends to the whole domain O as a
solution of the system Pf = 0.

Hence the section F extends to the whole domain O as a solution of the system
Pf=0.
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Thus, F belongs to S(O) NW*4(Ep), and on O this section coincides with

G(f)*, which was to be proved.
Sufficiency. Conversely, let 7 € S(O) N W*4(E|p) be a solution coinciding with

G(f)t on OF. Weset f(x) = —G(f)+F(x) (x € D). The above mentioned bound-
edness theorem for potential operators in Sobolev spaces (see Rempel and Schulze

[45], 2.3.2.5) implies that G(f) € W*9(E|p-). Therefore f € S(D)NW*(Ep).
Now, for g, € D(G;T|S) (0<j<p-—1), Lemma 2.7 implies that

lim <g,Bjf(x —ev(z)) >, ds = lim <g,Bjf(x —ev(z)) >, ds =
e——+0 oD e—+0 S

= lirﬁ0 <g,—B;(G(f)(x —ev(z)) + B;F(x —ev(x)) >, ds =
e—=+0 Jg

= lirﬁ0 <g,—B;(G(f))(x —ev(z)) + B;F(x +ev(x)) >, ds =
e—=+0 Jg

= lim [ < g.=By(G(F)(x — (@) + Bi(G())(w + ev(w) >, ds =
€= S

:/<gj,fj >mds=/<gj,fj >xd8.
S S

Hence B;f = f; (0 <j <p—1)on S, that is, f is a soution of Problem 5.1,
which was to be proved. [

e

§6. A solvability criterion for the Cauchy problem for elliptic
systems in the language of space bases with double orthogonality

Theorem 5.2 has been formulated so that the application of the theory of §1 (see
part 1) is suggested. For this assume in addition that ¢ = 2.
So, in this section we consider the solvability aspect of Problem 5.1.

PROBLEM 6.1. Under what conditions on the sections f; € Ws_bj_l/Q’Q(Gﬂg)
(0 < j < p—1) is there a solution f € S(D)NW*2(E|p) such that B;f = f;
0<j<p—1)onS?

Let © be some relatively compact subdomain of OT. Since Q € O™, it follows

that the restriction to €2 of the Green integral G(f) defined by equality (5.1) belongs
to the space S(Q) NW52(E|q). Hence the extendibility condition for G (f) from
O* to the whole domain O (as a solution in the class S(O) N W*2(Ep) could
be obtained by the use of a suitable system {b,} in S(O)NW*?(E|p) with the

double orthogonality property. More exactly, it is required that {b,} should be
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an orthonormal basis in X1 = S(O) NW#?2(E|p) and an orthogonal basis in ¥y =
S(Q) NW*2(Eq) (or the contrary !).

How can such a system be constructed ? The theory of §1 answers this question.

We consider Sobolev spaces H; = WS’Q(E|O) and Hy = WS’Q(Em) of sections
of E. According to our approach we define them in the ”interior” way using the
Riemannian metric dz on O or 2, and the Hermitian metric on (fibers of) E.
Thus, H; and Hs are Hilbert spaces. On the other hand, if the boundaries of O
and T satisfy minimal conditions of the smoothness (roughly speaking they should
be Lipschitz’s ones) then these spaces are isomorphic (as normed spaces) to the
Hilbert spaces W*?(E|5) and W*?(Eg). These spaces are already defined in the
"exterior” way. Namely, they are defined as quotient spaces of the Hilbert space
W#*2(E) by closed subspaces of sections vanishing on O or Q respectively.

The operator T : Hy — Hs is given by restriction of sections so that this is a
continuous linear mapping of the Hilbert spaces.

Further, we distinguish in H; and Hs the subspaces 31 and Y5 which are formed
by sections F satisfying PF = 0 in O or {2 respectively. The Stiltjes-Vitali theorem
(see Hormander [16],4.4.2) implies that these subspaces are closed, therefore they
are Hilbert spaces with the induced hermitian structures.

It is clear that the restriction of the mapping T to ¥; maps to X5. However it
is not evident that the image of T is dense in X,.

LEMMA 6.2. If the boundary of the domain 2 € O 1is regqular, and the comple-
ment of € has no compact connected components in O then the operator T : ¥ —
Yo has a dense image.

PROOF. We need to prove that restrictions to Q of elements of S(O) N W*2(E)o)
are dense in S(2) N W*2(E|q) in the norm of W*2(E|q). However, since the bound-
ary of Q is regular, S(€2) is dense in S(2) N W*2(E|q) in the norm of W*2(E|q) (see
Tarkhanov [63], ch 4). On the other hand, the complement of 2 has no compact con-
nected components in O, and hence the theorem of Runge implies that S(O) is dense
in S(€2) (see the same book, theorem 11.26). Since S(O) C S(O) N W*2(E|p), and
the natural topology in S(O) is stronger than the induced topology from W*2(E)p),
we obtain the required result. [

From the proof of the lemma we can see how to understand the words ”regular
boundary”. If s > p, the word "regular” means any boundary. And if s < p then
this means that the complement of 2 in every boundary point is sufficiently massive.
The reader can get a more exact characterization from the book of Tarkhanov [63]
(ch. 4).

LEMMA 6.3. If the differential operator P satisfies the condition (U)g on X then
the operator T : 31 — Yo is injective.

ProOOF. Let f € ¥y and T'f = 0. This means that the solution f € S(O)
vanishes on the non-empty open subset €2 of O. Hence the property (U)s implies
f =0 everywhere in O, which was to be proved. [
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However the most important property of the operator T (in view of the applica-
tion, via Theorem 5.2, of the theory of §1 to Problem 6.1) is the following.

LEMMA 6.4. The operator T : Y1 — Yo 1S compact.

PrRoOOF. We need to show that the operator 7' maps any bounded set to a rela-
tively compact set.

Let K C X7 be a bounded set, that is, one can find a constant C' > 0 such
that ||f|| < C for all f € K. The image of K by the mapping T', that is, T'(K)
is a relatively compact set if from any sequence {F;} C T'(K) one can extract a
subsequence {Fj;} converging in 3.

However if {F;} C T(K) then F; = f;q where {f;} C K. The sequence {f;} is
bounded in the Hilbert space ¥;. Therefore it contains a subsequence { f;x} which
converges weakly to some element f € 3; (see Riesz and Sz.-Nagy [46], s.32).
Certainly {f;} converges to f in the topology of the space D'(E|o).

We use now the Stiltjes-Vitaly theorem (see Hormander [16], 4.4.2) to conclude
that {f;r} converges to f in the topology of the space C}.(E|p). We set F = fiq,
and Fjr = fjrjo then F € ¥y and {Fji} converges to F in X, which was to be
proved. [

We can formulate now the main result on existence of bases with double orthog-
onality.

THEOREM 6.5. If Q2 € O is an open set with a reqular boundary whose com-
plement (in O) has no compact connected components in O then in the space
S(O)NW*2(E|p) there is an orthonormal basis {b,}52, whose restriction to €
is an orthogonal basis in S(X) N W2(Eq).

PrROOF. We construct this basis by a method which will allow to obtain addi-
tional information about the corresponding eigen-value problem.

Let IT be the operator of orthogonal projection on 31 in Hy. The a priori interior
estimates for solutions of elliptic systems imply that the space ¥; (and X3 ) is a
Hilbert space with a reproducing kernel (see Aronszajn [4]). Hence II is an integral
operator with a kernel K(z,y) € Cfs (E X Ejox0))-

If {e,}52, is an orthonormal basis of the space S(O) N W*?(E|q) then for all
z € O we have K(z,.) = Y07 e,(z) ® e,(.), where the series converges in the
norm of W%(E ® Ejp). As a series of (matrix-valued) functions of two variables
(z,y) € O x O, this series converges uniformly on compact subsets of O x O.

Thus, IIF = (F,K(z,.))n, (F € Hy). Now simple calculations show that the
operator IIT*T : Hy — H> is integral. Namely,

(IIT*T)F = / S < +D°K(2,.),D°F >y dv (F € Hy).
Q
al<s

From Lemmata 6.2, 6.3 and 6.4, and the results of Example 1.9 the restriction
of the operator II'T*T to ¥, is injective, compact, and self-adjoint operator in ;.
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Hence, if we denote by {b,} the countable complete orthonormal system of eigen-
vectors of the operator IIT*T on ¥; (corresponding to eigenvalues {\,} C (0,1)),
{b,} is an orthonormal basis of the space ¥; and {Tb,} is an orthogonal basis in
Y.

Therefore {b,} is a system with the double orthogonality property, which was to
be proved. [

For an element F € X; we shall denote by ¢, (F) (v = 1,2,...) its Fourier
coefficients with respect to the orthonormal system {b,} in X, that is, ¢, (F) =
(F,by,)m,.- And for an element F € Sigmas we shall denote by k,(F) (v =
1,2,...) its Fourier coefficients with respect to the orthogonal system {7'0,} in ¥,

that is, &k, (F) = %

orthogonality is the following.

Then the principal property of bases with double

LEMMA 6.6. For any element F € ¥1 we have

(6.1) e (F) =k (TF) (v=1,2,..)

ProOOF. Using the calculations of Example 1.9 we obtain

1
e (F) = (F, 5= (T 1Yo,y = (TF. Tb,) i, = ki (TF),

which was to be proved. [

We formulate now the solvability condition for Problem 6.1. Let G fbe the Green
integral (see (5.1) constructed from the ”initial” data of the problem. As already

we noted, the restriction of the section Qf to 2 belongs to the space Y.

LEMMA 6.7. Forv =1,2,...

(6.2) ky(Gf) = /8 Z_: < Ciky (D)), f; >, ds.

PrOOF. This consists of direct calculations with the use of equality (5.1). O

In order to determine the coefficients k,(Gf) (v = 1,2,...) it is not necessary
to know the basis {Th,} in . It is sufficient only to know the coefficients of the
decomposition of the fundamental matrix (®(.,y) (y € D) with respect to this
series. The properties of the coefficients &, (®(.,y) € C(Fx\ o) we shall discuss
in §7.
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THEOREM 6.8. If the boundary of the domain D is sufficiently smooth then for
the solvability of Problem 11.1 it is necessary and sufficient that Y -, |ky(g]7)|2 <
00;

PROOF. Necessity. Suppose that Problem 6.1 is solvable. Then Theorem 5.2
implies that the solution Qf extends from O™ to the whole domain O as a solution
belonging S(O)N W*2(E,p). Having denoted this extension F we obtain F € 34

and TF = Gf on Q. Therefore taking into the consideration formula (6.1), and
using Bessel’s inequality we obtain

Y RAGHP =D k(TF)P =Y le(F) = [|IF|IF, < oo
v=1 v=1 v=1

which was to be proved.

Sufficiency. Conversely, let condition (6.3) hold. Then the theorem of Riesz
and Fisher implies that there exists an element F € ¥ such that ¢, (F) = k,(Gf)
for v = 1,2,... Applying the operator T' to the series F = Y ° | ¢, (F)b, which
converges in the norm of H;, and taking into the consideration that the system
{T'b,} is a basis in ¥y, we have

TF =Y ¢ (F)Tb, =
v=1

= k(G/)Tb,=Gf on Q.
v=1

Hence F € S(O) NW*2(E|p), and the restrictions to Q of the sections F and Gf
coincide. Since the differential operator P satisfies the condition (U)s on X it
follows that the solution F coincides with QJ? everywhere in O. We conclude now
(using Theorem 5.2) that Problem 6.1 is solvable, which was to be proved. [

In conclusion we consider 2 examples.

EXAMPLE 6.9. Aizenberg (see Aizenberg and Kytmanov [3]) studied the Cauchy
problem for holomorphic functions of one variable, that is, in the case P = d/dz,
and By = 1. He took as O the unit circle (with centre at zero) divided into 2
parts by a smooth hypersurface S C B\{0} and he denoted by D that part of
this circle which did not contain zero. The system of holomorphic monomials 2"
(v = 1,2...) is an example of an orthogonal basis in the subspace of L?*(O) which
consists of the holomorphic functions. Moreover this holds for any circle with centre
at 0. Thus, choosing as 2 some circle with centre at zero, contained in O\ D, and
normalizing the monomials 2¥(v = 1,2...) in L?(0) we get a simple basis with
double orthogonality. If a solution of the Cauchy problem is looked for in the
class L?(D), and the "initial” datum is fo € L?(S) then Green’s integral could be
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constructed as 27“1/__1 S ’CCO_(Z d(¢. Then Theorem 6.8 gives with small modifications

the result of Aizenberg (see Aizenberg and Kytmanov [3]). We note that this
theorem of Aizenberg (and also the remark following it) was a model example for
us. U

EXAMPLE 6.10. In the paper of Shlapunov [55] the Cauchy problem for har-
monic functions of the class L?(D) was studied. The standard system By = 1 and
By = 0/0v was taken as a Dirichlet system on dD. If O is a ball with centre at
zero and, S is a smooth hypersurface in O, dividing this domain into 2 connected
components OF so that zero belongs to OF, the system {b,} with the double or-
thogonality property was constructed in an explicit form. This system corresponds
to a special choice of Q. Namely Q € O™ is a ball with centre at zero such that
Q € O%, and this basis consists of the homogeneous harmonic polynomials in R”.
Also in this parer, it was supposed that the "initial data” fo, fi € L?(S). Then as
fj (j = 0,1) one can take their extensions by zero on dD\S, and Green integral
(5.1) is simply

/;((I)(;C, )fl - a/qu)(ZU, )fo)ds

Thus, Theorem 2.1 of Shlapunov [55] is a very special case of Theorem 6.8. [

e

§7. The Carleman formula

In this section we consider the regularization aspect of Problem 5.1.

PROBLEM 7.1. It is required to find a solution f € S(D)NW*2(Ep) using
known values B f € Ws_bj_l/Z’Z(Gﬂg) 0<j<p—1)onS.

It is easy to see from Corollary 1.8 that side by side with the solvability conditions
for Problem 5.1 (¢ = 2) bases with double orthogonality give the possibility of
obtaining a suitable formula (of Carleman) for the regularization of solutions. We
shall illustrate this on example of Problem 7.1.

Let {b,} be the basis with double orthogonality, constructed in the previous
section, in the space (31 =)S(0) N W*2(E,p) such that the restriction of {b,} to
Q (that is, {Th,}) is an orthogonal basis of (X5 =)S(2) N W*2(E|q).

As above, we denote by {k,(®(.,y))} the sequence of Fourier coefficients for the
fundamental matrix ®(.,y) (y € Q) with respect to the system {7, }.

LEMMA 7.2. The sections k,(®(.,y)) (v =1,2...) are continuous, together with
their derivatives up to order (p — s — 1), on the whole set X.

ProOOF. Though the restrictions to €2 of the columns of the fundamental matrix
®(.,y) (for y € ) do not belong to the space X, for all y € X they do belong to
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WP=s—L4(Eq) where ¢ < —"<. Hence the scalar products

(@(‘, y)v TbV)ZQ _

ku(@(.,y)) = (Tb,,Th,)s

1
(7.1) =— Y / < *D%,, Db, ®(.,y) >, dv (v =1,2...).
Q

Y lal<s

are defined for all y € X. Since b, € C52,(E|o) we have k, (®(.,y)) € CL.°" ' (F*).
And this was to be proved. [

Using formula (7.1) one can see that the sections k, (®(.,y)) (v = 1,2...) extend
to the boundary of €2 from each side as infinitely differentiable sections (at least, if
the boundary is smooth).

LEMMA 7.3. For any number v = 1,2, ... we have P'k,(®(.,y)) = 0 everywhere
in X\€Q.
PROOF. Since P'®' =1 on £'(E*) then (7.1) implies that

Pk, (®(. ) = P'® (xa(+h,)) = xa(xb,) (v =1,2,...),

and this proves the statement. [

We introduce the following kernels €V) defined for (z,y) € O x X (x # y):

N
(7.2) M (z,y) =d(z,y) = > b(x) @k (D(,y) (N =1,2,...).

v=1

LEMMA 7.4. For any number N = 1,2, ... the kernels €V) ¢ Cioc(EXF) satisfy
P(z)eWN)(2,9) = 0 for x € O, and P'(y)e™N)(z,y) = 0 for y € X\Q everywhere
except on the diagonal {x = y}.

PROOF. Since {b,} C S(O), this immediately follows from Lemma 7.3. [

From the following lemma one can see that the sequence of kernels {¢(™)} inter-
polated for real values N > 0 in a suitable way, for example in the piece-constant
way, gives a special Carleman function for Problem 7.1 (see Tarkhanov [63], §25).

LEMMA 7.5. For any multi-index o, DSQ:(N)(.,y) — 0 in the norm of W?(E®
F;"O) uniformly with respect to y on compact subsets of X\O, and even X\O if
la| <p—s—n/2.

PROOF. First, we notice that, if y € X\O, every column of the matrix ®(z.,y)
is an element of the space ¥;. Therefore using Lemma 6.6 we obtain ¢V (., y) =
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O(.,y) — 25:1 ¢, (®(.,y)). Differentiating this identity with respect to y we find
the equality

(7.3) DYeM (. y) = DI Zb ® C,(De®(.,y)) (y€ X\O).

The correspondence y — D ®(.,y) defines a continuous linear mapping of the
topological space X\O to the direct sum of k copies of the space ¥;. Therefore
for every column of the matrix Dy®(.,y) its Fourier series with respect to the
orthonormal basis {b,} converges in the norm of ¥; uniformly with respect to y
on compact subsets of X\O (see Shlapunov [55], Lemma 3.1). This proves the first
part of the lemma. As for the second part, it is sufficient to use the same arguments
because for | < p—s—n/2 the correspondence y — D¢ ®(., y) defines a continuous

linear mapping of the whole set X \O to the direct sum of k copies of the space ¥;.
O

We can formulate now the main result of the section. For f € S(D) N W*?(E|p))
we denote by f € We=bi=1/2.2(G15p) (0 < j < p— 1) some (arbitrary) extensions
of the sections B, f from S to the whole boundary

THEOREM 7.6 (CARLEMAN’S FORMULA). For any solution f € S(D) N W*2(Ep)|j
the following formula holds:

(7.4) flz)=— hm/ Z<C’(’:(N) ),]7’] >, ds (x e D).
8D

N—o0

PROOF. Let G (f) be the Green integral constructed by formula (5.1). Theorem
6.8 implies that >, |k, (G(f)] < oo. Hence, from the theorem of Riesz and
Fisher, there exists an element F € S(O) N W*2(E|p) such that ¢, (F) = k, (G f).

In proving Theorem 6.8 we saw that this solution F is an extension of Gf from
the domain O to the whole domain O as a solution in S(O) N W*?(E|p). Then

Theorem 5.2 implies that the section f'(z) = —G(f)(z) + F(z) (z € D) belongs to
S(D)NW#2(E|p), and satisfies B; f' = f (0 < j < p—1) on S. Using (uniqueness)
Theorem 2.8 we see that f = f’ everywhere in D. Hence

f@)=—(Gf)(@)+ F(z) = —(GF) () = >k (GFby(x)) =

(7.5) =—(Gf)(x— lim > k,(Gf)b,(z)).

N—o0
v=1
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Putting in (7.5) the expressions for the coefficients k,(Gf) (v = 1,2, ...) which
are given in Lemma 6.7 we obtain

p—1 _
f(z)=— /aD Z; < C;®(z,.), f; >, ds—

N—o0

N p—1 _
i Cikn(®(x,.)), f: >y ds | by () =
im Z/fm§< E(@(2, ), J; >y ds | by(x)

N

— ngnoo /E)D jzo < (q)(a:, )= Zb,,(:c) ® ky (D(x, ))) Jfj >y ds =

v=1

N—o0

p—1
= — lim / Z < C;€WN(z,.), f; >, ds,
oD ‘=%

which was to be proved. [

We emphasize that the integral on the right hand side of formula (7.4) depends
only on values of the expressions B;f (0 < j < p—1) on S. Thus, this formula
is a quantitative expression of (uniqueness) Theorem 2.8. However this gives much
more than the uniqueness theorem because there is sufficiently complete information
about the Carleman function €V,

For harmonic functions of several variables Carleman formula (7.4) is first met,
apparently, in [55].

Remark 7.7. The series > >~ k,(Gf)b, (defining the solution F) converges in
the norm of the space W*2(E|p). The Stiltjes-Vitali theorem (see Hormander [16],
4.4.2) implies now that it converges together with all its derivatives on compact
subsets of O. Then, from formula (7.5), one can see that the limit in (7.4) is
reached in the topology of the space Cps.(E|o).

ae

68. Examples for systems of the simplest type

The examples of this section are based on the following simple observation.

LEMMA 8.1. If the coefficients of the differential operator P are real analytic
then Problem 5.1 is solvable if and only of the section G(f) extends from OT to the
whole domain O as a real analytic section belonging to W*4(Ep).

PRrROOF. First, we note that, since PG(f) = 0 outside of 0D, the section G(f) is
real analytic in the domain O". Now let F be the above extension of this section
in O. Then PF is also a real analytic section in O, and PF = 0 in O". From
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the uniqueness theorem we obtain that PF = 0 everywhere in the domain O, that
is, F € S(O)NW#2(E|p). Therefore the statement of the lemma follows from
Theorem 5.2. [

In particular, we can use the fact that (P*P)gf = 0 everywhere outside 0D,

and the extendibility condition for G(f) (up to a section F € WS’Q(E|O) satisfying
(P*P)F =0 in O) write in the language of bases with the double orthogonality.

DEFINITION 8.2. The differential operator P is said to be a simplest type oper-
ator if p =1, and P*P = —Al; where A is the Laplace operator in R".

We suppose that P is a (elliptic) differential operator of the simplest type in
R™ (see §8). Let O = Bpg be the ball in R™ with centre at zero and of radius
0 < R < oo, and S be a smooth closed hypersurface in Br dividing this ball into
2 connected components OT, and D = O~ so that the domain O™ contains zero.
We consider the following problem (of Cauchy).

PROBLEM 8.3. Let fy € Cloc(E|s) be a summable section of E on S. It is
required to find a solution f € S(D) N Cioc(E|pus) such that fis = fo.

As the fundamental solution of the differential operator P we can take the matrix
®(x,y) = P'(y)g(x — y), where g(z — y) is the standard fundamental solution of
convolution type of the Laplace operator in R” with the opposite sign. Then the
Green integral (5.1) has the following form:

- 1
6(0) = 7= [ ®la o (P fuds (a ¢ 9).

It is easy to see from the structure of the fundamental matrix ® that the com-
ponents of the section Gf are harmonic functions everywhere in B (and even in
R™ ) except on the set S.

We need a basis with the double orthogonality in the subspace of L?(Br) which
consists of harmonic functions. In [51] this closed subspace of L?*(Bpg) with the

induced hermitian structure was denoted by h?(Bgr). Let {h(yi)} be a set of ho-
mogeneous harmonic polynomials which form a complete orthonormal system in
L?(0BR) where v is the degree of homogeneity, and i is an index labelling the

polynomials of degree v belonging to the basis. The size of the index set for i as a
_ (n+2v—2)(n+v—3)!
- vi(n—2)! :

function of v is known, namely, 1 <i < J(v) where J(v)

LEMMA 8.4. For any 0 < r < oo the system { %h(;)} is an orthonormal

basis in h?(B,.) and an orthogonal basis in h*(B) where B is an arbitrary ball with
centre at zero.

PROOF. See Shlapunov [55], Lemma 3.5. [
We fix 0 < r < dist(0,S5) and set Q2 = B, so that Q € O. It easy to see from

Lemma 8.4 that for any 0 < R < oo the system { gj—ﬁh(f)} is an orthonormal



§8. EXAMPLES FOR SYSTEMS OF THE SIMPLEST TYPE 41

basis in h?(Bgr) and an orthogonal basis in h?(B,). In order to obtain the Fourier
coefficients for the section G(f) with respect to this basis in h?(B,) it is sufficient
to know the Fourier coefficients for the fundamental matrix ®(x,y) (see (6.2)). The

information about them is contained in the following lemma.

LEMMA 8.5.
0o J(v) 2@
; / 1 hy (y)
8.2 ) =®(0,y) — R () P* .
( ) (.CE,y) ( 7y) I;; v (SIZ’) (y>[n—}-2V—2 |y|n—|—2v—2]

where the series converges together with all the derivatives uniformly on compact
subsets of the cone {(x,y) € R™ x R™ : |y| > |z|}.

PROOF. It is sufficient to use the similar decomposition for g(x — y) which was
found for even n > 2 by Kytmanov (see Aizenberg and Kytmanov [3]) and for
the general case by Shlapunov [55] (Lemma 3.2), and then to use the equality

®(z,y) = P'(y)g(x —y). O

Our principal result will be formulated in the language of the coefficients

. , h)
k() — \/%_1 /SP* Wl 21V - |y‘n+g>_2]g(P)(y)f0ds (v=1,2,.).

THEOREM 8.6. For solvability of Problem 8.3, it is necessary and sufficient that

v ) ]_
(8.4) lim sup max |k£)(y)| <

V—00 B R

PROOF. Necessity. Let Problem 8.3 be solvable. Then Theorem 5.2 implies that
the solution QfJF on the domain O™ extends to a solution F on the whole ball Bp.
We fix 0 < r < R. It is clear that the components of the solution F belong to the
space h?(B,). Therefore, from Lemma 8.4, they are represented by their Fourier

series with respect to the system { %hfj)}

(85 Fla)= 3 e im0 @) (e By,

T,V

Bessel’s inequality implies that the series ), , |c,(j)(r)|2 converges. On the other
hand, in the ball €2.from Lemma 8.5, we obtain the decomposition

(8.6) Gf(x) =Y kP (x) (z€Q).
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Comparing (8.5) and (8.6) we find that

7’”+2V

(8.7) (r) = KO (v=1,2,..).

n+2v Y

Hence for any 0 <r < R

Ot s o § LT P
— v n+ 2 —\ = n+ 2v

Using the Cauchy-Hadamard formula for the radius of the convergence of a power
series we obtain

J(V) ‘k(l)( )‘2 1/2U

lim sup max |k,(f)( )| < hm Sup Z

<!
v—00 n+2v o
Since 0 < r < R is arbitrary then condition (8.4) holds, which was to be proved.

Sufficiency. If condition (8.4) holds then the Cauchy-Hadamard formula and the
estimate J(v) < constv"~? implies that the series >, |k( )( )2 n+2u converges
for any 0 < r < R. The Riesz-Fisher theorem implies that there exists a section F

(of the bundle E|p,) with the components from h*(B,) such that

[pnt2v o 420 .
_ S @), [T 2T () _
N Z n—+2uv ky pnt2y hy (@) =

= k@

where the series converges in the norm of the space L?(Ep ). It is easy to see
that in the ball 2 the section F coincides with gf Therefore it is a harmonic
(and hence real analytic) extension of the Green integral gf from O™ to the whole
domain O. Now using Lemma 8.1 and Corollary 2.5 we can conclude that Problem
8.3 is solvable. This proves the theorem. [

In conclusion we give the corresponding variant of Carleman’s formula. For each
number N = 1,2... we consider the kernel ¢V (z, ) defined, for all y # 0 off the
diagonal {z = y}, by the equality

N J(v)

()
(3:8) €M) (,y) = B(w,y) - B(0,5)+ 3 3" K@) P () 1))

v=1i=1 n+2v—2 |y‘n+21j 2
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LEMMA 8.7. For any number N = 1,2, ..., the kernel €\N) is an infinitely dif-
ferentiable section of EX F, which is harmonic with respect to x, and satisfying

P'(y)eW™)(z,9) = 0 for all y # 0 off the diagonal {x = y}.

Proor. This follows from the properties of the matrix ® and the polynomials
h(y). O

We note that since €) is a "remainder” summand in the formula (8.2), €™ (z,y) —|
0 (N — 00), together with all its derivatives uniformly on compact subsets of the
cone {(z,y) € R" x R" : |y| > |z|}.

THEOREM 8.8 (CARLEMAN’S FORMULA). For any solution f € S(D)NCioc(Epus)|
whose restriction to S is summable there the following formula holds

(8.9) fz)=— lim ) eWM(z, Yo (P)(v)fods (z € D).

Proor. This is similar to the proof of Theorem 7.6. [

For the specific domain D bounded by a part of the surface of a cone and a
piece of a smooth hypersurface S which is contained in the cone explicit Carleman
formulae in form (8.9) were obtained earlier in the papers of Jarmuhamedov [18],
and his students (see Mahmudov [36], and others).

Remark 8.9. Asin Theorem 7.6, the convergence of the limit in (8.9) is uniform
on compact subsets of the domain D together with all its derivatives.

x

x
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PART II.

THE GENERAL CASE
INTRODUCTION

We continue to consider the Cauchy problem for solutions of the system Pf =0
where P € do,(E — F) is some differential operator with an injective symbol on
an open set X C R" (see part 1), and E = X x C¥, F = X x C! are (trivial) vector
bundles over X whose sections of the class € over an open set 0 C X are interpreted
as columns of functions from €(o), that is, C(E),) = [€(c)]* and similarly for F.

We shall often use notation from part 1 of this paper without special explana-
tions.

We suppose that the differential operator P has real analytic coefficients. It
is known that in this case there is for the differential operator P a complex of
compatibility conditions, {E? P’} say, in which the differential operators P* €
do,,(E" — E™1) also have real analytic coefficients (see Dudnikov and Samborskii
10], 89).

Let D € X be a domain with a boundary of class C}, . (for p = 1 we require
that D € C? ). For some of the results of this paper higher smoothness of the
boundary is required, but it is always sufficient that 0D € C}x..

We fix a Dirichlet system of order (p — 1) on 0D, say, B; € doy,(E — Gj)
(0 < j <p—1) where G; = U x C* are (trivial) vector bundles over a sufficiently
small neighbourhood U of the boundary of the domain D.

PROBLEM 1. Let f; (0 < j < p—1) be given sections of the bundles G; over an
(open) set S C dD. It is required to find a solution f € S¥(D) such that B, fis = f;
0<j<p-1).

Unlike part 1, here we concentrate on the situation where P is an overdetermined
operator, i.e. [ > k, though the case | = k is also formally permitted. What new
facts does this bring to Problem 1 7

First, the differential operator P may have no right fundamental solution. Hence
the Green integral gf (see part 1, (5.1)) may, perhaps, not satisfy the equation

PGf =0.

Typeset by AMS-TEX
Typoset by ANS-TEX
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On the other hand, every overdetermined differential operator P induces on the
hypersurface S a tangential differential operator P,, and now ”the initial data”
(@ f;) must satisfy the induced tangential equation on S (see Tarkhanov [64], §11).
We denote by {Cj}f;é the Dirichlet system of order (p — 1) on 9D associated to
the system {B;} in the Green formula for the differential operator P. This system
is determined in a natural way in Lemma 2.3 (see part 1).

LEMMA 2. If Problem 1 is solvable then P,(®f;) =0 (weakly) on S, that is,

(1) / < C;(P'v), fj >,ds=0 forallve D(EQI) such that (suppv) NOD C S.
S

PROOF. Let there be a solution f € S7(D) such that B;f = f; (0<j<p—1)
on S. Then, if v € D(EQ/) and (suppv) N 9D C S, the Stokes formula implies

/ < C;((PYv), f; >, ds = / < C;((PY),Bjf >, ds =
S 0D

= lim Gp((Pl)'v),f) =0,
e——40 (9D5

which was to be proved. [

In §9 we show how Problem 1 may be reduced to the Cauchy problem for solutions
of elliptic systems which was considered in part 1 of this paper.

In §10 we prove a solvability criterion for the Cauchy problem for systems with
injective symbol in terms of the Green integral. By using ”Cauchy data” on S we
construct the Green integral which satisfies P*Pf = 0 everywhere outside of an
arbitrary small neighbourhood of S on dD. Then the Cauchy problem is solvable
if and only if this integral analytically extends across S from the complement of D
to this domain with preservation of a suitable Sobolev class, and the Cauchy data
on S satisfy the tangential equation on S.

In §11 the condition for extendibility (as a solution of the system P*Pf =
0) across S of Green s integral is written in terms of space bases with double
orthogonality. As in §6, their construction depends on solution of an eigenvalue
problem for a compact self- adjoint operator. So this fragment of the application
of bases with double orthogonality is most similar to the original Bergman concept
[6] (see part 1).

The use of bases with double orthogonality not only gives information about
solvability conditions for the Cauchy problem. It also leads to visible formulae for
regularization. A Carleman function of the Cauchy problem for solutions of systems
with injective symbols is constructed in §12.

Finally, in §13 we consider some examples of differential equations of the simplest
type including the many dimensional Cauchy-Riemann system. More exactly we
extend the results of §8 about elliptic systems of the simplest type to overdetermined
systems of the simplest type. In particular, this section includes the results of
Aizenberg and Kytmanov [3].
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89. Reduction of the Cauchy problem for systems with
injective symbols to the Cauchy problem for elliptic systems

Let O € X be a domain and S be a smooth closed hypersurface in O dividing
this domain into two connected components: O~ = D and O" = O\D. For our
purposes, it is sufficient to consider that the Dirichlet system {B;} is given only in
some neighbourhood of (compact) S.

We recall the definition of the operator * which acts on the bundles E,F' and
G; (0 <j <p-—1). We endow each of these bundles, which is abstractly denoted
by B, with some hermitian metric (.,.),. Then x : B — B* is a conjugate linear
isomorphism of bundles given by means of < x¢, f >,= (f,p). (f € By).

Also P’ is the transposed operator, and P* = s~ !P’x is the formally adjoint
operator for the differential operator P.

LEMMA 9.1. The differential operator A = P*P has a (bilateral) fundamental
solution J € pdo_op(E — E) whose kernel is real analytic off the diagonal of
X x X.

ProOF. This follows from the theorem of Malgrange (see Tarkhanov [64], §8)
because A is an elliptic differential operator of order 2p with real analytic coefficients
on X. [

We consider the following system of boundary operators defined in the neighbour-
hood U of the boundary dD. For a section f € CF_ ' (Ejyy) we set 7(f) = ®(B; f),
that is, 7(f) is a representation of the Cauchy data on S with respect to the differ-
ential operator P. Similarly for g € Cﬁ;l(F‘U) we set v(g) = ®(x~1Cj x g), that is,

v(g) represents the Cauchy data of g on S with respect to the differential operator
P*.

LEMMA 9.2. The system of boundary operators {7(.),v(P.)} forms a Dirichlet
system of order (2p — 1) on OD.

ProOF. This fact has already been noted in the proof of Theorem 4.4. (see part
1), and it is proved by simple calculations. [

For easy reference we note a simple consequence of Theorem 2.6.

LEMMA 9.3. Let S € C:2.. Then, for any solution f € ST(OF) which has finite
order of growth near S, the expressions 7(f) and v(P f) have weak limit values on

S belonging to D' (®Gj|s).

PrOOF. The statement of the lemma follows from Theorem 2.6 and Lemma 9.2
because, for any domain D’ C OF whose boundary intersects the boundary of O*
only in the set S, the restriction of the solution f on D’ belongs to Si(D’), and
because it is possible to extend the Dirichlet system {7(.),v(P.)} from D' N S to
the whole boundary dD’ as a suitable Dirichlet system (at least, if the boundary
of D' is sufficiently smooth). [
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We could not prove the converse statement (as we did in Theorem 2.6) except
in the case when S is a connected component of the boundary of the domain O*.

LEMMA 9.4. Let S € C2. If the solutions f£ € Sa(OF) have finite orders of
growth near S, and 7(f*) = 7(f~) and v(Pf*) = v(Pf~) on S then there is a
solution f € SA(O) such that flo+) = f*.

PRrROOF. It is sufficient to use Theorem 3.2 from the book of Tarkhanov [62]
taking into consideration Lemma 9.2. [J

The following theorem for the Cauchy - Riemann system in the space C" was
first proved, apparently, by Kytmanov (see Aizenberg and Kytmanov [3]).

THEOREM 9.5. We suppose that S € Cy5.. If a solution f € Sa(D) has finite

order of growth near S, and Py(7(f)) = 0, and v(Pf) = 0 on S then Pf = 0
everywhere in the domain D.

PROOF. Let the solution f € Sa(D) have finite order of growth near the hy-
persurface S. Then, from Lemma 9.3, the expressions 7(f) and v(Pf) have weak
limit values on S belonging to D'(®©G)|s). We suppose that Py(7(f)) = 0, and
v(Pf)=0onS.

Fix an arbitrary point 2° € S. Since the differential operator P has an injective
symbol then the complex of compatibility conditions {E? P*} (which is induced
by P) is exact in positive degrees on the level of sheaves over X. In particular,
this means that for any neighbourhood U = U(2°) of the point 2° and any section
f € Sp1(U) there exist a possibly smaller neighbourhood V' = V(z") of this point,
and a section u € Cp5,(E)y) such that Pu = f on V (see Tarkhanov [64], Theorem
3.10).

Since 7(f) represents the Cauchy data of f on S with respect to the differential
operator P, and P,(7(f)) = 0 on S then the exact Mayer -Vietoris sequence (see
Theorem 18.9 in the book of Tarkhanov [64]) implies that there are a neighbourhood
V = V(2°) of the point 2° in O and solutions f* € SA(O* NV) having finite order
of growth near SNV such that 7(f*) —7(f~) =7(f) on SNV.

Consider now two sections F* = f* and F~ = f~ + f defined on the open sets
O™ NV and O~ NV respectively.

By construction, the sections F* € Sx(O* NV) have finite orders of growth
near the hypersurface SNV, and 7(F*t) = 7(F~), and v(PFT) = 0 = v(PF ")
on SNV. Hence we can use Lemma 9.4, and conclude that there exists a section
F € Sa(V) such that Flotny = F*.

The differential operator A is elliptic and has real analytic coefficients therefore
the theorem of Petrovskii implies that the sections F and PF are real analytic in
V. Since PF =0in Ot NV, we can conclude that PF = 0 everywhere in V.

Thus, Pf = PF — PF~ =0in DNV, and f is real analytic in the domain D.
Hence we have Pf = 0 everywhere in this domain which was to be proved. [

We note that without the requirement ” P,(7(f)) = 0 on S” Theorem 9.5 is false.
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EXAMPLE 9.6. Let P(D) = | --- | be the gradient operator in R" (n > 1),

T
and By = 1. Then A = P*P is (minus) the usual Laplace operator in R", and
7(f) = f, and v(Pf) = %. In particular, if S is a piece of the hypersurface
{x,, = 0}, any harmonic function f in D which does not depend on the variable x,,
satisfies v(Pf) = 0 on S. But, certainly, such a function may be non-constant in
D. O

At the same time, if S = 90D then the condition ” P,(7(f)) = 0 on an open subset
of S” in Theorem 10.3 is not necessary (see Karepov and Tarkhanov [20]).

Remark 9.7. As one can see from the proof of Theorem 2.6, the smoothness
condition for the hypersurface S in Lemmata 9.3, 9.4, and Theorem 9.5 can be
loosened if we consider a priori solutions of the system Pf = 0 of order of growth

which is not greater than a given fixed number. But this is a general observation.
O

Theorem 9.5 gives a method of studying Problem 1. More precisely it shows
that this problem is equivalent to the Cauchy problem for solutions of the system
P*Pf = 0 with initial data 7(f) = @f; and v(Pf) = 0 on S. The last problem
belongs already to the range of Cauchy problems for elliptic systems which was
considered in part 1 of this paper.

In the following sections we realize this method. e

§10. The Green integral and solvability of the
Cauchy problem for systems with injective symbols

We formulate Problem 1 more precisely (as we did in §5).

PROBLEM 10.1. Let ijS_bﬂ'_l/q’q(Gj‘g) (0 < j <p-—1) be known sections on S
where s € Zy, and 1 < q < oo. It is required to find a section f € S(D) N W*4(E|p)
such that B;jf = f; (0<j<p-—1)onS.

Using the ”initial” data of Problem 10.1 we construct the Green integral in a
special way.

Namely, as a left fundamental solution of the differential operator P we take the
kernel ®(z,y) = P* J(x,y) where J is a fundamental solution of the ”laplacian”
A = P*P about which we spoke in Lemma 9.1.

We denote by f € Bs~b=1/99(G}5p) (0 < j < p—1) an extension of the section
f; to the whole boundary. If, for example, s = 0 and f; € LQ(GﬂS) 0<j<p-1),
it is possible to extend them by zero on 9D\ S. In any case the extensions could be
chosen so that they will be supported on a given neighbourhood of the compact S
on dD. Then we set f = @f;, and

(10.1) G(H(z) = /aD < C;®(x,.), fj >y ds (z € 8D)
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LEMMA 10.2. The potential g(f) satisfies Ag(f) = 0 on each of the open sets
D and X\OD, and has finite order of growth near the surface dD.

ProoOF. This follows from equality (10.1) and the structure of the fundamental
solution ®(z,y). O

In particular, if we denote by F* the restrictions of the section F' € D’ (Ej0) to

the sets OF, we have G(f)* € SA(O7F).

THEOREM 10.3. If the boundary of the domain D is sufficiently smooth then,
for Problem 10.1 to be solvable, it is necessary and sufficient that

(1) the integral G(f) extends from O to the whole domain O as a solution
belonging to SA(O) NW*4(Ep);
(2) Py(sf) =0 in a neighbourhood of some point z° on S.

PROOF. Necessity. Suppose that there is a section f € S(D)NW*9(Ep) such
that ij:fj (OSJ Sp—l) on S.
We consider in the domain O (more exactly, in O\S) the following section:

(10.2) Fla) = { 9f(z), € O,

Gf(x)+ f(x),x € O~.

Using the boundedness theorem for potential operators in Sobolev spaces on
manifolds with boundary (see Rempel and Schulze [45], 2.3.2.5) we can conclude
that G(f)* € W*4(E|p+) (if the surface 9D is sufficiently smooth, for example if
dD € C", r = max(s,p — s)). This means that F* € W*9(E|o=).

On the other hand, we consider the difference § = G(®B;f) — G(f). Let . €
D(X) be any function supported on the e-neighbourhood of the set 9D\S, and
being equal to 1 in some smaller neighbourhood of this set. Since B;f = f] (0 <
j<p-—1)on S then we can write

@) = [ 3 < Cia).eulBf = ) >, ds(a £ 0D),

The right hand side of this equality is a solution of the system A f = 0 everywhere
in the domain O except the part of the e-neighbourhood of the boundary of S on
0D which belongs to O. Therefore, since € > 0 is arbitrary, § € SA(O).

Now expressing the integral G(®B, f) from the Green formula (2.3) (see part 1)

and putting G(f) = G(@B;f) — ¢ in inequality (10.2) we obtain
F(z) =—6(x) (x € O\S)

Hence the section F extends to the whole domain O as a solution of the system

Af =0.
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Thus F belongs to SA(O) NW*4(Ep), and on O this section coincides with

G(f)*, which was to be proved.

Sufficiency. Conversely, let 7 € SA(O) NW*4(E|p) be a solution coinciding
with G(f)* on OF, and Py(f;) = 0 in a neighbourhood of some point z° on S.

We set f(z) = —G(f) + F(z) (x € D). The above mentioned boundedness
theorem for potential operators in Sobolev spaces (see Rempel and Schulze [45],
2.3.2.5) implies that G(f) € W#4(E|p-). Therefore f € Sa(D)NW?*4(E|p), and
f has finite order of growth near the hypersurface S.

Now Lemma 2.7 (see part 1) on the weak jump of the Green integral associated
with the differential operator A and the Dirichlet system {7(.), v(P.)} on 9D implies

that _ N N
{ T(Gf(x)) = 7(Gf(x)") = ®fjon dD,
v(PG(F)*) — v(PG(J)~) = 00ndD.

Since 7(G(f)*) = 7(F), and v(PG(f)*) = v(PF) on S then these equations
imply that N
{ T(f) =&f; on S,
v(Pf)=0onS.

We use now the condition " Py(&f;) = 0 in a neighbourhood V = V(z) on S”.
Then P, f(7(f)) = 0in V, and, from Theorem 9.5 applied to the piece VNS instead
of S, we obtain that Pf = 0 everywhere in the domain D.

Hence f € S(O)NW?#9(E)p) is the required solution of Problem 10.1, which
was to be proved. [

For the Cauchy-Riemann operator in C™ (n > 1) Theorem 10.3 is due to Aizen-
berg and Kytmanov (see [3], and also Aizenberg [2]).

There is an example showing that the sufficiency part of Theorem 10.3 without
the requirement ” Pb(GB]?j) = 0 on an open subset of S” is false.

0
2
ExamMpPLE 10.4. Let P(D) = -+ | be the gradient operator in R™ (n > 1),
0
Oz,
and By = 1. Then, as we note in Example 9.6, A = P*P is (minus) the usual

Laplace operator in R", and 7(f) = f, and v(Pf) = %. We take as S a piece of
the hypersurface {x,, = 0}, and fix, on a neighbourhood of O, some non-constant
harmonic function f which does not depend on the variable z,,. If the Cauchy
data on S are given by means of the restriction f| s then the Green integral can
be constructed by the formula G(f f s 5,9 .)fds, where g(x — y) is the
standard fundamental solution of convolutlon type of the Laplace operator in R™.
In other words, G(f) is (minus) the potential of a double layer with density f
supported on S. From the theorems on the jump of this integral and its normal
derivate, we have G(f)~ —G(f)T = f, and %g(f)— — %g(fﬁ = 0on S. Moreover
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% — 0 on S. Therefore Lemma 9.4 implies that the function (G(f) — f) extends

harmonically from O to the whole domain O (by means of G(f)~ on O~ ). This

means that we can conclude the same for the integral G(f)". However f|s may be
the restriction of a non-constant function in D. [

At the same time, if S = 0D then the condition ” Pb(eafj) = 0 on an open subset
of S” in Theorem 10.3 is not necessary (see Karepov and Tarkhanov [20]).

COROLLARY 10.5 (THE CARTAN-KAHLER THEOREM). Suppose that the hyper-
surface S, the coefficients of the operators B; (0 < j < p —1) in a neighbourhood
of 0D and the sections f; € D'(Gjs) (0 < j < p—1) are real analytic. Then, if
Py(@f;) =0 on S, there is a section f satisfying Pf = 0 in some neighbourhood of
S and such that B;f = f; (0<j<p—1) on S.

PROOF. In view of the uniqueness theorem for solutions of Pf = 0 it is sufficient
to find for each point 2z € S a neighbourhood V = V(2°) on X and a solution
f € S(V)such that B;f = f; (0<j <p—1)on SNV. Therefore we can at once
consider that the sections f; (0 < j < p — 1) are real analytic in a neighbourhood
of the compact S. Then we can construct the Green integral by the formula

G(F(z) = /S < Cb(z,.), f; >y ds (18 9).

The condition of the corollary implies that the integral G(f) is a real analytic
(vector-) function up to S on each sides of this hypersurface. This means that
each of the integrals G (fi) extends as a solution of the system Af = 0 to some
neighbourhood of S. If we keep the same notations for these extensions then the

difference f = G(f)™ — G(f)~ is the solution we sought. [

x

§11. A solvability criterion for the Cauchy
problem for systems with injective symbols in the
language of space bases with double orthogonality

Theorem 10.3 has been formulated so that the application of the theory of §1
(see part 1) is suggested. For this assume in addition that ¢ = 2.
So, in this section we consider the solvability aspect of Problem 10.1.

PROBLEM 11.1. Under what conditions on the sections f; € Ws_bf_l/Q’Q(Gﬂg)
(0 < j < p—1) is there a solution f € S(D)NW*2(E|p) such that B;f = f;
0<j<p—1)onS?

Let  be some relatively compact subdomain of O.
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Since € O™, the restriction to € of the Green integral g(f) defined by
equality (10.1) belongs to the space S(Q)a NW*2(E)q). Hence the extendibil-

ity condition for G(f) from OT to the whole domain O (as a solution in the class
Sa(0)NW*2(E)p) could be obtained by the use of a suitable system {b,} in
SA(O)N WSVZ(E|O) with the double orthogonality property. More exactly, it is re-
quired that {b,} should be an orthonormal basis in X1 = SA(O) N W*?(E|o) and
an orthogonal basis in Xy = S(Q2)a N W*2(E|q).

Since A = P*P is an elliptic differential operator with real analytic coefficients
on X, Theorem 6.5 guarantees existence of such a basis {b, }, at least if the boundary
of  is regular (see §6). As we did in §6, for an element F € ¥; we shall denote by
c,(F) (v =1,2,...) its Fourier coefficients with respect to the orthonormal system
{b,} in ¥, that is, ¢, (F) = (F,b,)n,. And for an element F € Sigmas we shall
denote by k,(F) (v = 1,2, ...) its Fourier coefficients with respect to the orthogonal

system {Th,} in Xy, that is, k, (F) = %

We formulate now the solvability conditions for Problem 11.1. Let Q}v be the
Green integral (see (10.1) constructed with ”initial” data of the problem. As we
noted, the restriction of the section G f to €2 belongs to the space Xs.

LEMMA 11.2. Forv=1,2,...
(11.1) ko (GF) = /8 Y <CR@L T >, s
j=0

PRroOOF. This consists of direct calculations with the use of equality (10.1). O

In order to determine the coefficients k,(Gf) (v = 1,2,...) it is not necessary
to know the basis {Th,} in . It is sufficient only to know the coefficients of the
decomposition of the fundamental matrix (®(.,y) (y € D) with respect to this
series. The properties of the coefficients &, (®(.,y) € C(Fx\ o) we shall discuss
in §12.

THEOREM 11.3. If the boundary of the domain D is sufficiently smooth then for
the solvability of Problem 11.1 it is necessary and sufficient that

(1) 202 [k (GF)I? < oo;
(2) Py(&f;) =0 in a neighborhood of some point z° on S.

PRrRoOOF. The statement follows from Theorem 10.3 as Theorem 6.8 follows from
Theorem 5.2. O

In conclusion we consider an example.

EXAMPLE 11.4. Aizenberg and Kytmanov [3] studied the Cauchy problem for
o

9z1
holomorphic functions of several variables, that is, in the case P = | --- and

o

0Zn

By =1.
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In complex analysis such a problem is called the analytic extension problem for
a boundary subset. They took as O the ball B with the centre at zero divided into
2 parts by means of a smooth hypersurface S C B\{0}, and denoted by D that
part of this ball which does not contain zero. A system of homogeneous harmonic
polynomials {h(yz)} whose restriction to the unit sphere is an orthonormal basis in
L2({]z| = 1}) is also an orthogonal basis in the space of harmonic square- summable
functions in an arbitrary ball with centre at zero. Having chosen as {2 a sufficiently
small ball with centre at zero and such that 2 € OT we get a simple example
of a basis with double orthogonality in ;. If we solve the Cauchy problem in
the class L?(D), with ”initial datum” fo € LQ(S) then the Green integral can be
constructed by the formula G(f = [qU(z,.) fo, where U(z,.) is the Bochner -
Martinelli kernel. Then Theorem 11 3 gives the result of Alzenberg and Kytmanov
[3] with small modifications. [

We shall consider in §13 a more general range of problems. a

§12. Carleman’s formula

In this section we consider the regularization aspect of Problem 10.1.

PROBLEM 12.1. It is required to find a solution f € S(D)NW?®?(E|p) using
known values B f € Ws_bj_l/Z’Z(Gﬂg) 0<j<p—1)onS.

It is easy to see from Corollary 1.8 that side by side the solvability conditions
for Problem 5.1 (¢ = 2) bases with double orthogonality give the possibility to
obtain a suitable formula (of Carleman) for the regularization of solutions. We
shall illustrate this on example of Problem 7.1.

Let {b,} be the basis with double orthogonality, used in the previous section, in
the space (X1 =)S(0) N W*2(E|o) such that the restriction of {b,} to Q (that is,
{Tb,} ) is an orthogonal basis of (X3 =)S(Q) N W*?(Eq).

As above, we denote by {k,(®(.,y))} the sequence of Fourier coefficients for the
fundamental matrix ®(.,y) (y € ) with respect to the system {Tb,}, i.e.,

(12.1) by (B(.,y)) = 1 > /Q < *D%,, D®(.,y) >, dv (v=1,2...)

Y lal<s
LEMMA 12.2. The sections k,(®(.,y)) (v = 1,2...) are continuous, together with
their derivatives up to order (p — s — 1), on the whole set X.
PROOF. See part 1, Lemma 7.2. [

Using formula (12.1) one can see that the sections k, (®(.,y)) (v = 1,2...) extend
to the boundary of €2 from each side as infinitely differentiable sections (at least, if
the boundary is smooth).
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LEMMA 7.3. For any number v = 1,2, ... we have P'k,(®(.,y)) = 0 everywhere
in X \Q.

PROOF. See part 1, Lemma 7.3. [

We consider the following kernels €V)(z, ) defined for (z,y) € O x X (z # y):

(12.2) CM(z,y) = (2, y) = D> b(x) Dk (2(,y)) (N =1,2,...).

v=1

LEMMA 12.4. For any number N = 1,2, ... the kernels €V e Cloc(EXF) satisfy
P(z)eWN)(2,9) = 0 for x € O, and P'(y)e™N)(z,y) = 0 for y € X\Q everywhere
except the diagonal {x = y}.

PROOF. Since {b,} C SA(O), this immediately follows from Lemma 12.3. [

From the following lemma one can see that the sequence of kernels {€(V)},
suitably, for example in a piece-constant way, interpolated to real values N > 0,
provides a special Carleman function for Problem 12.1 (see Tarkhanov [63], §25).

LEMMA 12.5. For any multi-index «, D;‘(’Z(N)(., y) — 0 in the norm of W*?2(E®
F;"O) uniformly with respect to y on compact subsets of X\O, and even X\O if
la] <p—s—n/2.

PROOF. See part 1, Lemma 7.5. [

We can formulate now the main result of the section. For f € S(D)NW*2(E|p))

we denote by f € We=bi=1/22(G15p) (0 < j < p—1) an (arbitrary) extension of
the section B, f from S to the whole boundary.

THEOREM 12.6 (CARLEMAN’S FORMULA). For any solution f € S(D) N W*2(E|p)|}
the following formula holds:

(12.3) flx)=— A}im < ;e (g, ), f] >, ds (zeD).
—oJoD

Proor. This follows from Theorems 10.3 and 11.8 as Theorem 7.6 follows from
Theorems 5.2 and 6.8. [

We emphasize that the integral on the right hand side of formula (12.3) depends
only on the values of the expressions B;f (0 <j <p—1) on S. Thus this formula
is a quantitative expression of (uniqueness) Theorem 2.8. However this gives much
more than the uniqueness theorem because there is sufficiently complete information
about the Carleman function €¢(V),

For holomorphic functions of several variables the Carleman formula (12.3) is
first met, apparently, in [51].
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Remark 12.7. The series > -, k,,(gf)bl, (defining the solution F) converges
in the norm of the space W*2(E|p). The Stieltjes-Vitali theorem (see Hormander
[16], 4.4.2) implies now that it converges together with all its derivatives on compact
subsets of O. Then, as in §7, one can see that the limit in (12.3) is reached in the
topology of the space Cps.(E|o).
o

§13. Examples for systems of the simplest type

In this section we extend the results of 18 to overdetermined systems of the
simplest type.

We suppose that P is a (overdetermined) differential operator of the simplest
type in R™ (see §8). Let O = Bpg be the ball in R™ with centre at zero and radius
0 < R < o0, and S be a smooth closed hypersurface in Br dividing this ball into
2 connected components OF, and D = O~ so that the domain O™ contains zero.
We consider the following problem (of Cauchy).

PrOBLEM 13.1. Let fy € Cloc(E|s) be a summable section of E on S. It is
required to find a solution f € S(D) N Cioc(E|pus) such that fis = fo.

As the fundamental solution of the differential operator P we can take the matrix
®(x,y) = P'(y)g(x — y), where g(z — y) is the standard fundamental solution of
convolution type of the Laplace operator in R™ with the opposite sign. Then the
Green integral (5.1) is written in the following form:

~ 1
0f(w) = = [ ®a o (P fods (@ ¢ ).

It is easy to see from the structure of the fundamental matrix ® that the com-
ponents of the section gf are harmonic functions everywhere in Br (and even in
R™ ) except on the set S.

To obtain a solvability criterion for Problem 13.1 we can use the basis with
double orthogonality constructed in Lemma 8.4.

Our principal result will be formulated in the language of the coefficients

w__L [ p L W) g s (o
g _\/—_1/SP (y>[n—}-2y_2|y|n+2y—2] (P)(v)fods (v=1,2,...).

THEOREM 13.2. For solvability of Problem 15.2, it is necessary and sufficient
that

<1> limsupl/—>oo maXlSiSJ(V) \ |ky)(y)‘ < %;
(2) Pyfo =0 in a neighborhood of some point z° on S.
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PRrRoOOF. The statement follows from Theorem 10.3 as Theorem 8.6 follows from
Theorem 5.2. O

In conclusion we give the corresponding variant of Carleman’s formula. For each
number N = 1,2... we consider the kernel ¢V (z, 1) defined, for all y # 0 off the
diagonal {z = y}, by the equality

1 ) (y)
n+2v — 2 |y|rt2v—2

oo J(v)

M (a,y) = Da,y) — D(0,9)+ > > b (@) P ()]

v=1 =1

].

LEMMA 13.3. For any number N = 1,2, ..., the kernel €N) is an infinitely differ-
entiable section of EXF, harmonic with respect to x, and satisfying P’ (y)EWN) (z, ) =
0 for all y # 0 off the diagonal {x = y}.

Proor. This follows from the properties of the matrix ® and the polynomials
W y). O

We note that since €(N) is a ”remainder” summand in the formula (8.2), ¢N) (z,y) —f}
0 (N — 00), together with all its derivatives uniformly on compact subsets of the
cone {(z,y) € R" x R" : |y| > |z|}.

THEOREM 13.4 (CARLEMAN’S FORMULA). For any solution f € S(D)NCloc(Epus)li
whose restriction to S is summable there, the following formula holds

(13.1) f(z) = _\/%_1 ]\}POO/SQ(N)(x,.)J(P)(y)fods (x € D).

ProoOF. This is similar to the proof of Theorem 12.6. [J

Remark 13.5. As in Theorem 12.6, the convergence in (13.1) is uniform on
compact subsets of the domain D together with all the derivatives.

X x&
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