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Abstract. Principles for applications of double orthogonality bases in the Cauchy

problem for systems with injective symbols are worked out. We obtain a solvability

condition and a Carleman formula for the solution of the problem.
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æ INTRODUCTION

We shall be considering the Cauchy problem for solutions of a differential equa-
tion Pf = 0 where P ∈ dop(E → F ) is a differential operator with an injective
symbol on an open set X ⊂ Rn . Here E = X × Ck and F = X × Cl are (trivial)
vector bundles over X whose sections of the class C over an open set σ ⊂ X are
interpreted as columns of functions from C(σ), that is, C(E|σ) = [C(σ)]k, and simi-
larly for F , and the sign dop(E → F ) means the vector space of all the differential
operators of type (E → F ) and order ≤ p.

In this way the differential operator P is given by an (l × k)-matrix of scalar
differential operators whose orders are less or equal than p on X , or P (x, D) =∑

|α|≤p Pα(x)Dα where Pα(x) are (l×k)-matrices of (infinitely) differentiable func-

tions on X . Then the injectivity of the symbol of the differential operator P means
that rankCσ(P )(x, ζ) = k for all (x, ζ) ∈ X × R

n\{0}.
The most important class of operators with injective symbols is the class of

elliptic differential operators corresponding to the case l = k. The model example of
other types of systems is the Cauchy-Riemann system in the space C

n, of dimension
n > 1.

As in the last example, under sufficiently broad assumptions about the differen-
tial operator P , it is possible to include it in some elliptic complex of differential
operators on X , say, {Ei, P i} where Ei = X ×Cki are (trivial) vector bundles over
X which are different from zero only for 0 ≤ i ≤ N , and P i ∈ dopi

(Ei → Ei+1)
where P 0 = P (see Samborskii [48]). We shall often use this identification, assuming
that the conditions on P are fulfilled.

If the differential operator P has injective symbol then P is hypoelliptic; that
is, for any distribution f ∈ D′(E) the singular supports of f and Pf (∈ D′(F ))
coincide. In particular, for any open set σ ⊂ X all generalized solutions f ∈ D′(E|σ)
of the system Pf = 0 on σ are in fact (infinitely) differentiable.

Certainly, an open set is the natural domain of the system Pf = 0. However
some problems require the consideration of solutions on sets σ ⊂ X which are not
open. Here we are interested not simply in restrictions of solutions to the given
set, but also in the so-called local solutions of the system Pf = 0 on σ, that is,

Typeset by AMS-TEX



INTRODUCTION. 3

solutions of this system in a neighbourhood of σ. The space of local solutions of
the system Pf = 0 on σ will be denoted by S(σ).

We always suppose that P satisfies the so-called uniqueness condition of the
Cauchy problem in the small on X :

(U)S if for a domain O ⊂ X we have f ∈ S(O), and f = 0 on a non-empty open
subset of O then f ≡ 0 in O.

We suppose now that D is a relatively compact domain in X with a sufficiently
smooth boundary, and that S is a set of positive ((n− 1)-dimensional) measure on
the boundary of D. The rough wording of the Cauchy problem for solutions of the
system Pf = 0 in D with the data on S consists of the following.

Problem 1. Let fα (|α| ≤ p − 1) be given sections of E over S. It is required
to find a solution f ∈ S(D) whose derivatives Dαf up to order (p − 1) have, in a
suitable sense, limit values Dαf|S on S such that Dαf|S = fα (|α ≤ p − 1).

Since the time of Hadamard, this problem has been known as the classic example
of an ill-posed problem (see Hadamard [14], p.39). However, despite Hadamard’s
bold thinking, we often come across with these problems in applications of mathe-
matics (see Hadamard [14], p.38). For example, the Cauchy problem for the Laplace
equation naturally arises in problems of the interpretation of electrical prospecting
data.

The Cauchy problem for the Laplace operator in various forms has been studied
by Mergeljan [38], Lavrent’ev [32],[34], Ivanov [17], Newman [41], Koroljuk [24],
Maz’ya and Havin [37], Jarmuhamedov [18], Shlapunov [55], and others. For holo-
morphic functions of one variable the Cauchy problem was considered in the papers
of Carleman [8], Zin [66], Fok and Kuny [12], Patil [42], Krein and Nudelman [26],
Steiner [59], and by other mathematicians. The Cauchy problem for the overdeter-
mined Cauchy-Riemann system was studied by Tarkhanov [62], Znamenskaya [67],
Aizenberg and Kytmanov [3], Karepov and Tarkhanov [19], Karepov [21], Shla-
punov and Tarkhanov [52],[53],[54], and others. The question of the regularization
of the Cauchy problem for the system of elasticity theory in space was studied by
Mahmudov [36]. The Cauchy problem for general systems of differential equations
with injective symbols has been investigated by Tarkhanov [61]-[64], Nacinovich
[40], and others.

What place does our paper occupy among those cited ? If we try to answer this
question we can say it is an attempt to elucidate new facts that the application of
bases with double orthogonality brings to the Cauchy problem for general systems
of differential equations with injective symbols (see Slepian and Pollak [56], Landau
and Pollak [29]-[30], Slepian [57]).

As to the results, we should like to comment upon two facts. Firstly, the solv-
ability conditions obtained are constructive, and simpler and more convenient than
those known so far (see Tarkhanov [62]). Secondly, a constructive formula for the
regularization (approximate solution) of the Cauchy problem for general systems of
differential equations with injective symbols has been devised. Earlier it was known
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that such a regularization (Carleman’s formula) existed (see Tarkhanov [61])). But
the hope for simplicity and a constructive approach existed only for the Cauchy-
Riemann system, or, more generally, systems factorizing the Laplace operator (see
Aizenberg [1], Jarmuhamedov [18], Mahmudov [36], and others).

In §1 we elaborate the operator-theoretical foundations of the application of bases
with double orthogonality to the problem of the continuation of classes of functions
from massive subsets to the whole set. In a paper dated 1927 Bergman (see [6],
p.14-20) developed the remarkable concept of the consequence of analytic functions.
These functions are orthogonal in pairs with respect to integration over two domains
one of which contains the closure of the other. He used this idea, at least in principle,
to study the criterion of analytic extension. This beautiful and potentially useful
idea did not receive sufficient recognition, probably because its practical application
requires the preliminary solution of an eigenvalue problem, which may be difficult
to solve. The idea of bases with double orthogonality appeared again in a series of
the papers by Slepian and Pollak [56], Landau and Pollak [29]-[30], and Slepian [57])
in the sixties independently of Bergman. Shapiro [49] is sure that Bergman knew
well that the phenomenon of double orthogonality had a more general character
than being simply a fragment of the study of analytic functions. These abstract
components are none other than the spectral theorem for a compact self-adjoint
operator which is sometimes credited to F. Riesz (see Riesz and Sz.- Nagy [46], s.
93). Krasichkov [25] has shown that the use of the spectral theorem leads quite
simply to an abstract Bergman theorem about the existence of bases with double
orthogonality (see also Shapiro [49],[50]). Our account in §1 reproduces Bergman’s
concept in general, except that we considering continuous systems of functions with
double orthogonality.

As Problem 1 may be unsolvable even in the class of all smooth (vector-) func-
tions f in D (not only those satisfying Pf = 0) there are formal difficulties in the
setting of the problem. To remove these difficulties it is necessary that the sections
fα(|α| ≤ p− 1) should be restrictions to S of the corresponding derivatives of some
smooth section in D. This is connected with the correct setting of the Cauchy prob-
lem which corresponds to a suitable Green’s formula for solutions. The relevant
results are described in §2.

In §3 a solvability criterion for the Cauchy problem for elliptic systems in the
Hardy class H2(D) (see Tarkhanov [62]) is deduced in terms of bases with double
orthogonality on the boundary of D. The corresponding eigenvalue problem is
associated with a non-compact operator. Surface bases with double orthogonality
are continuous systems of generalized eigenvectors of this operator (see Berezanskii
[5], ch. V). Surface bases with double orthogonality in the Cauchy problem for
holomorphic functions of one variable seemed to have been first applied by Krein
and Nudelman [26]. Theorems on the jump of an integral of Green’s type with
density of this or that class imply that the behaviour of a solution f of Problem 1
near S is completely determined by the smoothness of the Cauchy data fα (|α| ≤
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p−1). In particular, if fα ∈ Cp−1−|α|(E
|
◦
S
) (where

◦
S is the interior of S in ∂D) then

f ∈ Cp−1
loc (S ∪ D) (see Tarkhanov [63]). As for the behaviour of f near some other

part of the boundary of D, it is determined by that class of functions (sections) in
which we seek the solution of the Cauchy problem. The application of space bases
with double orthogonality dictates the class that a solution belongs to. In fact it
is one of the Sobolev spaces W s,2(E|D). In §4 we investigate weak limit values on
the boundary of the domain D for solutions of systems with injective symbols in
the Sobolev class W s,q(E|D). As a matter of fact, we present another view on the
results of Rojtberg [47] about values on the boundary of generalized solutions of
elliptic equations.

In §5 we prove a solvability criterion for the Cauchy problem for elliptic systems
in terms of the Green integral. Using the Cauchy data on S we construct a Green
integral satisfying Pf = 0 everywhere outside of S. Then the Cauchy problem
is solvable if and only if this integral continues across S from the complement of
D to this domain as a solution of the system Pf = 0 (∈ W s,q(E|D)). Although
it is possible to obtain interesting examples directly from this, this result has an
auxiliary character. In spite of the simplicity of the idea, its proof is complicated by
some necessary facts from pseudo-differential operator theory on a manifold with
boundary. For example, one of these facts is the theorem on the boundedness of
potential operators in Sobolev spaces which was proved not long ago (see Eskin
[11], Rempel and Schulze [45] and others).

In §6 the extendibility condition (as a solution of the system Pf = 0) across S of
the Green integral is expressed in terms of space bases with double orthogonality.
Its construction is connected with the solution of an eigenvalue problem for a certain
compact operator, so this part of the application of bases with double orthogonality
is most similar to the concept of Bergman [6]. We note that these ideas were
tested on the example of the Cauchy problem for holomorphic functions (see the
authors’ article [51]) and we find some hints in the considerations of Aizenberg and
Kytmanov [3].

The use of bases with double orthogonality not only gives information about
solvability conditions for the Cauchy problem, but leads to explicit formulae for
the regularization. A Carleman function of the Cauchy problem for solutions of
elliptic systems is constructed in §7.

Finally, in §8 we consider some examples of differential equations of the simplest
type. These are systems of the first order differential equations which are matrix
factorizations of the Laplace equation. A system of homogeneous polynomials in R

n

possessing the double orthogonality property relative to integration over every ball
with centre at zero is constructed. Using it we obtain the solvability condition in
an explicit form and obtain a formula for the regularization of the Cauchy problem
for the simplest type systems in the special case. More exactly, S is a smooth
hypersurface in a ball B with centre at zero, and D is that one of the two domains
obtained by dividing B by S which does not contain the centre of the ball. The
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theorems on the solvability of the Cauchy problem and on the Carleman formula
for holomorphic functions of one variable obtained in this way are the simplest ones
(see Aizenberg and Kytmanov [3]). æ
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PART I.

ELLIPTIC SYSTEMS

§1. Bases with double orthogonality.

As Shapiro [49] has observed, Bergman’s problem is a special case of the question
of when a given element of a Hilbert space belongs to the image of some injective
compact operator with dense image.

In practice this problem appears usually in the following way. There is some
linear continuous mapping of Hilbert spaces, T : H1 → H2, say. Further, in H1 a
closed subspace Σ1 is distinguished by some considerations. It is very helpful when
the image of Σ1 by the mapping T is closed in H2. However this is not usually the
case. In any case we denote by Σ2 the closure of this image. Hence Σ2 also is a
Hilbert space with the hermitian structure induced from H2.

Problem 1.1. Let h2 ∈ Σ2. It is required to find a vector h1 ∈ Σ1 such that
Th1 = h2.

Except in trivial cases Problem 1.1 is incorrect. Therefore we can repeat the
words which have been written in connection with these problems in the paper by
one of the authors [62]. At the same time, the use of bases with double orthogonality
gives a more satisfactory approach to Problem 1.1. We describe this.

We denote by Π the operator of the orthogonal projection on Σ1 in H1, and by
M the operator T ∗T in H1, where T ∗ : H2 → H1 is the mapping adjoint to the
mapping T according to the theory of Hilbert spaces.

Proposition 1.1. The restriction of the mapping ΠM to Σ1 is a bounded linear
operator from Σ1 to Σ1.

Proof. In fact, the norm of the operator ΠM is not greater than m = ‖T‖2

even in H2. �

Proposition 1.2. The operator ΠM : Σ1 → Σ1 is self-adjoint.

Proof. The restriction to Σ1 of the operator ΠM coincides with the restriction
to this space of the (evidently) self-adjoint operator ΠMΠ. �
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8 PART I. ELLIPTIC SYSTEMS

Proposition 1.3. The spectrum of the operator ΠM : Σ1 → Σ1 belongs to the
segment [0; m].

Proof. By Propositions 1.1 and 1.2 we can conclude that the spectrum of the
operator ΠM belongs to the segment [−m; m]. On the other hand, this operator is
non-negative, because for h ∈ Σ1 we have

(ΠMh, h)H1
= (Mh, h)H1

= ‖Th‖2
H2

≥ 0

This proves our statement. �

Problem 1.1 is definite if and only if the restriction of the operator T on Σ1 is
injective. A corresponding conclusion follows for the operator ΠM .

Proposition 1.4. The mappings ΠM : Σ1 → Σ1 and T : Σ1 → Σ2 are simul-
taneously injective or not injective.

Proof. It is sufficient to prove that the kernels of these operators coincide.
However, for h ∈ Σ1, ΠMh = 0 if and only if (Mh, g)H1

= (Th, Tg)H2
= 0 for all

g ⊂ Σ2, that is, if and only if Th = 0. This proves the proposition. �

We can apply now the spectral theory of self-adjoint operators (see Riesz and Sz.-
Nagy [46], s. 107). Namely, let Eλ (−∞ < λ < ∞) be an orthogonal decomposition
of the unit in the Hilbert space Σ1 corresponding to the operator ΠM . In the
simplest case of a discrete spectrum λ1, λ2, ... we have Eλ =

∑
λ≤λj

prλj
where

prλj
is the orthogonal projection to the eigen subspace of ΠM corresponding to

the eigenvalue λj . In the general case Eλ is some family of orthogonal projections
concentrated on the spectrum of ΠM , and growing from 0 to I while λ changes
from −∞ to +∞. This family has certain well known properties.

Theorem 1.5 (abstract Bergman’s theorem). Problem 1.1 is solvable if
and only if

(1.1)

∫ m

−0

1

λ2
d(EλΠT ∗h2, ΠT ∗h2)H1

< ∞.

Proof. The condition (1.1) means that the vector ΠT ∗h2 ∈ Σ1 belongs to the
domain of the (left) inverse operator of the operator ΠM : Σ1 → Σ1. Hence one can
find an element h1 ∈ Σ1 such that ΠMh1 = ΠT ∗h2. This implies that the vector
Mh1 − T ∗h2 = T ∗(Th1 − h2) is orthogonal to the subspace Σ1 in H1. In other
words we have (T ∗(Th1 − h2), g)H1

= (Th1 − h2), T g)H2
= 0 for all g ∈ Σ1. Under

the hypothesis, the vector h2 belongs to the closure of the image of the mapping
T : Σ1 → Σ2. This means that one can find a sequence {fj} ⊂ Σ2 such that Tfj

converges to h2 in H2. Hence

‖Th1 − h2‖2
H2

= lim
j→∞

(Th1 − h2, T (h1 − fj))H2
= limj→∞0 = 0,
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therefore Th1 = h2. Thus, we see that the equalities ΠMh1 = ΠT ∗h2 and Th1 = h2

are equivalent. This completes the proof of the theorem. �

From the proof of Theorem 1.5 one can see a curious phenomenon. Namely, if
Problem 1.1 is solvable then its solution is unique. The formula for this solution is
given in the following theorem.

Theorem 1.6 (abstract Carleman’s formula). Under condition (1.1) a
solution of Problem 1.1 is given by the formula

(1.2) h1 =

∫ m

−0

1

λ
d(EλΠT ∗h2).

Proof. Condition (1.1) guarantees the convergence of integral (1.2) in the weak
topology of the space Σ1. Therefore h1 ∈ Σ1 and we need only prove that ΠMh1 =
ΠT ∗h2. Now

ΠMh1 =

∫ m

0

λ
1

λ
d(EλΠT ∗h2) =

∫ m

−0

d(EλΠT ∗h2) = ΠT ∗h2,

which was to be proved. �

We emphasize once again that under condition (1.1) the integral in formula (1.2)
converges in the weak topology of the space Σ1.

If we use the representation of the projections Eλ (−∞ < λ < ∞) by means of
the eigen vectors of the operator ΠM : Σ1 → Σ1 (see Berezanskii [5]. ch. V) then
we can see that it is possible to make formulae (1.1) and (1.2) more visible. For
let L1 ⊂ Σ1 ⊂ L′

1 where L1 is a topological vector space such that the embedding
L1 ⊂ Σ1 is quasi-kernel, and the operator ΠM admits an extension ΠM : L1 → L1.
Having taken the transposed mapping to this mapping we obtain a continuation

of ΠM to a continuous linear operator on L′
1 which is denoted by Π̃M . Under

the above assumption on L1, the operator Π̃M has a complete system of general-

ized eigenvectors {b(i)
λ }1≤i≤nλ

λ∈R
in L′

1 (see Berezanskii [5], p.341). This means that

Π̃Mb
(i)
λ = λb

(i)
λ , and for any vectors h, g ∈ L1 there is Parseval’s equality

(E(∆)h, g)H1
=

∫

∆

nλ∑

i=1

(h, b
(i)
λ )H1

(g, b
(i)
λ )H1

dσ(λ).

Here E(∆) =
∫
∆

dEλ is the spectral measure corresponding to the operator ΠM ,
and dσ(λ) is a nonnegative Borel measure on the real axis. Using Parseval’s equality

for vectors from L1 one can extend the ”Fourier transformation” (h, b
(i)
λ )H1

to
vectors from Σ1 by continuity. Then we have (in the sense of the ∗-weak convergence
of the integrals in L′

1)

(1.3) Eλh =

∫ λ

−∞

nλ∑

i=1

(h, b
(i)
ζ )H1

b
(i)
ζ dσ(ζ) (h ∈ Σ1).
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Corollary 1.7 (abstract Bergman’s theorem). Problem 1.1 is solvable
if and only if

(1.4)

∫ m

−0

nλ∑

i=1

∣∣∣∣∣
(ΠT ∗h2, b

(i)
λ )H1

λ

∣∣∣∣∣

2

dσ(λ) < ∞.

Proof. Using the equality (1.3), we obtain

d(EλΠT ∗h2, ΠT ∗h2) = d

∫ λ

−∞

nζ∑

i=1

|(ΠT ∗h2, b
(i)
ζ )H1

|2dσ(ζ) =

nλ∑

i=1

|(ΠT ∗h2, b
(i)
λ )H1

|2dσ(λ).

In view of Theorem 1.5, we obtain the statement of the corollary. �

Corollary 1.8 (abstract Carleman’s formula). Under condition (1.1)
a solution of Problem 1.1 is given by the following formula (where convergence is
understood in the ∗-weak topology of the space L′

1) :

(1.5) h1 =

∫ m

−0

nλ∑

i=1

b
(i)
λ

(ΠT ∗h2, b
(i)
λ )H1

λ
dσ(λ).

Proof. It is sufficient to calculate

dEλ(ΠT ∗h2) =

nλ∑

i=1

b
(i)
λ (ΠT ∗h2, b

(i)
λ )H1

dσ(λ).

and to put it in formula (1.2). �

We consider an instructive example.

Example 1.9. We suppose that the operator T : Σ1 → Σ1 is 1) injective, 2)
compact. Then, by Proposition 1.4 the operator ΠM : Σ1 → Σ1 is injective, and
(the compactness of T and) the boundedness of ΠT ∗ implies that ΠM : Σ1 → Σ1

is compact. According to the spectral theorem for compact self-adjoint operators
(see Riesz and Sz.-Nagy [46], s. 93), ΠM has in Σ1 a countable complete system
of eigenvectors {bj}∞j=1 corresponding to positive eigenvalues {λj}. However sim-
ple calculations show that (Tbj , T bj)H2

= λj(bj , bj)H1
, that is, the system {Tbj}

is orthogonal in Σ2. Evidently this system is complete in Σ1, hence it gives an
orthogonal basis in this space. We notice that the system {bj} ⊂ Σ1 possesses
the double orthogonality property : 1) relative to the scalar product (., .)H1

in Σ1
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and 2) relative to the scalar product (T., T.)H2
in Σ2. As we noted in the intro-

duction, Bergman was the first to devise these systems (see [6]), and Krasichkov
[25] proved the abstract existence theorem. The orthogonal decomposition of the
unit corresponding to the operator ΠM : Σ1 → Σ1 is now given by the opera-
tors Eλh =

∑
λ≤λj

bj(h, bj)H1
(see (1.3)). Relations (1.4) and (1.5) take the form

∑∞
j=1 |cj|2 < ∞ and h1 =

∑∞
j=1 cjbj respectively, where cj =

(h2,T bj)H2

‖Tbj‖2
H2

are Fourier

coefficients of the vector h ∈ Σ2 relative to the orthogonal system (basis) {Tbj} in
this space. �

In the general case a system {b(i)
λ } also keeps some properties of bases with

double orthogonality. We describe now an alternative method for its construction,
using this idea. In the following we shall not take enough care of the legality of
operations, because we want to make clear the idea only. The problem is first to
construct a basis in Σ2 and then to obtain by means of it a basis in Σ1. We consider
the operator TΠT ∗ : Σ2 → Σ2. Again we notice that it is a bounded self-adjoint
operator with the same spectrum, as ΠM . This operator is always injective, and it
inherits the compactness property from T : Σ1 → Σ2. We notice that the mapping
ΠT ∗ : Σ2 → Σ1 is adjoint to T : Σ1 → Σ2 in the sense of Hilbert spaces. To describe
the image of T one can use an orthogonal decomposition of the unit {Iλ} in Σ2

corresponding to the operator TΠT ∗. Then the solvability condition for Problem
1.1 has the form

∫m

−0
1
λd(Iλh2, h2) < ∞, and the solution is given by the formula

h1 = ΠT ∗ ∫m

−0
1
λdIλ(h2). F urther, the projection operators Iλ can be presented,

similarly to (1.3), by generalized eigen vectors of the operator TΠT ∗ in L′
2, where

L2 ⊂ Σ2 ⊂ L′
2 is a suitable equipment of the Hilbert space Σ2. Let {e(i)

λ } be a

complete system of these vectors in L′
2. Then, if the operator T is injective, {b(i)

λ }
(where b

(i)
λ = 1

λΠT ∗e(i)
λ ) is a complete system of generalized eigen vectors of the

operator ΠM . We leave the reader to write the formulae, similar to (1.4) and (1.5),

in terms of the system {e(i)
λ }.

Example 1.10. Krein and Nudelman [26] have considered the Cauchy prob-
lem for holomorphic functions of the Hardy class H2 in the lower half-plane with
Cauchy data on the segment [−1; 1] of the real axis. They had H1 = L2(R1),
H2 = L2([−1; 1]), the Hardy space Σ1, and the operator of restriction T : Σ → H2.
In this case we have Σ2 = H2. The projection Π : H1 → Σ1 is given by means of
limit values on R1 of the Cauchy type integral in the lower half-plane. The opera-
tor TΠT ∗ : Σ2 → Σ2 is an integral operator (but it is not the Carleman operator)
with a simple spectrum. The complete system of generalized eigenfunctions of this
operator was earlier constructed by Koppelman and Pincus [23]. Having extrap-
olated it by the operator ΠT ∗ on the whole real axis, Krein and Nudelman [26]
obtained a continuous system of functions with double orthogonality in Σ1. They
also indicated a solvability condition, and a formula for the regularization of the
Cauchy problem. �
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We finish this section with one more example connected with the Cauchy problem
for holomorphic functions when the support of the Cauchy data is a ”thin” set.

Example 1.11. Let σ be a compact set of positive measure in R
n. We denote

by Wσ the set of Fourier transforms of functions from L2(σ), that is, the set of

functions of the type f̂(ζ) = 1
(2π)n

∫
σ

eiζxf(x)dx, where f ∈ L2(σ). According to

the theorem of Paley and Wiener, elements of Wσ are restrictions on Rn of (not
all!) entire functions of exponential order of growth in Cn. For this reason Wσ

is called the Wiener class. By means of the Plancheral theorem it is easy to see
that Wσ is a closed subset of L2(Rn). Let S ⊂ R

n be a given bounded set with
a non-negative Borel measure m. In order not to complicate the notation we use
the symbol L2(S) for the space of (classes of) functions which are measurable and
square-integrable relative to the measure m on S. As for the assumptions about
(S, m), we require that restrictions to S of (infinitely) differentiable functions in Rn

should be contained in L2(S), and dense in this space. We consider the following
problem: for a given function f0 ∈ L2(S), find a function f ∈ Wσ such that
f|S = f0. To include it in the general scheme of Problem 1.1 we set H1 = Σ1 = Wσ,

H2 = L2(S), and define the operator T : H1 → H2 as the restriction of functions on
S. One can show that the operator T has a dense image. For let Φ be a continuous
linear functional on L2(S) which vanishes on the image of T . According to the
Riesz theorem, there is a function ϕ ∈ L2(S) such that Φ(f) =

∫
S

fϕdm for all

f ∈ L2(S). Then one can consider Φ in explicit form as a distribution with compact

support in Rn. The condition Φ|imT = 0 implies that the Fourier transform Φ̂ of

the distribution Φ vanishes on σ. Since Φ̂ is an entire function, and the measure
of σ is positive then Φ̂ ≡ 0 everywhere in Rn. From this we conclude that Φ is the
zero distribution in Rn, that is, the zero functional on L2(S). Hence in our case we
have Σ2 = H2. It is not difficult to verify that the operator T is compact. We shall
assume its injectivity, in order that the Cauchy problem be defined. This simply
means that S is a set of uniqueness for the class Wσ. Then we have the situation
considered in Example 1.9. According to our earlier conclusions, if we denote by
{bj}, j = 1, 2, ..., a complete orthonormal system of eigenvectors of the operator
T ∗T in Wσ then the systems {Tbj}, j = 1, 2, ..., will be an orthogonal basis in L2(S).
The condition of solvability and the formula for the regularization of solutions of the
Cauchy problem have the forms

∑∞
j=1 |cj |2 < ∞ and f =

∑∞
j=1 cjbj respectively,

where cj =
(f0,T bj)L2(S)

‖bj‖2
L2(S)

are Fourier coefficients of the function f relative to the

orthogonal system {Tbj} in L2(S). If S is a set of positive measure in R
n, then the

results of this example were obtained by Krasichkov [25]. �

æ

§2. The Cauchy problem for solutions

of systems with injective symbols
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We suppose that D b X is a domain with a boundary of class Cp (for p = 1 it is
required that ∂D ∈ C2). For some of the results of the paper a higher smoothness
of the boundary is required, but always it is sufficient that ∂D ∈ C∞.

We define the function ρ(x) by ±dist(x, ∂D) where the sign ”−” corresponds to
the case x ∈ D, and ”+” to the case x ∈ X\D. Then, if a neighbourhood U of the
boundary ∂D is sufficiently small, ρ ∈ Cp

loc(U), and |dρ| = 1 in U .
Hence, for small |ε|, the domains Dε = {x ∈ D : ρ(x) < −ε} have boundaries

of the class Cp, and as ε → +0(−0) they approximate D from inside (outside).
Here the unit outward normal vector ν(x) to the surface ∂D at the point x is given
by the gradient ∇ρ(x). The inner product ds = ∇ρcdv provides the volume form
induced by the volume dv(= dx) on X on every surface ∂Dε.

We fix a Dirichlet system of order (p − 1) on ∂D, say, Bj ∈ dobj
(E → Gj)

(0 ≤ j ≤ p − 1) where Gj = U × Ck are (trivial) bundles in U . The words
”Dirichlet system of order (p− 1) on ∂D” mean that 1) system Bj is normal, that
is, the orders of the differential operators are pairwise different, and each of the
mappings σ(Bj)(x,∇ρ(x)) is surjective for all x ∈ ∂D, 2) bj ≤ p − 1 for all j (see
Berezanskii [5], p.233).

We use the system of boundary operators {Bj} to reformulate Problem 1 in the
following form.

Problem 2.1. Let fj (0 ≤ j ≤ p − 1) be sections of the bundles Gj over the
set S. It is required to find a solution f ∈ S(D) such that the expressions Bjf
(0 ≤ j ≤ p − 1) have in a suitable sense limit values on S coinciding with f .

In order to justify the term ”the Cauchy problem” for Problem 2.1, we note that
the values of Bjf (0 ≤ j ≤ p − 1) on S determine all the derivatives of f up to
order p − 1 on S. At the same time Problem 2.1 is solvable in the class of smooth
(vector-) functions f , that is, it is not necessary to think about formal agreements
between the sections fj (0 ≤ j ≤ p − 1).

The weak limit values Bjf (0 ≤ j ≤ p − 1) on ∂D are most important for
applications. We distinguish the maximal class of solutions f for which one can
speak of these limit values.

Definition 2.2. The space SP,B(D) consists of all solutions f ∈ S(D) for which
the expressions Bjf (0 ≤ j ≤ p − 1) have weak limit values fj ∈ D′(Gj|∂D) on ∂D
in the following sense

lim
ε→0

∫

∂D

< g, Bjf(x − εν(x)) > ds =

∫

∂D

< g, fj > ds for all g ∈ C∞
comp(G

∗
j|∂D).

It is clear that, if f ∈ S(D) ∩ Cp−1(E|D), the weak boundary values of the

expressions Bjf (0 ≤ j ≤ p−1) on ∂D exist and coincide with the usual restrictions
Bjf . In order to relate the weak limit values of Bjf (0 ≤ j ≤ p−1) on ∂D to other
(radial, non-tangential, in some norm) limits, the Green formula and theorems on
the jump of the boundary integral in this formula are usually used. The construction
of the Green formula is based on the following lemma.
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Lemma 2.3. If the neighbourhood U is sufficiently small, there is a Green oper-
ator GP for the differential operator P in U which has the following form

GP (g, f) =

p−1∑

j=0

< Cjg, Bjf >x ds +
dρ

|dρ|ΛGν(g, f)

where Cj ∈ dop−1−bj
(F ∗ → G∗

j ) (0 ≤ j ≤ p − 1) is some Dirichlet system of order

(p − 1) on ∂D, and Gν ∈ dop−1((F
∗, E)|U → Λn−2).

Proof. See Tarkhanov [63], Lemma 28.3. �

We have taken a liberty in wording Lemma 2.3. Namely, according to the usual
understanding, differential operators on X must have (infinitely) differentiable coef-
ficients, however the smoothness of the coefficients of the differential operators {Cj}
and Gν is finite. One may check what smoothness requirements for the coefficients
of {Cj} are satisfied as a consequence of the supposed smoothness of the boundary
of D (and coefficients of the initial expressions {Bj}). Certainly, these difficulties
are removed if ∂D ∈ C∞. For our purposes it is sufficient that the coefficients of

every differential operator Bj belong to the class C
p−1−bj

loc , and the coefficients of

each differential operator Cj belong to the class Cbj in the neighbourhood U .
Since the differential operator P (= P 0) satisfies the condition (U)S (see the

introduction), the complex {Ei, P i} has a fundamental solution in degree 0, say,
{Φi}, Φ ∈ pdo−pi−1

(Ei → Ei−1) where pdom(Ei → Ei−1) is the vector space of the

all pseudo- differential operators of type (Ei → Ei−1) and order m (see Tarkhanov
[63], Corollary 27.8). This means that Φi+1P i + P i−1Φi = 1 − Si on C∞

comp(E
i)

where Si ∈ pdo−∞(Ei → Ei) are smoothing operators, and S0 = 0. In particular,
the component Φ = Φ1 is a left fundamental solution of the differential operator P .

Theorem 2.4. For any solution f ∈ SP,B(D) we have the Green formula

(2.1) −
∫

∂D

p−1∑

j=0

< CjΦ(x, y), Bjf >y ds =

{
f(x), x ∈ D,

0, x ∈ X\D.

Proof. First, the theorem of Banach and Steinhaus implies that, for a solution
f ∈ S(D), the expressions Bjf (0 ≤ j ≤ p − 1) have weak limit values fj ∈
D′(Gj|∂D) on ∂D if and only if

(2.2) lim
ε→+0

∫

∂Dε

< g, Bjf >x ds =

∫

∂D

< g, fj >x ds for all g ∈ C∞
comp(G

∗
j ).

We now choose a number ε > 0 so small that ∂Dε ⊂ U . We represent the
solution f ∈ S(D) in the domain D by the Green formula, having taken as Green’s
operator of the differential operator P the operator from Lemma 2.3. Then, since
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the restriction of the differential dρ on the surface ∂D is equal to zero, we get
formula (2.1) where in place of D we have the domain D. Having made the limit
passage by ε → +0, and having used equality (2.2) we obtain the theorem. �

Formula (2.1) gives the apparatus for the effective control of the heuristic con-
sideration that the behaviour of a solution f ∈ SP,B(D) near a point x ∈ ∂D in the
closure of the domain is completely determined by the ”smoothness” property near
x on ∂D of the weak boundary values Bjf (0 ≤ j ≤ p−1). Thus for f ∈ D′(Gj|∂D)
(0 ≤ j ≤ p − 1) we set f = ⊕fj so that f ∈ D′(⊕Gj|∂D), and

Gf(x) =

∫

∂D

p−1∑

j=0

< Cj(y)Φ(x, y), f >y ds (x 6∈ ∂D).

Let N be a relatively compact neighbourhood of the point x in X , and ϕε ∈
C∞

comp(X) be a function supported on the ε-neighbourhood of N and beying equal
to 1 in N . Then, denoting by χD the characteristic function of the domain D, we
can rewrite formula (2.1) in the form χDf = −G(ϕε(⊕Bjf)) − G(1 − ϕε)(⊕Bjf)).
The first summand in (2.1) depends only on the values of Bjf (0 ≤ j ≤ p − 1) in
the ε-neighbourhood of the set N ∩ ∂D on the boundary, and the second one is an
infinitely differentiable section of E in N . Hence, the character of ”the transition”
of the solution f from N ∩ D to its weak limit values on N ∩ ∂D is completely
determined by the jump behaviour of the surface integral G(ϕε(⊕Bjf)) in going
across N ∩ ∂D. This integral is called the Green integral of the (vector-value)
distribution ϕε(⊕Bjf).

Corollary 2.5. If for a solution f ∈ SP,B(D) we have Bjf ∈ C
p−Bj−1
loc (G

j|
◦
S
)

(0 ≤ j ≤ p − 1) then f ∈ Cp−1
loc (E

|D∪
◦
S
).

Proof. Since differentiability is a local property then, as we said above, it is
sufficient to consider the case S = ∂D. According to Lemma 28.2 of Tarkhanov

[63], we can find a section f̂ ∈ Cp−1
loc (E) such that Bj f̂ = Bjf (0 ≤ j ≤ p − 1) on

∂D. Then Theorem 2.4 and Lemma 2.3 imply that χDf = −
∫

∂D
GP (Φ(x, y), f̂(y)).

In particular, the integral
∫

∂D
GP (Φ(x, y), f̂(y)), being considered for x ∈ X\D, is

equal to zero. Therefore it extends continuously together with its derivatives up to
order (p−1) to the closure of X\D. But then, from Lemma 29.5 (Tarkhanov [63]),
it is easy to show that (see, for example, Lemma 1.1 in the paper of Shlapunov [55])

the integral
∫

∂D
GP (Φ(x, y), f̂(y)) (x ∈ D) extends continuously together with its

derivatives up to order (p − 1) to the closure of D. Hence f ∈ Cp−1
loc (E|D), which

which was to be proved. �

In Definition 2.2 of the space SP,B(D) we used a Dirichlet system {Bj}, and
it seems that the set of elements of SP,B(D) depends essentially on the choice
of this system. The fact that this is not so is unexpected. We shall say that a
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solution f ∈ S(D) has finite order of growth near the boundary (∂D) if for any
point x0 ∈ ∂D there are a ball B(x0, R), and constants c > 0 and γ > 0 such that
|f(x)| ≤ c dist(x, ∂D)γ for all x ∈ B(x0, R) ∩ D. In view of the compactness of
∂D, the constants c and γ can be chosen so that the estimate holds for all x ∈ ∂D.
The following theorem for harmonic functions was proved by Straube [60].

Theorem 2.6. A solution f ∈ S(D) belongs to SP,B(D) if and only if it has
finite order of growth near ∂D.

Proof. Necessity. Any distribution on ∂D locally has finite order of singularity,
and the kernel Φ(x, y) is infinitely differentiable everywhere outside of the diagonal
{x = y}, and on the diagonal this kernel has the same type of singularity as the
well known fundamental solution of (p/2)-th degree of the Laplace operator. So
the necessity of the condition of the theorem follows from formula (2.1).

Sufficiency. Let f ∈ S(D) have finite order of growth, say, γ, near the boundary.
It is clear that together with Pf = 0 we have P ∗Pf = 0 where P ∗ is (formally)
adjoint to the differential operator P . The operator P ∗P is an elliptic operator
of order 2p. We can complete the system {Bj}p−1

j=0 to a Dirichlet system of order

(2p−1) on ∂D, say, {Bj}2p−1
j=0 , and then we can try to prove that any expression Bjf

(0 ≤ j ≤ 2p − 1) has a weak limit on ∂D according to Definition 2.2. When this is
proved, we shall have obtained formally more than we require. Of course, it comes
to the same thing, because the differential operator P and the system {Bj}p−1

j=0 are
arbitrary. So, without loss of generality, we can require that the differential operator
P is elliptic. But we can not assume for P ∗P the condition (U)S on X . Therefore
for P one can only guarantee the existence of a parametrix Φ ∈ pdo−p(F → E),
that is, in particular, ΦP = 1 − S0 for some smoothing operator S ∈ pdo−∞(E →
E). We now consider this situation. Rojtberg [47] showed that one can naturally

define a regularization f̂ of the solution f as a continuous linear functional on the
space Cs′

(ED) for a suitable s′ depending on the order of singularity of f near the

boundary (γ). Then f̂ = f in D, and f̂ ∈ W−s,q′

(E|D) (= W s,q(E∗
|D)′)), where

s > n
q + (γ − 1), and 1

q + 1
q′ = 1 (q > 1). Further, for the solution f there are limit

values of the expressions Bjf (0 ≤ j ≤ p − 1) on ∂D, these being understood in

the following sense. There is a sequence f (ν) ∈ C∞(E|D) such that f (ν) converges

to f̂ in W−s,q′

(E|D), and Pf (ν) converges to zero in W−s−p,q′

(F|D). Moreover, for

any such sequence f (ν) the sequences Bjf
(ν) (0 ≤ j ≤ p − 1) are fundamental in

the spaces B
−s−p−bj− 1

q′
,q′

(Gj|∂D), and therefore they converge in these spaces to
limits fj . Rojtberg called these sections fj (0 ≤ j ≤ p − 1) the limit values of the

expressions Bj f̂ (or equivalently of Bjf) on ∂D. Now we want to show that the
sections fj (0 ≤ j ≤ p − 1) are the weak limits of the expressions Bjf in the sense

of Definition 2.2. To this end we write for the sections f (ν) the Green formula in
the domain D, that is,

χDf (ν) = −G(⊕Bjf
(ν)) + Φ(χDPf (ν)) + S0(χDf (ν))
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(see, for example, formula (9.13) in the book of Tarkhanov [65]). If we calculate
the limits of the left and right hand side of this equality, for example in the weak
topology of the space D′(E|X\∂D) then we obtain

(2.3) −G(⊕fj) + S0(χDf̂) =

{
f(x), x ∈ D,

0, x ∈ X\D.

We have convinced ourselves that the solution f is represented by the limit values
on the boundary of the expressions Bjf (0 ≤ j ≤ p−1) according to Rojtberg [47],

and by the regularization f̂ in D by Green formula (2.3). The second summand
on the left hand side of this formula is an infinitely differentiable section of E
everywhere on the set X . Therefore the result follows from the following lemma.

Lemma 2.7. We suppose that D b X is a domain with an infinitely differentiable
boundary, and fj ∈ D′(Gj|∂D) (0 ≤ j ≤ p− 1) are given sections on ∂D. Then, for
all sections gj ∈ D(G∗

j|∂D) (0 ≤ j ≤ p − 1) we have

lim
ε→+0

∫

∂D

< gj, Bj(G(f))(x+εν(x))−Bj(G(f))(x−εν(x)) >x ds =

∫

∂D

< gj, f >x ds.

Proof. We fix a section gj ∈ D(G∗
j|∂D) and we find a section g ∈ C∞

loc(F
∗) such

that Cjg = gj, and Cjg = 0 for i 6= j on ∂D. It is not difficult to construct such a
section g, for example, using the formulae for the jumps in crossing ∂D of a Green
type integral with a smooth density. Then using Lemma 2.3 we can write

lim
ε→+0

∫

∂D

< gj, [Bj(G(f))(x + εν(x)) − Bj(G(f))(x − εν(x))] >x ds =

= lim
ε→+0

[

∫

∂D−ε

p−1∑

j=0

< Cjg, Bj(Gf) >x ds −
∫

∂Dε

p−1∑

j=0

< Cjg, Bj(Gf) >x ds] =

= lim
ε→+0

∫

∂(D−ε\Dε)

GP (g,Gf).

Repeating the considerations on p.291 in the book of Tarkhanov [63] we obtain
that the last limit exists, and that it is equal to

∫

∂D

< Cjg, fj >x ds =

∫

∂D

< gj, fj >x ds,

which was to be proved. �

As one can see from the proof of the lemma, it holds also for a domain D
with a boundary of finite, perhaps, very high degree of smoothness. The same
considerations can be applied to the smoothness of the sections gj in (2.4). These
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depend on the orders of singularity of the given sections fj (0 ≤ j ≤ p − 1) which
are finite since the surface ∂D is compact.

We can now complete the proof of Theorem 2.6. In fact, if g ∈ D(G∗
j|∂D) where

0 ≤ j ≤ p − 1, then, from formula (2.3) and Lemma 2.7, we obtain

lim
ε→+0

∫

∂D

< g, Bjf(x − εν(x)) >x ds =

= lim
ε→+0

∫

∂D

< g,−Bj(G(⊕fj))(x − εν(x)) + Bj(S
0(χDf̂)(x − εν(x)) >x ds =

= lim
ε→+0

∫

∂D

< g,−Bj(G(⊕fj))(x − εν(x)) + Bj(S
0(χDf̂)(x + εν(x)) >x ds =

= lim
ε→+0

∫

∂D

< g,−Bj(G(⊕fj))(x − εν(x)) + Bj(G(⊕fj))(x + εν(x)) >x ds =

=

∫

∂D

< gj, fj >x ds,

that is, f ∈ SP,B(D). Hence Theorem 2.6 is completely proved. �

We note that Lemma 2.7 is similar to the theorem on the weak jump of the
Bochner - Martinelli integral which was proved by Chirka [9]. We denote by Sf (D)
the subspace of S(D) which consists of solutions of finite order of growth near the
boundary of D. As we have just proved, for any Dirichlet system of order (p − 1)
on ∂D, say, {Bj}, we have Sf (D) = SP,B(D). For several reasons, it is convenient
to consider the Cauchy Problem 2.1 in a subspace of Sf (D). We indicate now a
class of boundary sets S for which Problem 2.1 has no more than one solution in
Sf (D).

Theorem 2.8. Suppose that for a solution f ∈ Sf (D) the boundary values Bjf
(0 ≤ j ≤ p−1) vanish on a set S ⊂ ∂D which has at least one interior point. Then
f ≡ 0 in D.

Proof. Denote, as above, by G(⊕Bjf) the integral on the left hand side of
formula (2.1). Let x0 ∈ S, and B = B(x0, r) be an open ball in X such that
B∩∂D ⊂ S. We set O = D∪B. Then G(⊕Bjf) ∈ C∞

loc(E|O) satisfies PG(⊕Bjf) =
0 in the domain O ⊂ X , and it vanishes on the non-empty open subset B\D of this
domain. Since the uniqueness property of the Cauchy problem in the small on X
holds for P then G(⊕Bjf) = 0 in O. In particularly, f ≡ 0 in D, which was to be
proved. �

æ
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§3. A criterion of the solvability of the Cauchy

problem for elliptic systems in terms of surface bases.

In [62] the maximal subclasses of Sf (D) of solutions f , for which one can speak
of the boundary values of the expressions Bjf (0 ≤ j ≤ p − 1) on ∂D belonging
to the range of usual (not generalized) sections of Gj , was distinguished. These
are the so-called Hardy spaces H2

P,B(D) (1 < q < ∞) which are modelled on the
pattern of the classical Hardy spaces of holomorphic functions. One could say that
H2

P,B(D) consists of all solutions f ∈ SP,B(D) for which the weak limit values of

the expressions Bjf (0 ≤ j ≤ p − 1) on ∂D belong to L2(Gj|∂D). In particular,

with the topology induced by L2(⊕Gj|∂D) the space H2
P,B(D) is a Hilbert space (see

below ). In this section we indicate an application of the abstract theory of §1 to the
Cauchy Problem 2.1 in the Hardy class H2

P,B(D). So, let P be an elliptic differential

operator whose transposed operator (P ′) satisfies the uniqueness condition for the
Cauchy problem in the small on X . We consider the following problem.

Problem 3.1. Let fj ∈ L2(Gj|S) (0 ≤ j ≤ p − 1) be known sections on S. It is

required to find a solution f ∈ H2
P,B(D), satisfying Bjf = fj (0 ≤ j ≤ p− 1) on S.

As was noticed by M.M. Lavrent’ev, the fundamental result about the solvability
of Problem 3.1 is the following.

Lemma 3.2. If the complement of S on ∂D has at least one interior point then
Problem 3.1 is densely solvable.

Proof. We denote by H the vector space L2(⊕Gj|S). Having provided each of
the bundles Gj with some Hermitian metric (., .)x we can define the conjugate linear
isomorphism ∗ : Gj → G∗

j by < ∗ϕ, f >x= (f, ϕ)x. The vector space H is a Hilbert

space with the scalar product (⊕fj ,⊕ϕj)H =
∑p−1

j=0

∫
S
(fj , ϕj)xds. We consider in

H the subset H0 which is formed by elements of the form ⊕Bjf where f ∈ S(D).
We obtain more than is asserted in the lemma if we prove that H0 is dense in H.
Using the Hahn-Banach theorem it is sufficient to show that if Φ is a continuous
linear functional on H which is equal to zero on H0, Φ ≡ 0. Let Φ be such a
functional. According to the theorem of Riesz, there are elements ϕ̃j ∈ L2(Gj|S)
(0 ≤ j ≤ p − 1) such that Φ(⊕fj) = (⊕fj ,⊕ϕ̃j) for all ⊕fj ∈ H. Having extended
each of the sections ϕ̃j by zero to ∂D\S we obtain the sections ϕ ∈ L2(Gj|∂D)

(0 ≤ j ≤ p− 1), and we set gj = ∗ϕj , that is, gj ∈ L2(G∗
j|∂D). Since the functional

Φ vanishes on H0, we have
∫

∂D

∑p−1
j=0 < gj , Bjf >x ds = 0 for all f ∈ S(D). We

can now use Theorem 29.9 from the book of Tarkhanov [63] and conclude that
there exists a section g ∈ H2

P ′,C(D) for which Cjg = gj (0 ≤ j ≤ p − 1) on ∂D. In

particular, Cjg = 0 (0 ≤ j ≤ p − 1) on ∂D\S. According to Theorem 2.8, g ≡ 0 in
D, so that Φ ≡ 0, which was to be proved. �

To apply the results of §1 to Problem 3.1 some information about the orthogonal
projection in L2(⊕Gj|∂D) on the subspace formed by elements of the form ⊕Bjf ,
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where f ∈ H2
P,B(D) is needed. We can obtain it by the very general theory of

functional spaces with reproducing kernels (see Aronszajn [4]). We now explain
this. We consider the space H = H2

P,B(D) together with the hermitian form

(3.1) (f, v) =

p−1∑

j=0

∫

∂D

(Bjf, Bjϕ)xds (f, ϕ ∈ H2
P,B(D)

on it. Theorem 2.8 implies that any solution f ∈ H2
P,B(D) is completely defined

by the restrictions of the expressions Bjf (0 ≤ j ≤ p − 1) to ∂D. Hence the form
(3.1) defines a scalar product on H2

P,B(D).

Lemma 3.3. H2
P,B(D) is a separable Hilbert space.

Proof. We can identify the pre-Hilbert space H2
P,B(D) with the subspace of

L2(⊕Gj|∂D) formed by the elements of the form ⊕Bjf , where f ∈ H2
P,B(D). How-

ever by Theorem 29.3 of see Tarkhanov [63] one can quite simply notice that this
subspace is closed. In fact, it is the intersection of kernels of special continuous lin-
ear functionals on L2(⊕Gj|∂D). Hence, H2

P,B(D) inherits the properties of a closed
subset of the separable Hilbert space. This proves the the lemma. �

Let x be a fixed point of the domain D. We consider the functional δ
(j)
x (1 ≤

j ≤ k) on H2
P,B(D) given by δ

(j)
x f = f (j)(x) (1 ≤ j ≤ k) where f (j)(x) is the

j-th component of f at the point x. Formula (2.1) implies that this functional
is continuous on H2

P,B(D). Moreover, a stronger property than continuity holds.

Namely, for any compact K ⊂ D there is a constant CK such that ‖δ(j)
x ‖ < CK

for x ∈ K. Hence, H2
P,B(D) is a space with a reproducing kernel (see Aronszajn

[4]). We can now use the Riesz theorem on the general form of a continuous linear

functional on a Hilbert space and thus find (unique) elements K(j)
x ∈ H2

P,B(D)

(1 ≤ j ≤ k) such that f (j)(x) = (f,K(j)
x )H for all f ∈ H. We denote by K(i,j)

x

(1 ≤ j, i ≤ k) the i-th component of the vector-valued function K(j)
x . The (well

defined) matrix K(x, y) = ‖K(i,j)
x (y)‖ is called the reproducing kernel of the domain

D relative to H2
P,B(D). Its properties are well-known.

Proposition 3.4. The matrix K(x, y) is hermitian, that is, K(x, y)∗ = K(y, x).

Proof. If 1 ≤ j, i ≤ k then

K(i,j)
y (x) = (K(j)

y ,K(i)
x )H = (K(i)

x ,K(j)
y )H = K(i,j)

x (y),

which was to be proved. �
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Proposition 3.5. trK(x, x) = ‖δ(j)
x ‖.

Proof. We have,

trK(x, x) =

k∑

j=1

(K(j)
x ,K(j)

x )H = ‖δ(j)
x ‖,

which was to be proved. �

Proposition 3.6. If {eν} is an orthonormal basis of the space H2
P,B(D) then

for all x ∈ D we have K(j)
x =

∑∞
ν=1 e

(j)
ν (x)eν (1 ≤ j ≤ k) where the series converges

in the norm of H. As a series of (vector-) functions of two variables (x, y) ∈ D×D,
it converges uniformly on compact subsets of D × D.

Proof. For a fixed x ∈ D the Fourier series of the element K(j)
x ∈ H2

P,B(D)

(1 ≤ j ≤ k) with respect to the basis {eν} has the form K(j)
x =

∑∞
ν=1(K

(j)
x , eν)Heν .

To prove the first part of the proposition we notice that (K(j)
x , eν)H = e

(j)
ν (x). We

suppose now that Ki (i = 1, 2) are compact subsets of D, and that constants Ci

(i = 1, 2) are chosen so that ‖δ(j)
x ‖ ≤ Ci for x ∈ Ki. Then for x ∈ Ki

( ∞∑

ν=1

|e(j)
ν (x)|2

)2

≤ |
∞∑

ν=1

e
(j)
ν (x)eν(x)|2 ≤

≤ Ci‖
∞∑

ν=1

e
(j)
ν (x)eν(y)‖2 = Ci

∞∑

ν=1

|e(j)
ν (x)|2.

Hence here we have
∑∞

ν=1 |e
(j)
ν (x)|2 ≤ Ci for x ∈ Ki (i = 1, 2). Thus, if (x, y) ∈

K1 × K2, we obtain

∞∑

ν=1

|e(j)
ν (x)eν(y)| ≤

( ∞∑

ν=1

|e(j)
ν (x)|2

)1/2( ∞∑

ν=1

|eν(y)|2
)1/2

≤
√

kC1C2.

This proves the absolute and uniform convergence on compact subsets of D×D

of the series for K(j)
x , which was to be proved. �

The formula for the reproducing kernel mentioned in Proposition 3.6 could be
written in the form K(x, y) =

∑∞
ν=1 eν(x)∗ ⊗ eν(y). The a priori estimations for

a solution of an elliptic system imply that this series here converges uniformly
together with all its derivatives on compact subsets of D × D, that is, K is an
infinitely differentiable section of E � E over D × D.
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Theorem 3.7. For all solutions f ∈ H2
P,B(D) the following formula holds

(3.2) f(x) =

∫

∂D

p−1∑

j=0

< ∗BjK(x, .), Bjf >y ds (x ∈ D).

Proof. We simply rewrite the reproducing property of the kernel K in detail.
�

For holomorphic functions of several variables Theorem 3.7 is due to Bungart
[7].

Corollary 3.8. In the space L2(⊕Gj|∂D) the operator of the orthogonal projec-

tion on the subspace Σ1 formed by elements of the form ⊕Bjf where f ∈ H2
P,B(D),

has the form

(3.3) Π(⊕fj) = ⊕Bj

(∫

∂D

p−1∑

i=0

< ∗BiK(x, .), fi >y ds

)
(⊕fj ∈ L2(⊕Gj|∂D).

Proof. Let {eν} be an orthonormal basis of the space H2
P,B(D). Then, from

equality (3.1), {⊕Bjeν} is an orthonormal basis of the subspace Σ1 in L2(⊕Gj|∂D).

Hence if ⊕fj ∈ L2(⊕Gj|∂D) then

Π(⊕fj) =
∞∑

ν=1

(⊕fj ,⊕Bjeν)L2(⊕Gj|∂D)(⊕Bjeν) =

= ⊕Bj

( ∞∑

ν=1

(⊕fj(y),⊕Bj(y)(e∗ν(x) ⊗ eν(y)))L2(⊕Gj|∂D)(⊕Bjeν)

)
.

The first part of Proposition 3.6 implies that the sign of summation over ν can
be taken inside sign of the scalar product. This gives at once formula (3.3), which
was to be proved. �

We outline a scheme of application of the theory of §1 to the Cauchy Problem
3.1. We set H1 = L2(⊕Gj|∂D) and H2 = L2(⊕Gj|S). The hermitian structures on
these spaces are introduced as was explained in the proof of Lemma 3.2. Then H1

and H2 are Hilbert spaces. The operator T : H1 → H2 is given by the restrictions
of sections. Then the adjoint operator T ∗ is simply the extension of sections from S
to ∂D\S by zero. Further, we consider in H1 the subspace Σ1 formed by elements
of the form ⊕Bjf where f ∈ H2

P,B(D). We have already noted that Σ1 is a closed

subspace of H1 representing H2
P,B(D). We denote by Π the operator of orthogonal

projection on Σ1 in H1. This is the integral operator given by formula (3.3).
Lemma 3.2 means that the operator T : Σ1 → H2 has a dense image, therefore we
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set Σ2 = H2. We must consider the mapping ΠT ∗T : Σ1 → Σ1, which is given by
the integral (3.3) except that the domain of integration is S instead of ∂D. If the
set S has at least one interior point (on ∂D) then, from Theorem 2.8, the operators
T : Σ1 → Σ2 and ΠT ∗T : Σ1 → Σ1 are injective. Even in the simplest situations
the operator ΠT ∗T is not compact, moreover, it is not Carleman operator (see

Berezanskii [5], ch.V, 14). Let {b(i)
λ } be a complete system of generalized eigen

vectors of the operator ΠT ∗T in L′
1 where L ⊂ Σ1 ⊂ L′

1 is a suitable equipment of
Σ1. Then Corollaries 1.7 and 1.8 imply the following results.

Theorem 3.9. We assume that the complement of S in ∂D has at least one
interior point. Then for the solvability of Problem 3.1 it is necessary and sufficient
that

(3.4)

∫ 1

−0

Nλ∑

i=1

| (ΠT ∗(⊕fj), b
(i)
λ )H1

λ
|2dσ(λ) < ∞

Proof. It is sufficient to note that in this case we have m = ‖T‖2 = 1. �

It is clear that Theorem 3.9 has only theoretical value, but is not in the least
a practical, because its application depends on the singular eigenvalue problem for
the operator ΠT ∗T . Therefore cases where one succeeds in calculating the system

{b(i)
λ } in an explicit form are very interesting. There is such a situation in one of

the simplest Cauchy problems for holomorphic functions, considered by Krein and
Nudelman [26] (see Example 1.10). A corresponding result holds for Carleman s
formula.

Theorem 3.10. Let ∂D\S have a non-empty interior (in ∂D). Then under
condition (3.4) the solution of Problem 3.1 is given by the formula

(3.5) f(x) = −
∫ 1

−0

(∗−1
Nλ∑

i=1

(⊕CjΦ(x, .)), b
(i)
λ )H1

(ΠT ∗(⊕fj), b
(i)
λ )H1

λ
dσ(λ)

Proof. It is sufficient to substitute the expressions ⊕Bjf(y) (y ∈ D), obtained
by Corollary 1.8, in Green formula (2.1). �

A similar formula could be constructed on the basis of the integral representation
(3.2). æ

§4. Weak values of solutions in Lq(D) on the boundary of D

Again let P be a differential operator with an injective symbol on X , not nec-
essarily satisfying the condition (U)S, and f be a solution of the system Pf = 0
in D of Lebesgue class Lq(E|D) where 1 ≤ q ≤ ∞. What can one say of the limit
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values on ∂D of the expressions Bjf (0 ≤ j ≤ p − 1)? Extrapolating the situation
for holomorphic functions one can say that the class of solutions S(D) ∩ Lq(E|D)

is wider than H2
P,B(D). Moreover, à priori it is not clear, whether the solution

f ∈ S(D) ∩ Lq(E|D) has finite order of growth near ∂D, that is whether the ex-
pressions Bjf (0 ≤ j ≤ p − 1) have weak limit values on ∂D. Estimates of growth
near ∂D of solutions f ∈ S(D) ∩ L2(E|D) could be obtained from the asymptotic
behaviour of the reproducing kernel of the domain D with respect to the Hilbert
space S(D) ∩ L2(E|D). However even in the case of the Cauchy-Riemann system
this asymptotic behaviour is not known for all domains (see Henkin [15], p.68). In
this section we prove that for any solution S(D) ∩ L1(E|D) there are weak limit
values of the expressions Bjf (0 ≤ j ≤ p − 1) on the boundary. Then the theorem
of Rojtberg [47] allows us to know the smoothness of these values on ∂D.

So, we fix f ∈ S(D) ∩ Lq(E|D), where 1 ≤ q ≤ ∞, and a number j (0 ≤
j ≤ p − 1). Putting aside for the meanwhile the questions of the correctness of
the definition, we associate a vector-valued distribution fj ∈ D′(Gj|∂D) with the

solution f in the following way. Let gj ∈ Cbj+1(G∗
j|∂D). Using Lemma 28.2 of

Tarkhanov [63], we find a section g ∈ Cp
loc(F

∗) such that Cjg = gj, and Cig = 0
for i 6= j on ∂D. Then we set

(4.1) < gj, fj >= −
∫

D

< P ′g, f >x dv (gj ∈ Cbj+1(Gj∂D)

Lemma 4.1. Definition (4.1) is correct, that is, it does not depend on the choice
of the section g ∈ Cp

loc(F
∗) for which Cjg = gj, and Cig = 0 for i 6= j on ∂D.

Proof. It is sufficient to show that, if for a section g ∈ Cp
loc(F

∗) the boundary
values on ∂D of the expressions Cjg (0 ≤ j ≤ p − 1) are equal to zero, then∫

D
< P ′g, f > dv = 0.
First of all we replace the section g by another section with the same differential

P ′g, and with derivatives up to order (p − 1) are equal to zero on ∂D. For this
we represent the section g in D by means of the homotopy formula on a manifold
with boundary (see, for example, Tarkhanov [63], (12.3)). Bearing in mind the
connection between the Green operators of the differential operator P and the
transposed of P , and using Lemma 2.3 we have

(4.2) Φ′(χDP ′g) + P 1′

Φ′(χDg) + S1′

(χDg) = χDg.

Let v ∈ W 2p,eq(E2∗

) (where q̃ >> 1) be an extension of the section Φ(χDg)
from X\D to the whole set X . The number q̃ can be chosen as large as we want,
however for our purposes it is sufficient that q̃ > n, and q̃ ≥ q′ where q′ is dual
to the index q, that is, 1/q + 1/q′ = 1. Then, if we consider the section g̃ =

Φ(χDP ′g) + P 1′

v + S1′

(χDg), we can say that g ∈ W p,eq(F ∗), and P ′g̃ = P ′g.

Moreover, from formula (4.2), g̃ ≡ 0 outside of D, but since g̃ ∈ Cp−1
loc (F ∗) we have

Dαg̃ = 0 (|α| ≤ p − 1) on ∂D. Then, replacing if necessary g by g̃, we assume
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without loss of generality that the derivatives of g up to order (p − 1) vanish on
∂D. In this case there is some loss of smoothness of g, but this is not important
for us. Further, we use the lemma of Bochner which says that for any ε > 0 there
is a function ϕε ∈ D(X) (0 ≤ ϕε ≤ 1) with support in the ε-neighbourhood of the
boundary ∂D which is equal to unit in some smaller neighborhood of ∂D, and for
which |Dαϕε| ≤ cαε−|α| everywhere in Rn where the constant cα does not depend
on ε (see Hörmander [16], theorem 1.4.1). We have

(4.3)

∫

D

< P ′g, f >x dv =

∫

D

< P ′(1 − ϕε)g, f >x dv +

∫

D

< P ′(ϕeg), f >x dv

Since the section (1−ϕε) has compact support in D then, from Stokes’ formula,
the first summand on the right hand side of (4.3) disappears. As for the second
summand we can write
(4.4)∫

D

< P ′(ϕεg), f >x dv =
∑

|α|≤p

(−1)|α|
∑

|β|≤|α|

(
α
β

)∫

D\Dε

< DβϕεD
α−β(PT

α g), f >x dv.

We want to prove that the right hand side converges to zero, as ε → +0. For
to do this it is sufficient to estimate the typical summand in (4.4):

∫
D\Dε

<

DβϕεD
α−β(PT

α g), f >x dv (β 6= 0). Having used the Hölder inequality, and taking
into consideration the estimates of the derivatives of the function ϕε we obtain with
a constant c > 0 which does not depend on ε such that

∣∣∣∣∣

∫

D\Dε

< DβϕεD
α−β(PT

α g), f >x dv

∣∣∣∣∣ ≤

≤ ‖DβϕεD
α−β(PT

α g)‖Lq′(F ∗
|D\Dε

)‖f‖Lq(ED\Dε
) ≤

(4.5) ≤ c1ε
−|β|‖Dα−βg‖Lq′(F ∗

|D\Dε
)‖f‖Lq(ED\Dε

)

Since g ∈ Cp−1
loc (F ∗), and Dγg = 0 (|γ| ≤ p − 1) on ∂D, using the localization

process and the repeated use of the Newton-Leibniz formula, it is not difficult to
see there is a constant c2 > 0 such that for all sufficiently small δ > 0 we have

(4.6) ‖Dα−βg‖Lq′(F ∗
|∂Dδ

) ≤ c2δ
p−1−|α|+|β|+1/q‖g‖W p,q′(F ∗

|D\Dδ
)

Similar considerations can be found in the book of Mihailov [39] (p.148). Now
we choose ε > 0 sufficiently small and integrate inequality (4.6) with respect to δ
from 0 to ε. Then using the Fubini theorem we obtain the inequality

‖Dα−βg‖Lq′(F ∗
|D\Dε

) ≤ c′2ε
p−|α|+|β|+1/q‖g‖W p,q′(F ∗

|D\Dε
)
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where c′2 = c2/((p − 1 − |α| + |β| + 1/q)q′ + 1)1/q′

. Substituting this estimate in
(4.5), we obtain

|
∫

D\Dε

< DβϕεD
α−β(PT

α g), f >x dv| ≤

≤ c1c
′
2ε

p−|α|+1/q‖g‖W p,q′(F ∗
|D\Dε

)‖f‖Lq(ED\Dε
),

So we can find a constant c > 0 depending only on the norms of the coefficients
of the differential operator P in the domain D such that for all sufficiently small
ε > 0 we have

(4.7)

∣∣∣∣
∫

D

< P ′g, f >x dv

∣∣∣∣ ≤ c‖g‖W p,q′(E∗
|D\Dε

)‖f‖Lq(ED\Dε
)

The property of the absolute continuity of a Lebesgue integral with respect
to a domain of integration implies that for any q in the range 1 ≤ q ≤ ∞ the
expression on the right hand side of (4.7) converges to zero as ε → +0. Therefore∫

D
< P ′g, f >x dv = 0, which proves the lemma. �

As one can see, if q = 1 in the proof of Lemma 4.1 the arguments fail. Thus in
this case the definition (4.1) needs some modification. Namely, it is necessary to
change the smoothness of the sections gj in (4.1) by ”+0”, that is, we must take,
for example, g ∈ Cbj+1,λ(G∗

j|∂D), where λ > 0. The distributions fj ∈ D′(Gj|∂D)

(0 ≤ j ≤ p − 1) constructed in (4.1) we now take as the weak limit values of the
expressions Bjf on ∂D. It is clear that if f ∈ Cp−1(E|D) then fj is simply the

pointwise restriction of Bjf on ∂D. However in the general case the identification of
fj (0 ≤ j ≤ p−1) with the weak limit values of the expressions Bjf (0 ≤ j ≤ p−1)
on ∂D by definition (4.1) is difficult. Later on we shall show that this identification
is valid, but now we begin with the justification of the naturality of definition (4.1).

Lemma 4.2. For any solution f ∈ S(D) ∩ Lq(E|D) (1 < q ≤ ∞) the following
Green formula holds:

(4.8)

∫

∂D

p−1∑

j=0

< Cjg, Bjf >x ds = −
∫

D

< P ′g, f >x dv (g ∈ Cp(F ∗
|D)).

Proof. For each number 1 ≤ j ≤ p − 1 we construct a section g(j) ∈ Cp
loc(F

∗)
such that Cjg

(j) = Cjg, and Cig
(j) = 0 for i 6= j on ∂D. We set g0 = g − g(1) −

... − g(p−1). Then g0 ∈ Cp
loc(F

∗
D

), C0g
(0) = C0g, and Cig

(0) = 0 for i 6= 0 on ∂D.

Hence, according to definition (4.1) we can write

∫

∂D

p−1∑

j=0

< Cjg, Bjf >x ds =

p−1∑

j=0

(
−
∫

D

< P ′g(j), f >x dv

)
=
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= −
∫

D

< P ′g, f >x dv,

which was to be proved. �

Formula (4.8) holds also for solutions f ∈ S(D) ∩ L1(E|D), however with sections

g whose smoothness is greater than ”+0”, that is, for g ∈ Cp,λ(F ∗) where λ > 0.

Lemma 4.3. For any solution f ∈ S(D) ∩ L1(E|D) the Green formula (2.1)
holds.

Proof. Let x be a fixed point belonging to X\∂D. We take some function
ϕ ∈ D(X) which is equal to 1 in a neighbourhood of ∂D, and vanishes on some
neighborhood of the point x. It is clear that ϕΦ ∈ C∞

loc(Ex⊗F ∗), therefore formula
(4.8) implies that

(4.9)

∫

∂D

p−1∑

j=0

< CjΦ, Bjf >x ds = −
∫

D

< P ′(ϕΦ, f >x dv.

We choose ε > 0 so small that ϕ ≡ 1 in some neighbourhood of ”the piece”
D\Dε. Since P ′Φ(x, .) = 0 everywhere outside of the point x, it follows that the
integral on the right hand side of formula (4.9) is equal to the similar integral
taken over the domain Dε. But f ∈ S(Dε), therefore the last integral is equal to
−
∫

∂Dε
GP (Φ(x, .), f), that is, (χDf)(x), which was to be proved. �

We can now formulate the principal result of this section. As before, we denote
by Bs,q(Gj|∂D) the usual Besov spaces of sections of the bundles Gj over ∂D (see
Kudrjavtsev and Nikolskii [27]). In particular, if s is not an integer or q = 2
then Bs,q(Gj|∂D) = W s,q(Gj|∂D). If 1 < q < ∞ then in definition (4.1) we can

take gj ∈ Bbj+1/q′,q(Gj|∂D) (0 ≤ j ≤ p − 1). Lemma 2.2 from the paper of
Rojtberg [47] guarantees existence of a section g ∈ W s,q(F ∗

|∂D) such that Cjg = gj ,

and Cig = 0 for i 6= j on ∂D. Then one can substitute g into the right part
of (4.1). Moreover, the above-mentioned lemma of Rojtberg [47] says that the
mapping gj → g is continuous. Using Holder’s inequality it is easy to conclude that

Bjf ∈ B−bj−1/q′,q′

(Gj|∂D) (0 ≤ j ≤ p−1) (see our paper [51]). However we obtain
a more general result directly from the fundamental theorem of Rojtberg [47].

Theorem 4.4. For a solution f ∈ S(D) ∩ L1(E|D) the limit values of the expres-
sions Bjf (0 ≤ j ≤ p−1) on ∂D defined by formula (4.1) are the weak limit values.

Moreover f ∈ W s,q(E|D) (1 < q < ∞) if and only if Bjf ∈ Bs−bj−1/q,q(Gj|∂D)
(0 ≤ j ≤ p − 1).

Proof. Again we shall try to reduce the proof to the corresponding fact for
solutions of elliptic systems. We fix a section f ∈ S(D) ∩ Lq(E|D), q > 1, satisfying
Pf = 0 in D. Then f must also satisfy ∆f = 0 where ∆ = P ∗P is an elliptic
differential operator of type E → E, and of order 2p on X . The system {Bj}p−1

j=0
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can be replaced with a Dirichlet system of order (2p − 1) on ∂D in the following

way. We set B̃j = Bj for 0 ≤ j ≤ p − 1, and B̃j = ∗−1Cj−p ∗ P for p ≤ j ≤ 2p − 1.

Then {B̃j}2p−1
j=0 is a Dirichlet system of order (2p − 1) on ∂D, and the Dirichlet

system {C̃j}2p−1
j=0 corresponding to it by Lemma 2.3 (with P = ∆) has the form

C̃j = −Cj ∗ P∗−1 for 0 ≤ j ≤ p − 1, and C̃j = − ∗ Bj−p∗−1 for p ≤ j ≤ 2p − 1.
We now use a relation (which is similar to (4.1) to define the limit values of the

expressions B̃jf (0 ≤ j ≤ 2p − 1) on ∂D in our new situation. More precisely,
these expressions are only interesting for (0 ≤ j ≤ p− 1). So, let g ∈ Cbj+1(G∗

j|∂D)

(0 ≤ j ≤ p−1). Using Lemma 28.2 of Tarkhanov [63] we find a section G ∈ C2p
loc(E

∗)

such that Cj ∗ P ∗−1 G = g, and C̃iG = 0 for i 6= j (0 ≤ i ≤ 2p − 1) on ∂D. Then
we set

(4.10) < g, Bjf >= −
∫

D

< ∆′G, f >x dv, (gj ∈ Cbj+1(G∗
j|∂D)).

However, if we define Bjf on ∂D by means of formula (4.1), the choice of g in
Lemma 4.1 is unimportant. In particular, nothing prevents us from taking g =
∗P ∗−1 G in (4.1). Then we obtain equality (4.10). Hence the definition of the
limit values of Bjf (0 ≤ j ≤ p − 1) on ∂D does not depend on whether f is a
solution of the system Pf = 0 or ∆f = 0. So, replacing the operator P by ∆
we may suppose without loss of a generality that P is elliptic. But then the first
part of Theorem 4.4 follows from Lemmata 4.3 and 2.7. For, from Lemma 4.3, the
solution f is represented by the limit values of the expressions Bjf (0 ≤ j ≤ p− 1)
on ∂D which are defined in accordance with equality (4.1) by means of the Green
formula (2.1). And Lemma 2.7 asserts that the weak jump in going across ∂D of
the expressions BjG(⊕Bif) (0 ≤ j ≤ p − 1) coincides with Bjf . Hence the limit
values of the expressions Bjf (0 ≤ j ≤ p − 1) on ∂D exist, and they coincide with
the limit values calculated by the formula (4.1). This proves the first part of the
theorem for solutions f ∈ Lq(E|D) (q > 1), and for q = 1 we must make obvious
modifications. To prove the second part of the theorem we assume in addition that
f ∈ S(D) ∩ W s,q(E|D) where 1 < q < ∞. Rojtberg [47] proved that there are limit
values of the expressions Bjf (0 ≤ j ≤ p − 1) on ∂D in the following sense. There

is a sequence f (ν) ∈ C∞(E|D) such that f (ν) converges to f in W s,q(E|D) and

Pf converges to zero in W s−p,q(F|D). Moreover, for any such a sequence f (ν) the

sequence Bjf
(ν) (0 ≤ j ≤ p−1) is fundamental in Besov space Bs−bj−1/q,q(Gj|∂D),

and therefore it converges in this space to a limit fj . Arguing as in the proof of
Theorem 2.6 we see that the solution f is represented by the boundary values fj by
means of the Green formula (2.3). Then Lemma 2.7 again shows that the sections
fj (0 ≤ j ≤ p − 1) are the limit values on ∂D of the expressions Bjf . So the weak
limit values of the expression Bjf (0 ≤ j ≤ p−1) on ∂D belong to the Besov space

Bs−bj−1/q,q(Gj|∂D).
Conversely, if such an inclusion holds then formula (2.1) and the theorems on

boundedness of potential (or co-boundary) operators on a manifold with boundary
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(see Rempel and Schulze [45], 2.3.2.5) imply that f ∈ W s,q(E|D). This proves
Theorem 4.4. �

This theorem, in particular, shows that for a solution f ∈ S(D) ∩ L1(E|D) defi-
nition (4.1) of the boundary values Bjf (0 ≤ j ≤ p− 1) on ∂D does not depend on
the choice of the differential operator P . æ

§5. The Green integral and solvability of

the Cauchy problem for elliptic systems

In this and the following 3 sections we assume that P is an elliptic differential
operator such that the transposed operator P ′ satisfies the uniqueness condition of
the Cauchy problem in the small on X .

Theorem 4.4 explains that if we solve Problem 2.1 (of Cauchy) in the class
S(D)∩Lq(E|D) (or, more generally, in the class of sections satisfying Pf = 0 in D
which have finite order of growth near the boundary of D) then we can hope only for
generalized limit values of the expressions Bjf (0 ≤ j ≤ p − 1) on ∂D. Therefore,
since distributions have restrictions only on open subsets of the domain, it is natural
to assume that S is an open connected piece (subdomain) of the boundary of D.

This situation can be realized in the following way. There is some domain O b X ,
and S is a smooth closed hypersurface in O dividing this domain into two connected
components: O− = D and O+ = O\D.

In the wording of the following problem there are Besov spaces Bs−bj−1/q,q(Gj|S)

whose definition may be not clear. We define these spaces in the following way. In
Besov space Bs−bj−1/q,q(Gj|∂D) (defined by one of the usual method) we consider

the subspace Σ formed by all the sections which are equal to zero on S. For s < 0
this means that < g, f >= 0 for all g ∈ B−s,q′

(G∗
j|∂D) with supp g ⊂ S. It is

easy to see that Σ is closed. The corresponding quotient space (with the quotient
topology) we denote by Bs−bj−1/q,q(Gj|S)

Problem 5.1. Let fj ∈ Bs−bj−1/q,q(Gj|S) (0 ≤ j ≤ p − 1) be known sec-

tions on S where s ∈ Z+, and 1 < q < ∞. It is required to find a section
f ∈ S(D) ∩ W s,q(E|D) such that Bjf = fj (0 ≤ j ≤ p − 1) on S.

Under the formulated conditions the operator P has a right fundamental solution
on X . In other words there is an operator Φ ∈ pdo−p(F → E) such that ΦP = 1−S0

on C∞
comp(E) where S0 ∈ pdo−∞(E → E) is some smoothing operator. Then

PS0 = 0 on generalized sections of E with compact supports (that is, on E ′(E)).
Using the ”initial” data of Problem 5.1 we construct the Green integral in a

the special way. That is, we denote by f̃j ∈ Bs−bj−1/q,q(Gj|∂D) (0 ≤ j ≤ p − 1)
an extension of the section fj to the whole boundary. If, for example, s = 0 and
fj ∈ L2(Gj|S) (0 ≤ j ≤ p− 1), then it is possible to extend them by zero on ∂D\S.
In any case the extensions could be chosen so that they will be supported on a
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given neighbourhood of the compact S on ∂D. Then we set f̃ = ⊕f̃j , and

(5.1) G(f̃)(x) =

∫

∂D

< CjΦ(x, .), f̃j >y ds (x 6=∈ ∂D)

It is clear that G(f̃) is a solution of the system Pf = 0 everywhere in X\∂D.
In particular, if we denote by F± the restrictions of a section F ∈ D′(E|O) to the

sets O±, then G(f̃)± ∈ S(O±).

Theorem 5.2. If the boundary of the domain D is sufficiently smooth then, for

Problem 10.1 to be solvable, it is necessary and sufficient that the integral G(f̃) ex-
tends from O+ to the whole domain O as a solution belonging to S(O) ∩ W s,q(E|O).

Proof. Necessity. Suppose that there is a section f ∈ S(D) ∩ W s,q(E|D) such
that Bjf = fj (0 ≤ j ≤ p − 1) on S.

We consider the following section in the domain O (more exactly, in O\S):

(10.2) F(x) =

{
Gf̃(x), x ∈ O+,

Gf̃(x) + f(x), x ∈ O−.

Using the boundedness theorem for potential operators in Sobolev spaces on
manifolds with boundary (see Rempel and Schulze [45], 2.3.2.5) we can conclude

that G(f̃)± ∈ W s,q(E|O±) (differentiability max(s, p− s) is sufficient). This means

F± ∈ W s,q(E|O±).

On the other hand, we consider the difference ∆ = G(⊕Bjf) − G(f̃). Let ϕε ∈
D(X) be any function supported on the ε-neighbourhood of the set ∂D\S, and equal

to 1 in some smaller neighbourhood of this set. Since Bjf = f̃j (0 ≤ j ≤ p − 1) on
S then we can write

∆(x) =

∫

∂D

p−1∑

j=0

< CjΦ(x, .), ϕε(Bjf − f̃j) >y ds (x 6∈ ∂D).

The right hand side of this equality is a solution of the system Pf = 0 everywhere
in the domain O except the part of the ε-neighbourhood of the boundary of S on
∂D which belongs to O. Therefore, since ε > 0 is arbitrary, ∆ ∈ SP (O).

Now using the expression for the integral G(⊕Bjf) from the Green formula (2.3)

and puting G(f̃) = G(⊕Bj f̃) − ∆ in inequality (5.2) we obtain

F(x) = −∆(x) (x ∈ O\S)

Since S0(χDf) ∈ S(X) the section F extends to the whole domain O as a
solution of the system Pf = 0.

Hence the section F extends to the whole domain O as a solution of the system
Pf = 0.
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Thus, F belongs to S(O) ∩ W s,q(E|O), and on O+ this section coincides with

G(f̃)+, which was to be proved.
Sufficiency. Conversely, let F ∈ S(O) ∩ W s,q(E|O) be a solution coinciding with

G(f̃)+ on O+. We set f(x) = −G(f̃)+F(x) (x ∈ D). The above mentioned bound-
edness theorem for potential operators in Sobolev spaces (see Rempel and Schulze

[45], 2.3.2.5) implies that G(f̃) ∈ W s,q(E|O−). Therefore f ∈ S(D) ∩ W s,q(E|D).
Now, for gj ∈ D(G∗

j|S) (0 ≤ j ≤ p − 1), Lemma 2.7 implies that

lim
ε→+0

∫

∂D

< g, Bjf(x − εν(x)) >x ds = lim
ε→+0

∫

S

< g, Bjf(x − εν(x)) >x ds =

= lim
ε→+0

∫

S

< g,−Bj(G(f̃))(x − εν(x)) + BjF(x − εν(x)) >x ds =

= lim
ε→+0

∫

S

< g,−Bj(G(f̃))(x − εν(x)) + BjF(x + εν(x)) >x ds =

= lim
ε→+0

∫

S

< g,−Bj(G(f̃))(x − εν(x)) + Bj(G(f̃))(x + εν(x)) >x ds =

=

∫

S

< gj, f̃j >x ds =

∫

S

< gj , fj >x ds.

Hence Bjf = fj (0 ≤ j ≤ p − 1) on S, that is, f is a soution of Problem 5.1,
which was to be proved. �

æ

§6. A solvability criterion for the Cauchy problem for elliptic

systems in the language of space bases with double orthogonality

Theorem 5.2 has been formulated so that the application of the theory of §1 (see
part 1) is suggested. For this assume in addition that q = 2.

So, in this section we consider the solvability aspect of Problem 5.1.

Problem 6.1. Under what conditions on the sections fj ∈ W s−bj−1/2,2(Gj|S)

(0 ≤ j ≤ p − 1) is there a solution f ∈ S(D) ∩ W s,2(E|D) such that Bjf = fj

(0 ≤ j ≤ p − 1) on S ?

Let Ω be some relatively compact subdomain of O+. Since Ω b O+, it follows

that the restriction to Ω of the Green integral G(f̃) defined by equality (5.1) belongs

to the space S(Ω) ∩ W s,2(E|Ω). Hence the extendibility condition for G(f̃) from

O+ to the whole domain O (as a solution in the class S(O) ∩ W s,2(E|O) could

be obtained by the use of a suitable system {bν} in S(O) ∩ W s,2(E|O) with the
double orthogonality property. More exactly, it is required that {bν} should be
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an orthonormal basis in Σ1 = S(O) ∩ W s,2(E|O) and an orthogonal basis in Σ2 =

S(Ω) ∩ W s,2(E|Ω) (or the contrary !).
How can such a system be constructed ? The theory of §1 answers this question.
We consider Sobolev spaces H1 = W s,2(E|O) and H2 = W s,2(E|Ω) of sections

of E. According to our approach we define them in the ”interior” way using the
Riemannian metric dx on O or Ω, and the Hermitian metric on (fibers of) E.
Thus, H1 and H2 are Hilbert spaces. On the other hand, if the boundaries of O
and W satisfy minimal conditions of the smoothness (roughly speaking they should
be Lipschitz’s ones) then these spaces are isomorphic (as normed spaces) to the
Hilbert spaces W s,2(E|O) and W s,2(E|Ω). These spaces are already defined in the

”exterior” way. Namely, they are defined as quotient spaces of the Hilbert space
W s,2(E) by closed subspaces of sections vanishing on O or Ω respectively.

The operator T : H1 → H2 is given by restriction of sections so that this is a
continuous linear mapping of the Hilbert spaces.

Further, we distinguish in H1 and H2 the subspaces Σ1 and Σ2 which are formed
by sections F satisfying PF = 0 in O or Ω respectively. The Stiltjes-Vitali theorem
(see Hormander [16],4.4.2) implies that these subspaces are closed, therefore they
are Hilbert spaces with the induced hermitian structures.

It is clear that the restriction of the mapping T to Σ1 maps to Σ2. However it
is not evident that the image of T is dense in Σ2.

Lemma 6.2. If the boundary of the domain Ω b O is regular, and the comple-
ment of Ω has no compact connected components in O then the operator T : Σ1 →
Σ2 has a dense image.

Proof. We need to prove that restrictions to Ω of elements of S(O) ∩ W s,2(E|O)

are dense in S(Ω) ∩ W s,2(E|Ω) in the norm of W s,2(E|Ω). However, since the bound-

ary of Ω is regular, S(Ω) is dense in S(Ω) ∩ W s,2(E|Ω) in the norm of W s,2(E|Ω) (see
Tarkhanov [63], ch 4). On the other hand, the complement of Ω has no compact con-
nected components in O, and hence the theorem of Runge implies that S(O) is dense
in S(Ω) (see the same book, theorem 11.26). Since S(O) ⊂ S(O) ∩ W s,2(E|O), and

the natural topology in S(O) is stronger than the induced topology from W s,2(E|O),
we obtain the required result. �

From the proof of the lemma we can see how to understand the words ”regular
boundary”. If s ≥ p, the word ”regular” means any boundary. And if s < p then
this means that the complement of Ω in every boundary point is sufficiently massive.
The reader can get a more exact characterization from the book of Tarkhanov [63]
(ch. 4).

Lemma 6.3. If the differential operator P satisfies the condition (U)S on X then
the operator T : Σ1 → Σ2 is injective.

Proof. Let f ∈ Σ1 and Tf = 0. This means that the solution f ∈ S(O)
vanishes on the non-empty open subset Ω of O. Hence the property (U)S implies
f ≡ 0 everywhere in O, which was to be proved. �
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However the most important property of the operator T (in view of the applica-
tion, via Theorem 5.2, of the theory of §1 to Problem 6.1) is the following.

Lemma 6.4. The operator T : Σ1 → Σ2 is compact.

Proof. We need to show that the operator T maps any bounded set to a rela-
tively compact set.

Let K ⊂ Σ1 be a bounded set, that is, one can find a constant C > 0 such
that ‖f‖ < C for all f ∈ K. The image of K by the mapping T , that is, T (K)
is a relatively compact set if from any sequence {Fj} ⊂ T (K) one can extract a
subsequence {Fjk} converging in Σ2.

However if {Fj} ⊂ T (K) then Fj = fj|Ω where {fj} ⊂ K. The sequence {fj} is
bounded in the Hilbert space Σ1. Therefore it contains a subsequence {fjk} which
converges weakly to some element f ∈ Σ1 (see Riesz and Sz.-Nagy [46], s.32).
Certainly {fj} converges to f in the topology of the space D′(E|O).

We use now the Stiltjes-Vitaly theorem (see Hormander [16], 4.4.2) to conclude
that {fjk} converges to f in the topology of the space C∞

loc(E|O). We set F = f|Ω,
and Fjk = fjk|Ω then F ∈ Σ2 and {Fjk} converges to F in Σ2, which was to be
proved. �

We can formulate now the main result on existence of bases with double orthog-
onality.

Theorem 6.5. If Ω b O is an open set with a regular boundary whose com-
plement (in O) has no compact connected components in O then in the space
S(O) ∩ W s,2(E|O) there is an orthonormal basis {bν}∞ν=1 whose restriction to Ω

is an orthogonal basis in S(Ω) ∩ W s,2(E|Ω).

Proof. We construct this basis by a method which will allow to obtain addi-
tional information about the corresponding eigen-value problem.

Let Π be the operator of orthogonal projection on Σ1 in H1. The à priori interior
estimates for solutions of elliptic systems imply that the space Σ1 (and Σ2 ) is a
Hilbert space with a reproducing kernel (see Aronszajn [4]). Hence Π is an integral
operator with a kernel K(x, y) ∈ C∞

loc(E � E|(O×O)).

If {eν}∞ν=1 is an orthonormal basis of the space S(O) ∩ W s,2(E|O) then for all

x ∈ O we have K(x, .) =
∑∞

ν=1 eν(x) ⊗ eν(.), where the series converges in the
norm of W s,2(E ⊗ E|O). As a series of (matrix-valued) functions of two variables
(x, y) ∈ O × O, this series converges uniformly on compact subsets of O × O.

Thus, ΠF = (F ,K(x, .))H1
(F ∈ H1). Now simple calculations show that the

operator ΠT ∗T : H1 → H2 is integral. Namely,

(ΠT ∗T )F =

∫

Ω

∑

|α|≤s

< ∗DαK(x, .), DαF >y dv (F ∈ H1).

From Lemmata 6.2, 6.3 and 6.4, and the results of Example 1.9 the restriction
of the operator ΠT ∗T to Σ1 is injective, compact, and self-adjoint operator in Σ1.
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Hence, if we denote by {bν} the countable complete orthonormal system of eigen-
vectors of the operator ΠT ∗T on Σ1 (corresponding to eigenvalues {λν} ⊂ (0, 1)),
{bν} is an orthonormal basis of the space Σ1 and {Tbν} is an orthogonal basis in
Σ2.

Therefore {bν} is a system with the double orthogonality property, which was to
be proved. �

For an element F ∈ Σ1 we shall denote by cν(F) (ν = 1, 2, ...) its Fourier
coefficients with respect to the orthonormal system {bν} in Σ1, that is, cν(F) =
(F , bν)H1

. And for an element F ∈ Sigma2 we shall denote by kν(F) (ν =
1, 2, ...) its Fourier coefficients with respect to the orthogonal system {Tbν} in Σ2,

that is, kν(F) =
(F,T bν)H2

(Tbν ,T bν)H2
. Then the principal property of bases with double

orthogonality is the following.

Lemma 6.6. For any element F ∈ Σ1 we have

(6.1) cν(F) = kν(TF) (ν = 1, 2, ...)

Proof. Using the calculations of Example 1.9 we obtain

cν(F) = (F ,
1

λν
(ΠT ∗T )bν)H1

=
1

λν
(TF , T bν)H2

= kν(TF),

which was to be proved. �

We formulate now the solvability condition for Problem 6.1. Let Gf̃ be the Green
integral (see (5.1) constructed from the ”initial” data of the problem. As already

we noted, the restriction of the section Gf̃ to Ω belongs to the space Σ2.

Lemma 6.7. For ν = 1, 2, ...

(6.2) kν(Gf̃) =

∫

∂D

p−1∑

j=0

< Cjkν(Φ(., y)), f̃j >y ds.

Proof. This consists of direct calculations with the use of equality (5.1). �

In order to determine the coefficients kν(Gf̃) (ν = 1, 2, ...) it is not necessary
to know the basis {Tbν} in Σ2. It is sufficient only to know the coefficients of the
decomposition of the fundamental matrix (Φ(., y) (y ∈ ∂D) with respect to this
series. The properties of the coefficients kν(Φ(., y) ∈ C∞

loc(F
∗
|X\Ω) we shall discuss

in §7.
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Theorem 6.8. If the boundary of the domain D is sufficiently smooth then for

the solvability of Problem 11.1 it is necessary and sufficient that
∑∞

ν=1 |kν(Gf̃)|2 <
∞;

Proof. Necessity. Suppose that Problem 6.1 is solvable. Then Theorem 5.2

implies that the solution Gf̃ extends from O+ to the whole domain O as a solution
belonging S(O)∩ W s,2(E|O). Having denoted this extension F we obtain F ∈ Σ1

and TF = Gf̃ on Ω. Therefore taking into the consideration formula (6.1), and
using Bessel’s inequality we obtain

∞∑

ν=1

|kν(Gf̃)|2 =

∞∑

ν=1

|kν(TF)|2 =

∞∑

ν=1

|cν(F)|2 = ‖F‖2
H1

< ∞

which was to be proved.
Sufficiency. Conversely, let condition (6.3) hold. Then the theorem of Riesz

and Fisher implies that there exists an element F ∈ Σ1 such that cν(F) = kν(Gf̃)
for ν = 1, 2, ... Applying the operator T to the series F =

∑∞
ν=1 cν(F)bν which

converges in the norm of H1, and taking into the consideration that the system
{Tbν} is a basis in Σ2, we have

TF =
∞∑

ν=1

cν(F)Tbν =

=
∞∑

ν=1

kν(Gf̃)Tbν = Gf̃ on Ω.

Hence F ∈ S(O) ∩ W s,2(E|O), and the restrictions to Ω of the sections F and Gf̃
coincide. Since the differential operator P satisfies the condition (U)S on X it

follows that the solution F coincides with Gf̃ everywhere in O. We conclude now
(using Theorem 5.2) that Problem 6.1 is solvable, which was to be proved. �

In conclusion we consider 2 examples.

Example 6.9. Aizenberg (see Aizenberg and Kytmanov [3]) studied the Cauchy
problem for holomorphic functions of one variable, that is, in the case P = d/dz,
and B0 = 1. He took as O the unit circle (with centre at zero) divided into 2
parts by a smooth hypersurface S ⊂ B\{0} and he denoted by D that part of
this circle which did not contain zero. The system of holomorphic monomials zν

(ν = 1, 2...) is an example of an orthogonal basis in the subspace of L2(O) which
consists of the holomorphic functions. Moreover this holds for any circle with centre
at 0. Thus, choosing as Ω some circle with centre at zero, contained in O\D, and
normalizing the monomials zν(ν = 1, 2...) in L2(O) we get a simple basis with
double orthogonality. If a solution of the Cauchy problem is looked for in the
class L2(D), and the ”initial” datum is f0 ∈ L2(S) then Green’s integral could be
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constructed as 1
2π

√
−1

∫
S

f0(ζ
ζ−z dζ. Then Theorem 6.8 gives with small modifications

the result of Aizenberg (see Aizenberg and Kytmanov [3]). We note that this
theorem of Aizenberg (and also the remark following it) was a model example for
us. �

Example 6.10. In the paper of Shlapunov [55] the Cauchy problem for har-
monic functions of the class L2(D) was studied. The standard system B0 = 1 and
B1 = ∂/∂ν was taken as a Dirichlet system on dD. If O is a ball with centre at
zero and, S is a smooth hypersurface in O, dividing this domain into 2 connected
components O± so that zero belongs to O+, the system {bν} with the double or-
thogonality property was constructed in an explicit form. This system corresponds
to a special choice of Ω. Namely Ω b O+ is a ball with centre at zero such that
Ω b O+, and this basis consists of the homogeneous harmonic polynomials in Rn.
Also in this parer, it was supposed that the ”initial data” f0, f1 ∈ L2(S). Then as

f̃j (j = 0, 1) one can take their extensions by zero on ∂D\S, and Green integral
(5.1) is simply ∫

S

(Φ(x, .)f1 − ∂/∂νΦ(x, .)f0)ds.

Thus, Theorem 2.1 of Shlapunov [55] is a very special case of Theorem 6.8. �

æ

§7. The Carleman formula

In this section we consider the regularization aspect of Problem 5.1.

Problem 7.1. It is required to find a solution f ∈ S(D) ∩ W s,2(E|D) using

known values Bjf ∈ W s−bj−1/2,2(Gj|S) (0 ≤ j ≤ p − 1) on S.

It is easy to see from Corollary 1.8 that side by side with the solvability conditions
for Problem 5.1 (q = 2) bases with double orthogonality give the possibility of
obtaining a suitable formula (of Carleman) for the regularization of solutions. We
shall illustrate this on example of Problem 7.1.

Let {bν} be the basis with double orthogonality, constructed in the previous
section, in the space (Σ1 =)S(O) ∩ W s,2(E|O) such that the restriction of {bν} to

Ω (that is, {Tbν}) is an orthogonal basis of (Σ2 =)S(Ω) ∩ W s,2(E|Ω).
As above, we denote by {kν(Φ(., y))} the sequence of Fourier coefficients for the

fundamental matrix Φ(., y) (y ∈ Ω) with respect to the system {Tbν}.
Lemma 7.2. The sections kν(Φ(., y)) (ν = 1, 2...) are continuous, together with

their derivatives up to order (p − s − 1), on the whole set X.

Proof. Though the restrictions to Ω of the columns of the fundamental matrix
Φ(., y) (for y ∈ Ω) do not belong to the space Σ2, for all y ∈ X they do belong to
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W p−s−1,q(E|Ω) where q < n
n−1 . Hence the scalar products

kν(Φ(., y)) =
(Φ(., y), T bν)Σ2

(Tbν , T bν)Σ2

=

(7.1) =
1

λν

∑

|α|≤s

∫

Ω

< ∗Dαbν , DαbνΦ(., y) >y dv (ν = 1, 2...).

are defined for all y ∈ X . Since bν ∈ C∞
loc(E|O) we have kν(Φ(., y)) ∈ Cp−s−1

loc (F ∗).
And this was to be proved. �

Using formula (7.1) one can see that the sections kν(Φ(., y)) (ν = 1, 2...) extend
to the boundary of Ω from each side as infinitely differentiable sections (at least, if
the boundary is smooth).

Lemma 7.3. For any number ν = 1, 2, ... we have P ′kν(Φ(., y)) = 0 everywhere
in X\Ω.

Proof. Since P ′Φ′ = 1 on E ′(E∗) then (7.1) implies that

P ′kν(Φ(., y)) = P ′Φ′(χΩ(∗bν)) = χΩ(∗bν) (ν = 1, 2, ...),

and this proves the statement. �

We introduce the following kernels C(N) defined for (x, y) ∈ O × X (x 6= y):

(7.2) C
(N)(x, y) = Φ(x, y)−

N∑

ν=1

bν(x) ⊗ kν(Φ(., y)) (N = 1, 2, ...).

Lemma 7.4. For any number N = 1, 2, ... the kernels C(N) ∈ Cloc(E �F ) satisfy
P (x)C(N)(x, y) = 0 for x ∈ O, and P ′(y)C(N)(x, y) = 0 for y ∈ X\Ω everywhere
except on the diagonal {x = y}.

Proof. Since {bν} ⊂ S(O), this immediately follows from Lemma 7.3. �

From the following lemma one can see that the sequence of kernels {C(N)} inter-
polated for real values N ≥ 0 in a suitable way, for example in the piece-constant
way, gives a special Carleman function for Problem 7.1 (see Tarkhanov [63], §25).

Lemma 7.5. For any multi-index α, Dα
y C(N)(., y) → 0 in the norm of W s,2(E⊗

F ∗
y|O) uniformly with respect to y on compact subsets of X\O, and even X\O if

|α| < p − s − n/2.

Proof. First, we notice that, if y ∈ X\O, every column of the matrix Φ(x., y)
is an element of the space Σ1. Therefore using Lemma 6.6 we obtain C(N)(., y) =
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Φ(., y) −∑N
ν=1 cν(Φ(., y)). Differentiating this identity with respect to y we find

the equality

(7.3) Dα
y C

(N)(., y) = Dα
y Φ(., y)−

N∑

ν=1

bν ⊗ Cν(Dα
y Φ(., y)) (y ∈ X\O).

The correspondence y → Dα
y Φ(., y) defines a continuous linear mapping of the

topological space X\O to the direct sum of k copies of the space Σ1. Therefore
for every column of the matrix Dα

y Φ(., y) its Fourier series with respect to the
orthonormal basis {bν} converges in the norm of Σ1 uniformly with respect to y
on compact subsets of X\O (see Shlapunov [55], Lemma 3.1). This proves the first
part of the lemma. As for the second part, it is sufficient to use the same arguments
because for α| < p−s−n/2 the correspondence y → Dα

y Φ(., y) defines a continuous

linear mapping of the whole set X\O to the direct sum of k copies of the space Σ1.
�

We can formulate now the main result of the section. For f ∈ S(D) ∩ W s,2(E|D))

we denote by f̃ ∈ W s−bj−1/2,2(Gj|∂D) (0 ≤ j ≤ p − 1) some (arbitrary) extensions
of the sections Bjf from S to the whole boundary

Theorem 7.6 (Carleman’s formula). For any solution f ∈ S(D) ∩ W s,2(E|D)
the following formula holds:

(7.4) f(x) = − lim
N→∞

∫

∂D

p−1∑

j=0

< CjC
(N)(x, .), f̃j >y ds (x ∈ D).

Proof. Let G(f̃) be the Green integral constructed by formula (5.1). Theorem

6.8 implies that
∑∞

ν=1 |kν(G(f̃)| < ∞. Hence, from the theorem of Riesz and

Fisher, there exists an element F ∈ S(O) ∩ W s,2(E|O) such that cν(F) = kν(Gf̃).

In proving Theorem 6.8 we saw that this solution F is an extension of Gf̃ from
the domain O+ to the whole domain O as a solution in S(O) ∩ W s,2(E|O). Then

Theorem 5.2 implies that the section f ′(x) = −G(f̃)(x) +F(x) (x ∈ D) belongs to
S(D) ∩ W s,2(E|D), and satisfies Bjf

′ = f (0 ≤ j ≤ p−1) on S. Using (uniqueness)
Theorem 2.8 we see that f = f ′ everywhere in D. Hence

f(x) = −(Gf̃)(x) + F(x) = −(Gf̃)(x) −
∞∑

ν=1

kν(Gf̃)bν(x)) =

(7.5) = −(Gf̃)(x − lim
N→∞

N∑

ν=1

kν(Gf̃)bν(x)).
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Putting in (7.5) the expressions for the coefficients kν(Gf̃) (ν = 1, 2, ...) which
are given in Lemma 6.7 we obtain

f(x) = −
∫

∂D

p−1∑

j=0

< CjΦ(x, .), f̃j >y ds−

− lim
N→∞




N∑

ν=1

∫

∂D

p−1∑

j=0

< Cjkν(Φ(x, .)), f̃j >y ds


 bν(x) =

− lim
N→∞

∫

∂D

p−1∑

j=0

< Cj

(
Φ(x, .) −

N∑

ν=1

bν(x) ⊗ kν(Φ(x, .))

)
, f̃j >y ds =

= − lim
N→∞

∫

∂D

p−1∑

j=0

< CjC
(N)(x, .), f̃j >y ds,

which was to be proved. �

We emphasize that the integral on the right hand side of formula (7.4) depends
only on values of the expressions Bjf (0 ≤ j ≤ p − 1) on S. Thus, this formula
is a quantitative expression of (uniqueness) Theorem 2.8. However this gives much
more than the uniqueness theorem because there is sufficiently complete information
about the Carleman function C(N).

For harmonic functions of several variables Carleman formula (7.4) is first met,
apparently, in [55].

Remark 7.7. The series
∑∞

ν=1 kν(Gf̃)bν (defining the solution F) converges in
the norm of the space W s,2(E|O). The Stiltjes-Vitali theorem (see Hormander [16],
4.4.2) implies now that it converges together with all its derivatives on compact
subsets of O. Then, from formula (7.5), one can see that the limit in (7.4) is
reached in the topology of the space C∞

loc(E|O).
æ

§8. Examples for systems of the simplest type

The examples of this section are based on the following simple observation.

Lemma 8.1. If the coefficients of the differential operator P are real analytic

then Problem 5.1 is solvable if and only of the section G(f̃) extends from O+ to the
whole domain O as a real analytic section belonging to W s,q(E|D).

Proof. First, we note that, since PG(f̃) = 0 outside of ∂D, the section G(f̃) is
real analytic in the domain O+. Now let F be the above extension of this section
in O. Then PF is also a real analytic section in O, and PF = 0 in O+. From
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the uniqueness theorem we obtain that PF = 0 everywhere in the domain O, that
is, F ∈ S(O) ∩ W s,2(E|O). Therefore the statement of the lemma follows from
Theorem 5.2. �

In particular, we can use the fact that (P ∗P )Gf̃ = 0 everywhere outside ∂D,

and the extendibility condition for G(f̃) (up to a section F ∈ W s,2(E|O) satisfying
(P ∗P )F = 0 in O) write in the language of bases with the double orthogonality.

Definition 8.2. The differential operator P is said to be a simplest type oper-
ator if p = 1, and P ∗P = −∆Ik where ∆ is the Laplace operator in Rn.

We suppose that P is a (elliptic) differential operator of the simplest type in
Rn (see §8). Let O = BR be the ball in Rn with centre at zero and of radius
0 < R < ∞, and S be a smooth closed hypersurface in BR dividing this ball into
2 connected components O+, and D = O− so that the domain O+ contains zero.
We consider the following problem (of Cauchy).

Problem 8.3. Let f0 ∈ Cloc(E|S) be a summable section of E on S. It is
required to find a solution f ∈ S(D) ∩ Cloc(E|D∪S) such that f|S = f0.

As the fundamental solution of the differential operator P we can take the matrix
Φ(x, y) = P ′(y)g(x − y), where g(x − y) is the standard fundamental solution of
convolution type of the Laplace operator in Rn with the opposite sign. Then the
Green integral (5.1) has the following form:

Gf̃(x) =
1√
−1

∫

S

Φ(x, .)σ(P )(ν)f0ds (x 6∈ S).

It is easy to see from the structure of the fundamental matrix Φ that the com-

ponents of the section Gf̃ are harmonic functions everywhere in BR (and even in
Rn ) except on the set S.

We need a basis with the double orthogonality in the subspace of L2(BR) which
consists of harmonic functions. In [51] this closed subspace of L2(BR) with the

induced hermitian structure was denoted by h2(BR). Let {h(i)
ν } be a set of ho-

mogeneous harmonic polynomials which form a complete orthonormal system in
L2(∂BR) where ν is the degree of homogeneity, and i is an index labelling the
polynomials of degree ν belonging to the basis. The size of the index set for i as a

function of ν is known, namely, 1 ≤ i ≤ J(ν) where J(ν) = (n+2ν−2)(n+ν−3)!
ν!(n−2)! .

Lemma 8.4. For any 0 < r < ∞ the system {
√

n+2ν
rn+2ν h

(i)
ν } is an orthonormal

basis in h2(Br) and an orthogonal basis in h2(B) where B is an arbitrary ball with
centre at zero.

Proof. See Shlapunov [55], Lemma 3.5. �

We fix 0 < r < dist(0, S) and set Ω = Br so that Ω b O. It easy to see from

Lemma 8.4 that for any 0 < R < ∞ the system {
√

n+2ν
Rn+2ν h

(i)
ν } is an orthonormal
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basis in h2(BR) and an orthogonal basis in h2(Br). In order to obtain the Fourier

coefficients for the section G(f̃) with respect to this basis in h2(Br) it is sufficient
to know the Fourier coefficients for the fundamental matrix Φ(x, y) (see (6.2)). The
information about them is contained in the following lemma.

Lemma 8.5.

(8.2) Φ(x, y) = Φ(0, y)−
∞∑

ν=1

J(ν)∑

i=1

h(i)
ν (x)P ∗′

(y)[
1

n + 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
].

where the series converges together with all the derivatives uniformly on compact
subsets of the cone {(x, y) ∈ Rn × Rn : |y| > |x|}.

Proof. It is sufficient to use the similar decomposition for g(x − y) which was
found for even n > 2 by Kytmanov (see Aizenberg and Kytmanov [3]) and for
the general case by Shlapunov [55] (Lemma 3.2), and then to use the equality
Φ(x, y) = P ′(y)g(x− y). �

Our principal result will be formulated in the language of the coefficients

k(i)
ν =

1√
−1

∫

S

P ∗′

(y)[
1

n + 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
]σ(P )(ν)f0ds (ν = 1, 2, ...).

Theorem 8.6. For solvability of Problem 8.3, it is necessary and sufficient that

(8.4) lim sup
ν→∞

max
i

ν

√
|k(i)

ν (y)| ≤ 1

R

Proof. Necessity. Let Problem 8.3 be solvable. Then Theorem 5.2 implies that

the solution Gf̃+ on the domain O+ extends to a solution F on the whole ball BR.
We fix 0 < r < R. It is clear that the components of the solution F belong to the

space h2(Br). Therefore, from Lemma 8.4, they are represented by their Fourier

series with respect to the system {
√

n+2ν
rn+2ν h

(i)
ν }

(8.5) F(x) =
∑

i,ν

c(i)
ν (r)

√
n + 2ν

rn+2ν
h(i)

ν (x) (x ∈ Br).

Bessel’s inequality implies that the series
∑

i,ν |c
(i)
ν (r)|2 converges. On the other

hand, in the ball Ω,from Lemma 8.5, we obtain the decomposition

(8.6) Gf̃(x) =
∑

i,ν

k(i)
ν h(i)

ν (x) (x ∈ Ω).
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Comparing (8.5) and (8.6) we find that

(8.7) c(i
ν (r) =

√
rn+2ν

n + 2ν
k(i)

ν (ν = 1, 2, ...).

Hence for any 0 < r < R

∑

i,ν

|k(i)
ν (r)|2 rn+2ν

n + 2ν
= rn

∞∑

ν=0




J(ν)∑

i=1

|k(i)
ν (r)|2

n + 2ν


 r2ν < ∞

Using the Cauchy-Hadamard formula for the radius of the convergence of a power
series we obtain

lim sup
ν→∞

max
i

ν

√
|k(i)

ν (y)| ≤ lim sup
ν→∞




J(ν)∑

i=1

|k(i)
ν (r)|2

n + 2ν




1/2ν

≤ 1

r

Since 0 < r < R is arbitrary then condition (8.4) holds, which was to be proved.
Sufficiency. If condition (8.4) holds then the Cauchy-Hadamard formula and the

estimate J(ν) < const νn−2 implies that the series
∑

i,ν |k
(i)
ν (r)|2 rn+2ν

n+2ν converges
for any 0 < r < R. The Riesz-Fisher theorem implies that there exists a section F
(of the bundle E|Br

) with the components from h2(Br) such that

F(x) =
∑

i,ν

√
rn+2ν

n + 2ν
k(i)

ν

√
n + 2ν

rn+2ν
h(i)

ν (x) =

=
∑

i,ν

k(i)
ν h(i)

ν (x)

where the series converges in the norm of the space L2(EBr
). It is easy to see

that in the ball Ω the section F coincides with Gf̃ . Therefore it is a harmonic

(and hence real analytic) extension of the Green integral Gf̃ from O+ to the whole
domain O. Now using Lemma 8.1 and Corollary 2.5 we can conclude that Problem
8.3 is solvable. This proves the theorem. �

In conclusion we give the corresponding variant of Carleman’s formula. For each
number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all y 6= 0 off the
diagonal {x = y}, by the equality

(8.8) C
(N)(x, y) = Φ(x, y)−Φ(0, y)+

N∑

ν=1

J(ν)∑

i=1

h(i)
ν (x)P ∗′

(y)[
1

n + 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
].
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Lemma 8.7. For any number N = 1, 2, ..., the kernel C(N) is an infinitely dif-
ferentiable section of E � F , which is harmonic with respect to x, and satisfying
P ′(y)C(N)(x, y) = 0 for all y 6= 0 off the diagonal {x = y}.

Proof. This follows from the properties of the matrix Φ and the polynomials

h
(i)
ν (y). �

We note that since C(N) is a ”remainder” summand in the formula (8.2), CN)(x, y) →
0 (N → ∞), together with all its derivatives uniformly on compact subsets of the
cone {(x, y) ∈ Rn × Rn : |y| > |x|}.

Theorem 8.8 (Carleman’s formula). For any solution f ∈ S(D)∩Cloc(E|D∪S)
whose restriction to S is summable there the following formula holds

(8.9) f(x) = − lim
N→∞

∫

S

C
(N)(x, .)σ(P )(ν)f0ds (x ∈ D).

Proof. This is similar to the proof of Theorem 7.6. �

For the specific domain D bounded by a part of the surface of a cone and a
piece of a smooth hypersurface S which is contained in the cone explicit Carleman
formulae in form (8.9) were obtained earlier in the papers of Jarmuhamedov [18],
and his students (see Mahmudov [36], and others).

Remark 8.9. As in Theorem 7.6, the convergence of the limit in (8.9) is uniform
on compact subsets of the domain D together with all its derivatives.

æ

æ
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PART II.

THE GENERAL CASE

INTRODUCTION

We continue to consider the Cauchy problem for solutions of the system Pf = 0
where P ∈ dop(E → F ) is some differential operator with an injective symbol on
an open set X ⊂ R

n (see part 1), and E = X ×C
k, F = X ×C

l are (trivial) vector
bundles over X whose sections of the class C over an open set σ ⊂ X are interpreted
as columns of functions from C(σ), that is, C(E|σ) = [C(σ)]k and similarly for F .

We shall often use notation from part 1 of this paper without special explana-
tions.

We suppose that the differential operator P has real analytic coefficients. It
is known that in this case there is for the differential operator P a complex of
compatibility conditions, {Ei, P i} say, in which the differential operators P i ∈
dopi

(Ei → Ei+1) also have real analytic coefficients (see Dudnikov and Samborskii
[10], §9).

Let D b X be a domain with a boundary of class Cp
loc (for p = 1 we require

that ∂D ∈ C2
loc). For some of the results of this paper higher smoothness of the

boundary is required, but it is always sufficient that ∂D ∈ C∞
loc.

We fix a Dirichlet system of order (p − 1) on ∂D, say, Bj ∈ dobj
(E → Gj)

(0 ≤ j ≤ p − 1) where Gj = U × Ck are (trivial) vector bundles over a sufficiently
small neighbourhood U of the boundary of the domain D.

Problem 1. Let fj (0 ≤ j ≤ p− 1) be given sections of the bundles Gj over an
(open) set S ⊂ ∂D. It is required to find a solution f ∈ Sf (D) such that Bjf|S = fj

(0 ≤ j ≤ p − 1).

Unlike part 1, here we concentrate on the situation where P is an overdetermined
operator, i.e. l > k, though the case l = k is also formally permitted. What new
facts does this bring to Problem 1 ?

First, the differential operator P may have no right fundamental solution. Hence

the Green integral Gf̃ (see part 1, (5.1)) may, perhaps, not satisfy the equation

PGf̃ = 0.

Typeset by AMS-TEX
Typeset by AMS-TEX
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On the other hand, every overdetermined differential operator P induces on the
hypersurface S a tangential differential operator Pb, and now ”the initial data”
(⊕fj) must satisfy the induced tangential equation on S (see Tarkhanov [64], §11).

We denote by {Cj}p−1
j=0 the Dirichlet system of order (p − 1) on ∂D associated to

the system {Bj} in the Green formula for the differential operator P . This system
is determined in a natural way in Lemma 2.3 (see part 1).

Lemma 2. If Problem 1 is solvable then Pb(⊕fj) = 0 (weakly) on S, that is,

(1)

∫

S

< Cj(P
′v), fj >y ds = 0 for all v ∈ D(E2′

) such that (supp v) ∩ ∂D ⊂ S.

Proof. Let there be a solution f ∈ Sf (D) such that Bjf = fj (0 ≤ j ≤ p − 1)

on S. Then, if v ∈ D(E2′

) and (supp v) ∩ ∂D ⊂ S, the Stokes formula implies∫

S

< Cj((P
1)′v), fj >y ds =

∫

∂D

< Cj((P
1)′v), Bjf >y ds =

= lim
ε→+0

∫

∂Dε

GP ((P 1)′v), f) = 0,

which was to be proved. �

In §9 we show how Problem 1 may be reduced to the Cauchy problem for solutions
of elliptic systems which was considered in part 1 of this paper.

In §10 we prove a solvability criterion for the Cauchy problem for systems with
injective symbol in terms of the Green integral. By using ”Cauchy data” on S we
construct the Green integral which satisfies P ∗Pf = 0 everywhere outside of an
arbitrary small neighbourhood of S on ∂D. Then the Cauchy problem is solvable
if and only if this integral analytically extends across S from the complement of D
to this domain with preservation of a suitable Sobolev class, and the Cauchy data
on S satisfy the tangential equation on S.

In §11 the condition for extendibility (as a solution of the system P ∗Pf =
0) across S of Green s integral is written in terms of space bases with double
orthogonality. As in §6, their construction depends on solution of an eigenvalue
problem for a compact self- adjoint operator. So this fragment of the application
of bases with double orthogonality is most similar to the original Bergman concept
[6] (see part 1).

The use of bases with double orthogonality not only gives information about
solvability conditions for the Cauchy problem. It also leads to visible formulae for
regularization. A Carleman function of the Cauchy problem for solutions of systems
with injective symbols is constructed in §12.

Finally, in §13 we consider some examples of differential equations of the simplest
type including the many dimensional Cauchy-Riemann system. More exactly we
extend the results of §8 about elliptic systems of the simplest type to overdetermined
systems of the simplest type. In particular, this section includes the results of
Aizenberg and Kytmanov [3].
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§9. Reduction of the Cauchy problem for systems with

injective symbols to the Cauchy problem for elliptic systems

Let O b X be a domain and S be a smooth closed hypersurface in O dividing
this domain into two connected components: O− = D and O+ = O\D. For our
purposes, it is sufficient to consider that the Dirichlet system {Bj} is given only in
some neighbourhood of (compact) S.

We recall the definition of the operator ∗ which acts on the bundles E,F and
Gj (0 ≤ j ≤ p − 1). We endow each of these bundles, which is abstractly denoted
by B, with some hermitian metric (., .)x. Then ∗ : B → B∗ is a conjugate linear
isomorphism of bundles given by means of < ∗ϕ, f >x= (f, ϕ)x (f ∈ Bx).

Also P ′ is the transposed operator, and P ∗ = ∗−1P ′∗ is the formally adjoint
operator for the differential operator P .

Lemma 9.1. The differential operator ∆ = P ∗P has a (bilateral) fundamental
solution J ∈ pdo−2p(E → E) whose kernel is real analytic off the diagonal of
X × X.

Proof. This follows from the theorem of Malgrange (see Tarkhanov [64], §8)
because ∆ is an elliptic differential operator of order 2p with real analytic coefficients
on X . �

We consider the following system of boundary operators defined in the neighbour-
hood U of the boundary ∂D. For a section f ∈ Cp−1

loc (E|U ) we set τ(f) = ⊕(Bjf),
that is, τ(f) is a representation of the Cauchy data on S with respect to the differ-

ential operator P . Similarly for g ∈ Cp−1
loc (F|U ) we set ν(g) = ⊕(∗−1Cj ∗ g), that is,

ν(g) represents the Cauchy data of g on S with respect to the differential operator
P ∗.

Lemma 9.2. The system of boundary operators {τ(.), ν(P.)} forms a Dirichlet
system of order (2p − 1) on ∂D.

Proof. This fact has already been noted in the proof of Theorem 4.4. (see part
1), and it is proved by simple calculations. �

For easy reference we note a simple consequence of Theorem 2.6.

Lemma 9.3. Let S ∈ C∞
loc. Then, for any solution f ∈ Sf (O±) which has finite

order of growth near S, the expressions τ(f) and ν(Pf) have weak limit values on
S belonging to D′(⊕Gj|S).

Proof. The statement of the lemma follows from Theorem 2.6 and Lemma 9.2
because, for any domain D′ ⊂ O± whose boundary intersects the boundary of O±

only in the set S, the restriction of the solution f on D′ belongs to Sf
∆(D′), and

because it is possible to extend the Dirichlet system {τ(.), ν(P.)} from ∂D′ ∩ S to
the whole boundary ∂D′ as a suitable Dirichlet system (at least, if the boundary
of ∂D′ is sufficiently smooth). �
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We could not prove the converse statement (as we did in Theorem 2.6) except
in the case when S is a connected component of the boundary of the domain O±.

Lemma 9.4. Let S ∈ C∞
loc. If the solutions f± ∈ S∆(O±) have finite orders of

growth near S, and τ(f+) = τ(f−) and ν(Pf+) = ν(Pf−) on S then there is a
solution f ∈ S∆(O) such that f|O±) = f±.

Proof. It is sufficient to use Theorem 3.2 from the book of Tarkhanov [62]
taking into consideration Lemma 9.2. �

The following theorem for the Cauchy - Riemann system in the space Cn was
first proved, apparently, by Kytmanov (see Aizenberg and Kytmanov [3]).

Theorem 9.5. We suppose that S ∈ C∞
loc. If a solution f ∈ S∆(D) has finite

order of growth near S, and Pb(τ(f)) = 0, and ν(Pf) = 0 on S then Pf = 0
everywhere in the domain D.

Proof. Let the solution f ∈ S∆(D) have finite order of growth near the hy-
persurface S. Then, from Lemma 9.3, the expressions τ(f) and ν(Pf) have weak
limit values on S belonging to D′(⊕Gj|S). We suppose that Pb(τ(f)) = 0, and
ν(Pf) = 0 on S.

Fix an arbitrary point x0 ∈ S. Since the differential operator P has an injective
symbol then the complex of compatibility conditions {Ei, P i} (which is induced
by P ) is exact in positive degrees on the level of sheaves over X . In particular,
this means that for any neighbourhood U = U(x0) of the point x0 and any section
f ∈ SP 1(U) there exist a possibly smaller neighbourhood V = V (x0) of this point,
and a section u ∈ C∞

loc(E|V ) such that Pu = f on V (see Tarkhanov [64], Theorem
3.10).

Since τ(f) represents the Cauchy data of f on S with respect to the differential
operator P , and Pb(τ(f)) = 0 on S then the exact Mayer -Vietoris sequence (see
Theorem 18.9 in the book of Tarkhanov [64]) implies that there are a neighbourhood
V = V (x0) of the point x0 in O and solutions f± ∈ S∆(O±∩V ) having finite order
of growth near S ∩ V such that τ(f+) − τ(f−) = τ(f) on S ∩ V .

Consider now two sections F+ = f+ and F− = f− + f defined on the open sets
O+ ∩ V and O− ∩ V respectively.

By construction, the sections F± ∈ S∆(O± ∩ V ) have finite orders of growth
near the hypersurface S ∩ V , and τ(F+) = τ(F−), and ν(PF+) = 0 = ν(PF−)
on S ∩ V . Hence we can use Lemma 9.4, and conclude that there exists a section
F ∈ S∆(V ) such that F|O±∩V = F±.

The differential operator ∆ is elliptic and has real analytic coefficients therefore
the theorem of Petrovskii implies that the sections F and PF are real analytic in
V . Since PF = 0 in O+ ∩ V , we can conclude that PF = 0 everywhere in V .

Thus, Pf = PF − PF− = 0 in D ∩ V , and f is real analytic in the domain D.
Hence we have Pf = 0 everywhere in this domain which was to be proved. �

We note that without the requirement ”Pb(τ(f)) = 0 on S” Theorem 9.5 is false.
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Example 9.6. Let P (D) =




∂
∂x1· · ·
∂

∂xn


 be the gradient operator in R

n (n > 1),

and B0 = 1. Then ∆ = P ∗P is (minus) the usual Laplace operator in R
n, and

τ(f) = f , and ν(Pf) = ∂f
∂ν

. In particular, if S is a piece of the hypersurface
{xn = 0}, any harmonic function f in D which does not depend on the variable xn

satisfies ν(Pf) = 0 on S. But, certainly, such a function may be non-constant in
D. �

At the same time, if S = ∂D then the condition ”Pb(τ(f)) = 0 on an open subset
of S” in Theorem 10.3 is not necessary (see Karepov and Tarkhanov [20]).

Remark 9.7. As one can see from the proof of Theorem 2.6, the smoothness
condition for the hypersurface S in Lemmata 9.3, 9.4, and Theorem 9.5 can be
loosened if we consider à priori solutions of the system Pf = 0 of order of growth
which is not greater than a given fixed number. But this is a general observation.
�

Theorem 9.5 gives a method of studying Problem 1. More precisely it shows
that this problem is equivalent to the Cauchy problem for solutions of the system
P ∗Pf = 0 with initial data τ(f) = ⊕fj and ν(Pf) = 0 on S. The last problem
belongs already to the range of Cauchy problems for elliptic systems which was
considered in part 1 of this paper.

In the following sections we realize this method. æ

§10. The Green integral and solvability of the

Cauchy problem for systems with injective symbols

We formulate Problem 1 more precisely (as we did in §5).

Problem 10.1. Let fjB
s−bj−1/q,q(Gj|S) (0 ≤ j ≤ p−1) be known sections on S

where s ∈ Z+, and 1 < q < ∞. It is required to find a section f ∈ S(D) ∩ W s,q(E|D)
such that Bjf = fj (0 ≤ j ≤ p − 1) on S.

Using the ”initial” data of Problem 10.1 we construct the Green integral in a
special way.

Namely, as a left fundamental solution of the differential operator P we take the
kernel Φ(x, y) = P ∗′J (x, y) where J is a fundamental solution of the ”laplacian”
∆ = P ∗P about which we spoke in Lemma 9.1.

We denote by f̃ ∈ Bs−bj−1/q,q(Gj|∂D) (0 ≤ j ≤ p−1) an extension of the section

fj to the whole boundary. If, for example, s = 0 and fj ∈ L2(Gj|S) (0 ≤ j ≤ p−1),
it is possible to extend them by zero on ∂D\S. In any case the extensions could be
chosen so that they will be supported on a given neighbourhood of the compact S

on ∂D. Then we set f̃ = ⊕fj , and

(10.1) G(f̃)(x) =

∫

∂D

< CjΦ(x, .), f̃j >y ds (x ∈ ∂D)
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Lemma 10.2. The potential G(f̃) satisfies ∆G(f̃) = 0 on each of the open sets
D and X\∂D, and has finite order of growth near the surface ∂D.

Proof. This follows from equality (10.1) and the structure of the fundamental
solution Φ(x, y). �

In particular, if we denote by F± the restrictions of the section F ∈ D′(E|O) to

the sets O±, we have G(f̃)± ∈ S∆(O±).

Theorem 10.3. If the boundary of the domain D is sufficiently smooth then,
for Problem 10.1 to be solvable, it is necessary and sufficient that

(1) the integral G(f̃) extends from O+ to the whole domain O as a solution
belonging to S∆(O) ∩ W s,q(E|O);

(2) Pb(sf) = 0 in a neighbourhood of some point x0 on S.

Proof. Necessity. Suppose that there is a section f ∈ S(D) ∩ W s,q(E|D) such
that Bjf = fj (0 ≤ j ≤ p − 1) on S.

We consider in the domain O (more exactly, in O\S) the following section:

(10.2) F(x) =

{
Gf̃(x), x ∈ O+,

Gf̃(x) + f(x), x ∈ O−.

Using the boundedness theorem for potential operators in Sobolev spaces on
manifolds with boundary (see Rempel and Schulze [45], 2.3.2.5) we can conclude

that G(f̃)± ∈ W s,q(E|O±) (if the surface ∂D is sufficiently smooth, for example if

∂D ∈ Cr, r = max(s, p − s)). This means that F± ∈ W s,q(E|O±).

On the other hand, we consider the difference δ = G(⊕Bjf) − G(f̃). Let ϕε ∈
D(X) be any function supported on the ε-neighbourhood of the set ∂D\S, and

being equal to 1 in some smaller neighbourhood of this set. Since Bjf = f̃j (0 ≤
j ≤ p − 1) on S then we can write

δ(x) =

∫

∂D

p−1∑

j=0

< CjΦ(x, .), ϕε(Bjf − f̃j) >y ds(x 6∈ ∂D).

The right hand side of this equality is a solution of the system ∆f = 0 everywhere
in the domain O except the part of the ε-neighbourhood of the boundary of S on
∂D which belongs to O. Therefore, since ε > 0 is arbitrary, δ ∈ S∆(O).

Now expressing the integral G(⊕Bjf) from the Green formula (2.3) (see part 1)

and putting G(f̃) = G(⊕Bj f̃) − δ in inequality (10.2) we obtain

F(x) = −δ(x) (x ∈ O\S)

Hence the section F extends to the whole domain O as a solution of the system
∆f = 0.
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Thus F belongs to S∆(O) ∩ W s,q(E|O), and on O+ this section coincides with

G(f̃)+, which was to be proved.
Sufficiency. Conversely, let F ∈ S∆(O) ∩ W s,q(E|O) be a solution coinciding

with G(f̃)+ on O+, and Pb(⊕fj) = 0 in a neighbourhood of some point x0 on S.

We set f(x) = −G(f̃) + F(x) (x ∈ D). The above mentioned boundedness
theorem for potential operators in Sobolev spaces (see Rempel and Schulze [45],

2.3.2.5) implies that G(f̃) ∈ W s,q(E|O−). Therefore f ∈ S∆(D) ∩ W s,q(E|D), and
f has finite order of growth near the hypersurface S.

Now Lemma 2.7 (see part 1) on the weak jump of the Green integral associated
with the differential operator ∆ and the Dirichlet system {τ(.), ν(P.)} on ∂D implies
that {

τ(Gf̃(x)+) − τ(Gf̃(x)−) = ⊕f̃j on ∂D,

ν(PG(f̃)+) − ν(PG(f̃)−) = 0 on ∂D.

Since τ(G(f̃)+) = τ(F), and ν(PG(f̃)+) = ν(PF) on S then these equations
imply that {

τ(f) = ⊕f̃j on S,

ν(Pf) = 0 on S.

We use now the condition ”Pb(⊕fj) = 0 in a neighbourhood V = V (x0) on S”.
Then Pbf(τ(f)) = 0 in V , and, from Theorem 9.5 applied to the piece V ∩S instead
of S, we obtain that Pf = 0 everywhere in the domain D.

Hence f ∈ S(O) ∩ W s,q(E|O) is the required solution of Problem 10.1, which
was to be proved. �

For the Cauchy-Riemann operator in C
n (n > 1) Theorem 10.3 is due to Aizen-

berg and Kytmanov (see [3], and also Aizenberg [2]).
There is an example showing that the sufficiency part of Theorem 10.3 without

the requirement ”Pb(⊕f̃j) = 0 on an open subset of S” is false.

Example 10.4. Let P (D) =




∂
∂x1· · ·
∂

∂xn


 be the gradient operator in Rn (n > 1),

and B0 = 1. Then, as we note in Example 9.6, ∆ = P ∗P is (minus) the usual

Laplace operator in Rn, and τ(f) = f , and ν(Pf) = ∂f
∂ν

. We take as S a piece of
the hypersurface {xn = 0}, and fix, on a neighbourhood of O, some non-constant
harmonic function f which does not depend on the variable xn. If the Cauchy
data on S are given by means of the restriction f|S then the Green integral can

be constructed by the formula G(f̃)(x) =
∫

S
∂
∂ν g(x − .)fds, where g(x − y) is the

standard fundamental solution of convolution type of the Laplace operator in Rn.

In other words, G(f̃) is (minus) the potential of a double layer with density f
supported on S. From the theorems on the jump of this integral and its normal

derivate, we have G(f̃)−−G(f̃)+ = f , and ∂
∂νG(f̃)−− ∂

∂νG(f̃)+ = 0 on S. Moreover
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∂f
∂ν = 0 on S. Therefore Lemma 9.4 implies that the function (G(f̃) − f) extends

harmonically from O+ to the whole domain O (by means of G(f̃)− on O− ). This

means that we can conclude the same for the integral G(f̃)+. However f|S may be
the restriction of a non-constant function in D. �

At the same time, if S = ∂D then the condition ”Pb(⊕f̃j) = 0 on an open subset
of S” in Theorem 10.3 is not necessary (see Karepov and Tarkhanov [20]).

Corollary 10.5 (the Cartan-Kähler theorem). Suppose that the hyper-
surface S, the coefficients of the operators Bj (0 ≤ j ≤ p − 1) in a neighbourhood
of ∂D and the sections fj ∈ D′(Gj|S) (0 ≤ j ≤ p − 1) are real analytic. Then, if
Pb(⊕fj) = 0 on S, there is a section f satisfying Pf = 0 in some neighbourhood of
S and such that Bjf = fj (0 ≤ j ≤ p − 1) on S.

Proof. In view of the uniqueness theorem for solutions of Pf = 0 it is sufficient
to find for each point x0 ∈ S a neighbourhood V = V (x0) on X and a solution
f ∈ S(V ) such that Bjf = fj (0 ≤ j ≤ p − 1) on S ∩ V . Therefore we can at once
consider that the sections fj (0 ≤ j ≤ p − 1) are real analytic in a neighbourhood
of the compact S. Then we can construct the Green integral by the formula

G(f̃)(x) =

∫

S

< CjΦ(x, .), fj >y ds (x 6∈ S).

The condition of the corollary implies that the integral G(f̃) is a real analytic
(vector-) function up to S on each sides of this hypersurface. This means that

each of the integrals G(f̃±) extends as a solution of the system ∆f = 0 to some
neighbourhood of S. If we keep the same notations for these extensions then the

difference f = G(f̃)+ − G(f̃)− is the solution we sought. �

æ

§11. A solvability criterion for the Cauchy

problem for systems with injective symbols in the

language of space bases with double orthogonality

Theorem 10.3 has been formulated so that the application of the theory of §1
(see part 1) is suggested. For this assume in addition that q = 2.

So, in this section we consider the solvability aspect of Problem 10.1.

Problem 11.1. Under what conditions on the sections fj ∈ W s−bj−1/2,2(Gj|S)

(0 ≤ j ≤ p − 1) is there a solution f ∈ S(D) ∩ W s,2(E|D) such that Bjf = fj

(0 ≤ j ≤ p − 1) on S ?

Let Ω be some relatively compact subdomain of O+.
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Since Ω b O+, the restriction to Ω of the Green integral G(f̃) defined by
equality (10.1) belongs to the space S(Ω)∆ ∩ W s,2(E|Ω). Hence the extendibil-

ity condition for G(f̃) from O+ to the whole domain O (as a solution in the class
S∆(O) ∩ W s,2(E|O) could be obtained by the use of a suitable system {bν} in

S∆(O) ∩ W s,2(E|O) with the double orthogonality property. More exactly, it is re-

quired that {bν} should be an orthonormal basis in Σ1 = S∆(O) ∩ W s,2(E|O) and

an orthogonal basis in Σ2 = S(Ω)∆ ∩ W s,2(E|Ω).
Since ∆ = P ∗P is an elliptic differential operator with real analytic coefficients

on X , Theorem 6.5 guarantees existence of such a basis {bν}, at least if the boundary
of Ω is regular (see §6). As we did in §6, for an element F ∈ Σ1 we shall denote by
cν(F) (ν = 1, 2, ...) its Fourier coefficients with respect to the orthonormal system
{bν} in Σ1, that is, cν(F) = (F , bν)H1

. And for an element F ∈ Sigma2 we shall
denote by kν(F) (ν = 1, 2, ...) its Fourier coefficients with respect to the orthogonal

system {Tbν} in Σ2, that is, kν(F) =
(F,T bν)H2

(Tbν ,T bν)H2
.

We formulate now the solvability conditions for Problem 11.1. Let Gf̃ be the
Green integral (see (10.1) constructed with ”initial” data of the problem. As we

noted, the restriction of the section Gf̃ to Ω belongs to the space Σ2.

Lemma 11.2. For ν = 1, 2, ...

(11.1) kν(Gf̃) =

∫

∂D

p−1∑

j=0

< Cjkν(Φ(., y)), f̃j >y ds.

Proof. This consists of direct calculations with the use of equality (10.1). �

In order to determine the coefficients kν(Gf̃) (ν = 1, 2, ...) it is not necessary
to know the basis {Tbν} in Σ2. It is sufficient only to know the coefficients of the
decomposition of the fundamental matrix (Φ(., y) (y ∈ ∂D) with respect to this
series. The properties of the coefficients kν(Φ(., y) ∈ C∞

loc(F
∗
|X\Ω) we shall discuss

in §12.

Theorem 11.3. If the boundary of the domain D is sufficiently smooth then for
the solvability of Problem 11.1 it is necessary and sufficient that

(1)
∑∞

ν=1 |kν(Gf̃)|2 < ∞;
(2) Pb(⊕fj) = 0 in a neighborhood of some point x0 on S.

Proof. The statement follows from Theorem 10.3 as Theorem 6.8 follows from
Theorem 5.2. �

In conclusion we consider an example.

Example 11.4. Aizenberg and Kytmanov [3] studied the Cauchy problem for

holomorphic functions of several variables, that is, in the case P =




∂
∂z1· · ·
∂

∂zn


 and

B0 = 1.
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In complex analysis such a problem is called the analytic extension problem for
a boundary subset. They took as O the ball B with the centre at zero divided into
2 parts by means of a smooth hypersurface S ⊂ B\{0}, and denoted by D that
part of this ball which does not contain zero. A system of homogeneous harmonic

polynomials {h(i)
ν } whose restriction to the unit sphere is an orthonormal basis in

L2({|x| = 1}) is also an orthogonal basis in the space of harmonic square- summable
functions in an arbitrary ball with centre at zero. Having chosen as Ω a sufficiently
small ball with centre at zero and such that Ω b O+ we get a simple example
of a basis with double orthogonality in Σ1. If we solve the Cauchy problem in
the class L2(D), with ”initial datum” f0 ∈ L2(S) then the Green integral can be

constructed by the formula G(f̃)(z) =
∫

S
U(z, .)f0, where U(z, .) is the Bochner -

Martinelli kernel. Then Theorem 11.3 gives the result of Aizenberg and Kytmanov
[3] with small modifications. �

We shall consider in §13 a more general range of problems. æ

§12. Carleman’s formula

In this section we consider the regularization aspect of Problem 10.1.

Problem 12.1. It is required to find a solution f ∈ S(D) ∩ W s,2(E|D) using

known values Bjf ∈ W s−bj−1/2,2(Gj|S) (0 ≤ j ≤ p − 1) on S.

It is easy to see from Corollary 1.8 that side by side the solvability conditions
for Problem 5.1 (q = 2) bases with double orthogonality give the possibility to
obtain a suitable formula (of Carleman) for the regularization of solutions. We
shall illustrate this on example of Problem 7.1.

Let {bν} be the basis with double orthogonality, used in the previous section, in
the space (Σ1 =)S(O) ∩ W s,2(E|O) such that the restriction of {bν} to Ω (that is,

{Tbν} ) is an orthogonal basis of (Σ2 =)S(Ω) ∩ W s,2(E|Ω).
As above, we denote by {kν(Φ(., y))} the sequence of Fourier coefficients for the

fundamental matrix Φ(., y) (y ∈ Ω) with respect to the system {Tbν}, i.e.,

(12.1) kν(Φ(., y)) =
1

λν

∑

|α|≤s

∫

Ω

< ∗Dαbν , DαΦ(., y) >y dv (ν = 1, 2...)

Lemma 12.2. The sections kν(Φ(., y)) (ν = 1, 2...) are continuous, together with
their derivatives up to order (p − s − 1), on the whole set X.

Proof. See part 1, Lemma 7.2. �

Using formula (12.1) one can see that the sections kν(Φ(., y)) (ν = 1, 2...) extend
to the boundary of Ω from each side as infinitely differentiable sections (at least, if
the boundary is smooth).
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Lemma 7.3. For any number ν = 1, 2, ... we have P ′kν(Φ(., y)) = 0 everywhere
in X\Ω.

Proof. See part 1, Lemma 7.3. �

We consider the following kernels C(N)(x, y) defined for (x, y) ∈ O × X (x 6= y):

(12.2) C
(N)(x, y) = Φ(x, y)−

N∑

ν=1

bν(x) ⊗ kν(Φ(., y)) (N = 1, 2, ...).

Lemma 12.4. For any number N = 1, 2, ... the kernels C(N) ∈ Cloc(E�F ) satisfy
P (x)C(N)(x, y) = 0 for x ∈ O, and P ′(y)C(N)(x, y) = 0 for y ∈ X\Ω everywhere
except the diagonal {x = y}.

Proof. Since {bν} ⊂ S∆(O), this immediately follows from Lemma 12.3. �

From the following lemma one can see that the sequence of kernels {C(N)},
suitably, for example in a piece-constant way, interpolated to real values N ≥ 0,
provides a special Carleman function for Problem 12.1 (see Tarkhanov [63], §25).

Lemma 12.5. For any multi-index α, Dα
y C(N)(., y) → 0 in the norm of W s,2(E⊗

F ∗
y|O) uniformly with respect to y on compact subsets of X\O, and even X\O if

|α| < p − s − n/2.

Proof. See part 1, Lemma 7.5. �

We can formulate now the main result of the section. For f ∈ S(D) ∩ W s,2(E|D))

we denote by f̃ ∈ W s−bj−1/2,2(Gj|∂D) (0 ≤ j ≤ p − 1) an (arbitrary) extension of
the section Bjf from S to the whole boundary.

Theorem 12.6 (Carleman’s formula). For any solution f ∈ S(D) ∩ W s,2(E|D)
the following formula holds:

(12.3) f(x) = − lim
N→∞

∫

∂D

< CjC
(N)(x, .), f̃j >y ds (x ∈ D).

Proof. This follows from Theorems 10.3 and 11.8 as Theorem 7.6 follows from
Theorems 5.2 and 6.8. �

We emphasize that the integral on the right hand side of formula (12.3) depends
only on the values of the expressions Bjf (0 ≤ j ≤ p − 1) on S. Thus this formula
is a quantitative expression of (uniqueness) Theorem 2.8. However this gives much
more than the uniqueness theorem because there is sufficiently complete information
about the Carleman function C(N).

For holomorphic functions of several variables the Carleman formula (12.3) is
first met, apparently, in [51].
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Remark 12.7. The series
∑∞

ν=1 kν(Gf̃)bν (defining the solution F) converges
in the norm of the space W s,2(E|O). The Stieltjes-Vitali theorem (see Hormander
[16], 4.4.2) implies now that it converges together with all its derivatives on compact
subsets of O. Then, as in §7, one can see that the limit in (12.3) is reached in the
topology of the space C∞

loc(E|O).

æ

§13. Examples for systems of the simplest type

In this section we extend the results of 18 to overdetermined systems of the
simplest type.

We suppose that P is a (overdetermined) differential operator of the simplest
type in Rn (see §8). Let O = BR be the ball in Rn with centre at zero and radius
0 < R < ∞, and S be a smooth closed hypersurface in BR dividing this ball into
2 connected components O+, and D = O− so that the domain O+ contains zero.
We consider the following problem (of Cauchy).

Problem 13.1. Let f0 ∈ Cloc(E|S) be a summable section of E on S. It is
required to find a solution f ∈ S(D) ∩ Cloc(E|D∪S) such that f|S = f0.

As the fundamental solution of the differential operator P we can take the matrix
Φ(x, y) = P ′(y)g(x − y), where g(x − y) is the standard fundamental solution of
convolution type of the Laplace operator in Rn with the opposite sign. Then the
Green integral (5.1) is written in the following form:

Gf̃(x) =
1√
−1

∫

S

Φ(x, .)σ(P )(ν)f0ds (x 6∈ S).

It is easy to see from the structure of the fundamental matrix Φ that the com-

ponents of the section Gf̃ are harmonic functions everywhere in BR (and even in
Rn ) except on the set S.

To obtain a solvability criterion for Problem 13.1 we can use the basis with
double orthogonality constructed in Lemma 8.4.

Our principal result will be formulated in the language of the coefficients

k(i)
ν =

1√
−1

∫

S

P ∗′

(y)[
1

n + 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
]σ(P )(ν)f0ds (ν = 1, 2, ...).

Theorem 13.2. For solvability of Problem 13.2, it is necessary and sufficient
that

(1) lim supν→∞ max1≤i≤J(ν)
ν

√
|k(i)

ν (y)| ≤ 1
R

;

(2) Pbf0 = 0 in a neighborhood of some point x0 on S.
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Proof. The statement follows from Theorem 10.3 as Theorem 8.6 follows from
Theorem 5.2. �

In conclusion we give the corresponding variant of Carleman’s formula. For each
number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all y 6= 0 off the
diagonal {x = y}, by the equality

C
(N)(x, y) = Φ(x, y)− Φ(0, y) +

∞∑

ν=1

J(ν)∑

i=1

h(i)
ν (x)P ∗′

(y)[
1

n + 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
].

Lemma 13.3. For any number N = 1, 2, ..., the kernel C(N) is an infinitely differ-
entiable section of E�F , harmonic with respect to x, and satisfying P ′(y)C(N)(x, y) =
0 for all y 6= 0 off the diagonal {x = y}.

Proof. This follows from the properties of the matrix Φ and the polynomials

h
(i)
ν (y). �

We note that since C(N) is a ”remainder” summand in the formula (8.2), CN)(x, y) →
0 (N → ∞), together with all its derivatives uniformly on compact subsets of the
cone {(x, y) ∈ R

n × R
n : |y| > |x|}.

Theorem 13.4 (Carleman’s formula). For any solution f ∈ S(D)∩Cloc(E|D∪S)
whose restriction to S is summable there, the following formula holds

(13.1) f(x) = − 1√
−1

lim
N→∞

∫

S

C
(N)(x, .)σ(P )(ν)f0ds (x ∈ D).

Proof. This is similar to the proof of Theorem 12.6. �

Remark 13.5. As in Theorem 12.6, the convergence in (13.1) is uniform on
compact subsets of the domain D together with all the derivatives.

æ æ
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