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Abstract

Let A be a determined or overdetermined elliptic differential oper-
ator on a smooth compact manifold X. Write SA(D) for the space of
solutions to the system Au = 0 in a domain D b X. Using reproducing
kernels related to various Hilbert structures on subspaces of SA(D) we
show explicit identifications of the dual spaces. To prove the “regular-
ity” of reproducing kernels up to the boundary of D we specify them as
resolution operators of abstract Neumann problems. The matter thus
reduces to a regularity theorem for the Neumann problem, a well-known
example being the ∂̄ -Neumann problem. The duality itself takes place
only for those domains D which possess certain convexity properties
with respect to A.
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1 Introduction

The present work continues our paper [NST98] and grows out of a desire to
highlight the link of duality theorems for solutions of elliptic equations to basic
problems of partial differential equations, such as the existence and regularity
of solutions.

Let

V 0 T−→ V 1,

V 0 S←− V 1

be two continuous mappings of Fréchet spaces, such that ST = I on a closed
subspace U0 of V 0. In other words, the identity mapping of U0 factors through
T , hence the restriction of T to U0 is one-to-one and the image of U0 under T
is a closed subspace of V 1.

Obviously, S maps TU0 to U0. If F is a continuous linear functional on
U0 then

〈F , u〉 = 〈S ′F , Tu〉

for any u ∈ U0, where S ′ is the transpose of S : TU0 → U0. Moreover, S ′F = 0
implies F = 0. We thus obtain an one-to-one mapping (U0)′ → (TU0)′ given
by F 7→ S ′F . The problem of identifying the dual of U0 reduces to the
description of the range of S ′.

We restrict our attention to the case where both V 0 and V 1 are function
spaces and U0 is a space of solutions to some elliptic equation Au = 0. Even for
explicitly given S the range of S ′ cannot be described by mere tools of partial
differential equations. The crucial fact is that by the uniqueness theorem C∞

functions with compact support are not dense in U0, and so the functionals
of (U0)′ cannot be specified within distributions. To handle S ′ one therefore
needs much more refined analysis. For a deeper discussion we refer the reader
to [Kha66] and Ch. 3 in [Tar97].

It is usually the case for hypoelliptic equations that U0 is in fact a nuclear
space. By the Schwartz kernel theorem, the mapping S : TU0 → U0 has a
kernel KS ∈ U0⊗̂π(TU0)′ (cf. 1.4.1 in [Tar95a]). We call KS a reproducing
kernel, for

u(x) = 〈KS(x, ·), Tu〉 (1.1)

for all x in the domain of u ∈ U0.
The advantage of using reproducing kernels lies in the fact that it enables us

to write S ′F = 〈F , KS(·, y)〉. The right-hand side here is called the indicatrix
of the functional F .

This concept was first studied in the particular cases of holomorphic and
harmonic functions on certain explicitly given domains, cf. [Mar63, Aiz66,
Zna79]. However, representing analytic functionals as analytic functions on
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domains in Cn requires specific tools of the general theory of partial differential
equations, cf. [Zor82, Sto95].

Our main result consists of the following. The correspondence F 7→ S ′F
maps the dual space of U0 to the space of solutions to Av = 0 in the same
domain, which grow near the boundary in a sense dual to the growth of solu-
tions in U0. This mapping is always one-to-one but not necessarily onto. Its
surjectivity is equivalent to the regularity of certain projection onto the space
of solutions.

We evaluate the projection through the resolution operator of a generalised
Neumann problem related to A. The desired regularity of the projection just
amounts to that of the solution to the Neumann problem. We thus bring
together two different areas of analysis in which the problem of regularity
turns out to be of key importance.

2 A general scheme

2.1 Spaces of solutions to elliptic systems

Let X be a C∞ manifold of dimension n with a smooth boundary ∂X. The
case ∂X = ∅ is also included. We tacitly assume that X is embedded into a
smooth closed manifold X̃ of the same dimension.

For any smooth C -vector bundles E and F over X, we write Diffm(X; E, F )
for the space of all linear partial differential operators of order ≤ m between
sections of E and F .

Denote by E∗ the conjugate bundle of E. Any Hermitean metric (·, ·)x on
E gives rise to a sesquilinear bundle isomorphism ∗E : E → E∗ by the equality
〈∗Ev, u〉x = (u, v)x for all sections u and v of E.

We pick a volume form dx on X, thus identifying the dual and conjugate
bundles. For A ∈ Diffm(X; E, F ), denote by A′ ∈ Diffm(X; F ∗, E∗) the trans-
posed operator and by A∗ ∈ Diffm(X; F, E) the formal adjoint operator. We
obviously have

A∗ = ∗−1
E A′∗F ,

cf. [Tar95b, 4.1.4] and elsewhere.

Write σm(A) for the principal homogeneous symbol of order m of the op-
erator A, σm(A) living on the cotangent bundle T ∗X of X. From now on we
assume that σm(A) is injective away from the zero section of T ∗X. Hence it
follows that the Laplacian ∆ = A∗A is an elliptic differential operator of order
2m on X.

Given any open set U in
◦

X, the interior of X, let SA(U) stand for the
space of solutions to the equation Au = 0 in U with the topology of uniform
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convergence on compact subsets of U . It is known that SA(U) is a Fréchet-
Schwartz space.

Denote by SA(U)′ the dual space of SA(U), i.e., the space of all continuous
linear functionals on SA(U). As usual, we give SA(U)′ the strong topology,
i.e., the topology of uniform convergence of functionals on bounded subsets of
SA(U).

Throughout this paper we assume that the Laplacian ∆ possesses the fol-
lowing Unique Continuation Property:

(U)s Given any domain D ⊂
◦

X, if u ∈ S∆(D) vanishes on a nonempty open
subset of D then u ≡ 0 in D.

This property implies in particular the existence of a two-sided fundamental
solution for ∆ in the interior of X.

Natural domains for solutions to Au = 0 are certainly open subsets of the
interior of X. However, some problems require to consider solutions on sets σ
in X which are not open. Here we are interested not simply in restrictions of
solutions to the given set, but also in the local solutions of the system Au = 0
on σ. By these we mean solutions to the system on various neighbourhoods of
σ depending on the solution.

If σ is a closed subset of X, then SA(σ) stands for the space of (equivalence
classes of) local solutions to Au = 0 on σ. Two such solutions are equivalent if
there is a neighbourhood of σ where they are equal. In SA(σ), a sequence {uν}
is said to converge if there exists a neighbourhood N of σ such that all the
solutions are defined at least in N and converge uniformly on compact subsets
of N .

Alternatively the space SA(σ) can be described as the inductive limit of
spaces SA(Uν), where {Uν} is any decreasing sequence of open sets containing
σ, such that each neighbourhood of σ contains some Uν , and such that each
connected component of each Uν intersects σ. This latter condition guarantees
that the mappings SA(Uν)→ SA(σ) are one-to-one. Then SA(σ) is necessarily
a Hausdorff space.

For an open set U ⊂ X, we denote by L2(U,E) the Hilbert space of all
square integrable sections of E over U with scalar product

(u, v)L2(U,E) =

∫
U

(u, v)xdx.

More generally, write Hs(U,E), s ∈ Z+, for the Sobolev space of sections of E
over U , whose weak derivatives up to order s belong to L2(U,E). We define
Hs(U,E) with s = −1,−2, . . . to be the dual space for H−s(U,E) with respect
to the L2(U,E) -pairing.

We also denote by S(s)
A (U), with any integer s, the closed subspace of

Hs(U,E) consisting of all weak solutions to Au = 0 in U . It is well known
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that S(s)
A (U) is a separable Hilbert space with reproducing kernel, cf [Tar95a]

and elsewhere.
The union of the spaces S(s)

A (U) over all s ∈ Z is perhaps of particular
interest. For regular U it consists of all solutions to Au = 0 in U , which are of
finite order of growth near the boundary of U . This means that u fulfills an
estimate

|u(x)| ≤ C

dist(x, ∂U)N

for all x ∈ U , with N and C constants depending on u.
Write S(f)

A (U) for the space of solutions to Au = 0 in U which have a finite

order of growth near ∂U . By the above, we can give S(f)
A (U) the inductive

limit topology of the sequence S(−s)
A (U), s ∈ N.

Since the Dirichlet problem for the Laplacian ∆ = A∗A in U is uniquely
solvable, the topology of S(f)

∆ (U) can be equivalently described in the following
way. Pick a Dirichlet system u 7→ t(u) of order m − 1 on the boundary of U ,

provided the latter is smooth. By [ST95], for each u ∈ S(f)
∆ (U) the Dirichlet

data t(u) are well defined in

m−1⊕
j=0
D′(∂U, Fj),

Fj being some vector bundles in a neighbourhood of ∂U .

Lemma 2.1 A sequence {uν} converges to u in S(f)
∆ (U) if and only if

t(uν)→ t(u) in ⊕m−1
j=0 D′(∂U, Fj).

Proof. Cf. Theorem 2.32.
�

2.2 Duality

Let Σ1 be a vector subspace of SA(U) endowed with topology τ1 which is not
weaker then the Fréchet-Schwartz topology of SA(U). Denote by Σ′

1 the dual
space of Σ1.

Suppose V is a separable Hilbert space of functions in a domain U with
a scalar product h(·, ·). Let moreover there be a topological vector space Σ2,
continuous linear mappings

Σ2
i2
↪→ V

i1
↪→ Σ1

and a sesquilinear pairing

h̃(·, ·) : Σ1 × Σ2 → C

such that
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1) h̃(·, ·) is separately continuous;

2) h̃(i1u, v) = h(u, i2v) for all u ∈ V and v ∈ Σ2.

Under these assumptions the pairing h̃(·, ·) induces a continuous mapping
J : Σ2 → Σ′

1 by

(J v) (·) := Fv(·)
:= h̃(·, v) (2.1)

for any v ∈ Σ2.

Lemma 2.2 If i2 : Σ2 → V is one-to-one then the mapping J given by
(2.1) is one-to-one.

Proof. If Fv(·) is identically zero then

Fv (i1i2v) = h (i2v, i2v)

= 0.

As h(·, ·) is a scalar product on V we conclude that i2v = 0. Hence v = 0 if i2
is one-to-one.

�
By a priori estimates for solutions of elliptic systems it is easy to see that

the inclusion

i = i1 : V → SA(U) =: Σ1

is continuous if and only if all the evaluation functionals x 7→ u(x), x ∈ U , are
continuous on V . This latter just amounts to saying that the Hilbert space V
has a reproducing kernel K(x, y) ∈ V ′ ⊗ V , i.e., any u ∈ V represents by the
formula

u(x) = h(u, K(x, ·))

for all x ∈ U , cf. [Aro50].
Define ∗V : V → V ′ by 〈∗V v, u〉 = h(u, v) for all u ∈ V . By the theorem of

Riesz, ∗V is a sesquilinear isomorphism of V onto V ′.

Theorem 2.3 Let V be a Hilbert space with reproducing kernel K(·, ·).
Suppose i2 is one-to-one. Then the mapping J given by (2.1) is onto if and
only if

1) i1i2(Σ2) is dense in Σ1;

2) for every F ∈ Σ′
1, the section x 7→ ∗−1

V 〈F , i1K(x, ·)〉 belongs to i2(Σ2).
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Note that
h (u(y), ∗V w(x)⊗ v(y)) = h(u, v) w(x)

for each x ∈ U and u, v, w ∈ V , as is easy to check.
Proof.
Necessity. Let F be a continuous linear functional on Σ1 vanishing on

i1i2(Σ2). By the Hahn-Banach Theorem, we will prove that i1i2(Σ2) is dense
in Σ1 once we show that F ≡ 0.

By assumption, there is an element v ∈ Σ2 such that Fv = F . It follows
that

Fv(i1i2v) = h(i2v, i2v)

= 0,

and so v = 0. Hence F ≡ 0, as desired.
Further, an easy calculation shows that

〈F , i1K(x, ·)〉 = h̃ (i1K(x, ·), v)

= h (K(x, ·), i2v)

= ∗V h (i2v, K(x, ·))
= ∗V (i2v) (x)

∈ ∗V i2(Σ2),

the fourth equality being due to the fact that K(·, ·) is a reproducing kernel of
V . This proves the necessity.

Sufficiency. Let conditions 1) and 2) of the theorem hold. The task is now
to show that the mapping J : Σ2 → Σ′

1 is onto.

Lemma 2.4 Let u ∈ Σ1. Then the formula

u(x) = h̃
(
u, i−1

2 i1 K(x, ·)
)
. (2.2)

is valid for all x ∈ U .

Proof. Indeed, by a priori estimates for elliptic systems all evaluation
functionals δx(u) = u(x), x ∈ U , are continuous on Σ1. The condition 2) then
implies that

∗−1
V 〈δx, i1K(y, ·)〉 = i1 ∗−1

V K(y, x)

= i1K(x, y)

∈ E∗
x ⊗ i2(Σ2)

for every fixed x ∈ U . It follows that the pairing h̃
(
u, i−1

2 i1K(x, ·)
)

is well
defined.
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Pick a sequence {uν} in Σ2 such that {i1i2uν} approximates u in Σ1. Since
K(·, ·) is a reproducing kernel we see that

(i2uν) (x) = h (i2uν , K(x, ·))

whence

(i1i2uν) (x) = h
(
i2uν , i2i

−1
2 i1,xK(x, ·)

)
= h̃

(
i1i2uν , i

−1
2 i1,xK(x, ·)

)
(2.3)

for all x ∈ U and ν = 1, 2, . . .. Since the pairing h̃(·, ·) is separately continuous,
the passage to the limit in (2.3), when ν → ∞, yields (2.2). The lemma is
proved.

�
We are now in a position to complete the proof of Theorem 2.3. Suppose

F ∈ Σ′
1. Then by Lemma 2.4 we see that

F(u) = F
(
h̃
(
u, i−1

2 i1 K(x, ·)
))

= h̃ (u, v)

where

v = i−1
2 〈F , i1K(·, y)〉

= i−1
2 ∗−1

V 〈F , i1K(y, ·)〉
∈ Σ2.

The last reasoning is an immediate consequence of condition 2), thus show-
ing the theorem.

�

Corollary 2.5 If Σ1 is a closed subspace of SA(U) then the condition 2)
of Theorem 2.3 is equivalent to the following one:

2′) for each fixed y ∈ U , the section i1,y ∗−1
V K(·, y) belongs to i2(Σ2)⊗ Ey.

Proof. That 2) implies 2′) we have already established in the proof of
Lemma 2.4. It remains to show the implication 2′)⇒ 2).

Pick a continuous linear functional F on Σ1. Since Σ1 is a closed subspace
of Cloc(U,E), the space of continuous sections of E over U , this functional
extends, by the Hahn-Banach Theorem, to an E∗ -valued measure m with a
compact support in U . For any x ∈ U ,

∗−1
V 〈F , i1K(x, ·)〉 =

∫
supp m

〈
i1,y ∗−1

V K(x, y), dm(y)
〉

y

∈ i2(Σ2),
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since i1 is continuous and supp m is a compact subset of U . This completes
the proof.

�

Corollary 2.6 Let i2 be one-to-one. Suppose the Closed Graph Theorem
is valid for mappings between Σ2 and Σ′

1. Then the mapping J : Σ2 → Σ′
1

defined by (2.1) is a topological isomorphism between these spaces if and only
if the conditions 1) and 2) of Theorem 2.3 hold.

Proof. This follows from the continuity of the mapping J and the Closed
Graph Theorem.

�
Let S1, S2 and V be closed subspaces of the spaces Σ1, Σ2 and V , respec-

tively. We thus get a commutative diagram

Σ2
i2
↪→ V

i1
↪→ Σ1

∪ ∪ ∪
S2

i2
↪→ V

i1
↪→ S1.

(2.4)

Once again the pairing h̃(·, ·) induces the mapping J : S2 → S′
1 which

is to certain extent the restriction of J to S2. We tacitly assume that the
continuous mappings under study are characterised in terms of convergent
sequences and that the Closed Graph Theorem is valid for mappings between
Σ2 and Σ′

1.
Write π : V → V for the corresponding orthogonal projection.

Corollary 2.7 Let i2 be one-to-one. Suppose J is a topological isomor-
phism of Σ2 onto Σ′

1. Then the mapping J is a topological isomorphism of S2

onto S′
1 if and only if

1) i1i2S2 is dense in S1;

2) the projection π maps i2(Σ2) continuously into i2(S2).

Proof. Since i2 is one-to-one, so is the restriction of i2 to S2, too. Hence
the mapping J is one-to-one, by Lemma 2.2. It remains to prove that conditions
1) and 2) of Theorem 2.3, if applied to S1, S2 and V, are equivalent to
conditions 1) and 2) of the present corollary. Of course, the conditions labelled
by 1) coincide. Thus, we restrict our attention to the conditions labelled by
2).

Necessity. Pick a sequence {vν} converging in Σ2 to a limit v. Then the
corresponding sequence of functionals Fvν converges to Fv in Σ′

1. Clearly, the
restrictions of Fvν to S1 converge in turn to the restriction of Fv to S1 in the
dual space S′

1. If the mapping J is a topological isomorphism of S2 onto S′
1
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then there exists a sequence vν ∈ S2 converging to a limit v in this space, such
that

Fvν (u) = h̃ (u, vν) ,

Fv (u) = h̃ (u, v)

for all u ∈ S1. In particular, for all u ∈ V we get

h(u, πi2vν) = h(πu, i2vν)

= h(u, i2vν)

= h̃(i1u, vν)

= Fvν (i1u)

= h̃(i1u, vν)

= h(u, i2vν),

i.e., πi2vν = i2vν and the projection π maps i2(Σ2) continuously into i2(S2),
as desired.

Sufficiency. Conversely, let conditions 1) and 2) of Corollary 2.7 hold. Pick
an orthonormal basis {bν} in V. It is well known that the reproducing kernel
of V is given in the form

K(x, y) =
∑

ν

∗Vbν(x)⊗ bν(y).

As every orthonormal basis in V can be extended to an orthonormal basis in
V we see that

K(x, y) = πyK(x, y)

for all x and y. By Theorem 2.3, the section x 7→ ∗−1
V 〈F , i1K(x, ·)〉 belongs to

i2(Σ2) for all F ∈ Σ′
1. By the Hahn-Banach Theorem every functional F ∈ S′

1

actually extends continuously to a functional F ∈ Σ′
1. Hence condition 2)

yields

∗−1
V 〈F, i1K(x, ·)〉 = ∗−1

V 〈F , i1K(x, ·)〉
= πx ∗−1

V 〈F , i1K(x, ·)〉
∈ i2(S2),

the latter inclusion being due to the commutative diagram (2.4). We thus
conclude that the condition 2) of Theorem 2.3 is fulfilled for J, and that this
mapping is onto. The topological arguments now follow from the Closed Graph
Theorem.

�
Note that if dim Σ1 < ∞ then conditions 1) and 2) of Theorem 2.3 imply

that i1i2(Σ2) = Σ1 and dim Σ1 = dim Σ2. Conversely, suppose these latter
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conditions i1i2(Σ2) = Σ1 and dim Σ1 = dim Σ2 are fulfilled. Hence it follows
that i2(Σ2) is a closed subspace of V . When replacing V by i2(Σ2) and i1 by
its restriction to i2(Σ2), we still have the same mapping J . The reproducing
kernel K(·, ·) is given by

K(x, y) =

dim Σ1∑
ν=1

(i2bν)
∗ (x)⊗ (i2bν) (y)

where {bν} is a basis in Σ2 with the property that {i2bν} is an orthonormal
basis in i2(Σ2). Given any F ∈ Σ′

1, we get

∗−1
V 〈F , i1K(x, ·)〉 =

dim Σ1∑
ν=1

F(i1i2bν) (i2bν) (x)

∈ i2(Σ2).

Similar considerations apply to the commutative diagram (2.4). In this
setting the projection π always maps V continuously into i2(S2).

How can we derive the necessary information on the projection π under
general assumptions? In many cases it can be obtained from a Neumann
problem.

2.3 Neumann problem

In our applications V is usually a Hilbert space of solutions to the equation
Au = 0 in a domain U ⊂ X.

Let the operator A be included into an elliptic compatibility complex of
differential operators Ai ∈ Diffmi(X; Ei, Ei+1), i = 0, 1, . . . , N , over X, with
A0 = A.

Suppose that V i ↪→ D′(
◦

X, Ei), i = 0, 1, . . . , N , are Hilbert spaces of sec-
tions of Ei over X, such that

1) V i ∩ C∞(X, Ei) is dense in V i for all i = 0, 1, . . . , N ;

2) Ai maps V i ∩ C∞(X, Ei) to V i+1 ∩ C∞(X, Ei+1).

Let Di
T be the set of all sections u ∈ V i, for which there is a sequence {uν}

with the following properties:

1) uν ∈ V i ∩ C∞(X, Ei);

2) {uν} converges to u in V i; and

3) {Auν} is a Cauchy sequence in V i+1.
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The mapping T : Di
T → V i+1 defined by Tu = lim Auν , where {uν} is a

sequence with properties 1)–3), is called the maximal operator generated by
A.

Note that T is well defined. Indeed, if {u′ν} is another sequence satisfying
1)–3), and f = lim Au′ν , then for all g ∈ C∞(X, Ei+1∗) with a compact support
in the interior of X we get

〈Tu− f, g〉 = lim 〈Auν − Au′ν , g〉
= lim 〈uν − u′ν , A

′g〉
= 0,

whence Tu = f .
We will think of T as an unbounded operator from V i to V i+1, whose

domain is Di
T . Since Di

T contains V i ∩ C∞(X, Ei) the operator T is densely
defined and closed.

From the lemma of Du Bois-Reymond and the uniqueness of a weak limit
it follows that if u ∈ Di

T then Tu = Au in the sense of distributions in the
interior of X.

Lemma 2.8 TDi
T ⊂ Di+1

T and T 2 = 0.

Proof. Let u ∈ Di
T and {uν} be a sequence with properties 1)–3). We set

fν = Auν . Then Tu = lim fν . And since Afν = 0, we obtain that Tu ∈ Di+1
T

and T (Tu) = 0.
�

Thus we have the following complex of Hilbert spaces and their closed linear
mappings:

V · : 0 −→ V 0 T−→ V 1 T−→ . . .
T−→ V N −→ 0. (2.5)

The cohomology of the complex {Ei, Ai} evaluated by the spaces {V i} is
just the cohomology of the complex (2.5), that is

H i(V ·) =
ker{T : Di

T → V i+1}
TDi−1

T

.

We now define T ∗, the adjoint of T , as usual for unbounded operators.
Namely, let Di

T ∗ be the set of all g ∈ V i with the property that there is v ∈ V i−1

satisfying (Tu, g)V i = (u, v)V i−1 for all u ∈ Di−1
T . We define T ∗ : Di

T ∗ → V i−1

by T ∗g = v.
The operator T ∗ is well defined because the domain Di−1

T is dense in V i−1.
It is clear that T ∗g is in general different from A∗g in the sense of distributions
in the interior of X, for A∗ is formally adjoint for A in the sense of L2 -spaces
on X.
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Lemma 2.9 T ∗Di
T ∗ ⊂ Di−1

T ∗ and T ∗2 = 0.

Proof. Indeed, if g ∈ Di
T ∗ and u ∈ Di−2

T then by definition and Lemma
2.8 we get

(Tu, T ∗g)V i−1 = (T (Tu), g)V i

= 0.

Therefore T ∗g ∈ Di−1
T ∗ and T ∗(T ∗g) = 0, which completes the proof.

�
Thus we obtain the following (chain) complex of Hilbert spaces and their

closed linear mappings:

V ·∗ : 0←− V 0 T ∗←− V 1 T ∗←− . . .
T ∗←− V N ←− 0. (2.6)

The complex (2.6) is called the adjoint complex for (2.5), and its homology
is denoted by

Hi(V
·∗) =

ker{T ∗ : Di
T ∗ → V i−1}

T ∗Di+1
T ∗

.

Let us introduce an operator L on V i with a domain Di
L, which better suits

the Hilbert structure of V i than the formal Laplacian ∆ = A∗A + AA∗ of the
complex {Ei, Ai}. Namely, write Di

L for the set of all u ∈ Di
T ∩ Di

T ∗ with the
property that Tu ∈ Di+1

T ∗ and T ∗u ∈ Di−1
T . Then the operator L : Di

L → V i is
defined by

Lu = T ∗Tu + TT ∗u,

cf. §4.2 in [Tar95a].
The Neumann problem for the complex {Ei, Ai} in the spaces V i consists

in the following:

(NP) Given a section f ∈ V i, when is there u ∈ Di
L such that Lu = f , and

how does u depend on f?

The weak orthogonal decomposition is actually the first step in solving the
Neumann problem. Set

Hi = {u ∈ Di
T ∩ Di

T ∗ : Tu = T ∗u = 0},

for i = 0, 1, . . .. Since the operators T and T ∗ are closed, Hi is a closed
subspace of V i. Denote by H : V i → Hi the orthogonal projection of V i onto
Hi.

Lemma 2.10 u ∈ Hi if and only if u ∈ Di
L and Lu = 0.
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Proof. If u ∈ Hi then obviously u ∈ Di
L and Lu = 0. If Lu = 0 then

(Lu, u)V i = 0, and since

(Lu, u)V i = ‖Tu‖2V i+1 + ‖T ∗u‖2V i−1

we have u ∈ Hi.
�

Lemma 2.11 The operator L is selfadjoint, and (L + 1)−1 exists, is boun-
ded, and is everywhere in V i defined.

Proof. Since T is a closed operator and the domain of T is dense, the
same is also true for T ∗, and (T ∗)∗ = T .

It follows that the operators (TT ∗+1)−1 and (T ∗T+1)−1 exist, are bounded,
selfadjoint and defined everywhere in V i, cf. [Yos65, p. 200].

We now easily verify that (L+1)−1 exists, is bounded, is everywhere defined,
and is given by the formula

(L + 1)−1 = (TT ∗ + 1)−1 + (T ∗T + 1)−1 − 1,

cf. 4.2.4 in [Tar95a] and elsewhere.
�

Corollary 2.12 (weak orthogonal decomposition) The range of L is
orthogonal to Hi, and

V i = Hi ⊕ LDi
L, (2.7)

where LDi
L denotes the closure of LDi

L in V i.

Proof. This follows immediately from the selfadjointness of L and Lemma
2.10.

�
In particular, if LDi

L is closed then we get the “strong orthogonal decom-
position”

V i = Hi ⊕ T ∗TDi
L ⊕ TT ∗Di

L. (2.8)

Definition 2.13 Let LDi
L be closed and f ∈ V i, then f = Hf + Lu where

u ∈ Di
L. The Neumann operator N : V i → Di

L is defined by Nf = u−Hu.

Note that N is well defined. Indeed, if also f = Hf + Lu′ where u′ ∈ Di
L

then L(u− u′) = 0 whence

(u−Hu)− (u′ −Hu′) = (u− u′)−H(u− u′)

= 0.

We summarize the properties of the Neumann operator. They generalise
those of the Green operator from Hodge theory, for the Neumann problem itself
stems from the desire to extend the Hodge theory to the case of manifolds with
boundary.
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Lemma 2.14 Suppose LDi
L is closed. Then the Neumann operator N has

the following properties:

1) N is bounded, selfadjoint, HN = NH = 0, and we have the orthogonal
decomposition

f = Hf + T ∗TNf + TT ∗Nf (2.9)

for all f ∈ V i.

2) If f ∈ Di
T and Tf = 0 then TNf = 0. If moreover LDi+1

L is closed then
TNf = NTf .

3) If f ∈ Di
T ∗ and T ∗f = 0 then T ∗Nf = 0. If moreover LDi−1

L is closed
then T ∗Nf = NT ∗f .

Proof.
1) The equalities HN = NH = 0 and formula (2.9) follow immediately

from the definition of N .
Further, by the Closed Graph Theorem there exists a constant c > 0 such

that if u ∈ Di
L is orthogonal to Hi then we have ‖Lu‖ ≥ c‖u‖. Applying this

to Nf , we obtain

‖Nf‖ ≤ 1

c
‖LNf‖

=
1

c
‖f −Hf‖

≤ 1

c
‖f‖.

Hence N is bounded.
Finally, the selfadjointness of N follows immediately from Lemma 2.11

because

(Nf, g)V i = (Nf,Hg + LNg)V i

= (Nf,LNg)V i

= (LNf,Ng)V i

= (f, Ng)V i .

2) Let f ∈ Di
L. Then from (2.9) and Lemma 2.8 we get T ∗TNf ∈ Di

T , and
Tf = 0 implies TT ∗TNf = 0. Hence it easily follows that TNf = 0.

If also LDi+1
L is closed then for any f ∈ Di

T we have Tf = TT ∗TNf on
the one hand, and Tf = TT ∗NTf on the other hand. Hence it follows that
L(TNf −NTf) = 0, and since TNf −NTf is orthogonal to Hi+1 we deduce
that TNf −NTf = 0, as required.

3) The proof is analogous to that of part 2).
�
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If Li is a hypoelliptic pseudodifferential operator in the interior of X then
the harmonic space Hi consists of C∞ sections in the interior of X, and the
Neumann operator N preserves the interior regularity. Such is the case, in
particular, if V i are Sobolev spaces.

Beginning with its classical forms, the Dirichlet norm has been an impor-
tant technical tool in studying the Neumann problem.

Given any u, v ∈ Di
T ∩Di

T ∗ , the Dirichlet inner product of u and v is defined
by

D(u, v) = (Tu, Tv)V i+1 + (T ∗u, T ∗v)V i−1 + (u, v)V i ,

and the Dirichlet norm is D(u) =
√

D(u, u).
The space Di

T ∩Di
T ∗ with the Dirichlet norm is a complete (Hilbert) space.

It is denoted by Di.
Since D(u) ≥ ‖u‖V i for all u ∈ Di there exists only one selfadjoint operator

S with a domain Di
S ⊂ Di, such that if u ∈ Di

S and v ∈ Di then

D(u, v) = (Su, v)V i . (2.10)

The following lemma gives a useful description of the operator L because
our estimates will be in the norm D(u).

Lemma 2.15 Di
L = Di

S and L = S− 1, where the operator S is defined by
(2.10).

Proof. If u ∈ Di
L and v ∈ Di, then D(u, v) = ((L + 1)u, v)V i is fulfilled.

Hence by the uniqueness of S, we have S = L + 1.
�

Let ‖ · ‖1 and ‖ · ‖2 be two norms on a vector space V . We will say that the
norm ‖ · ‖1 is completely continuous with respect to the norm ‖ · ‖2 if every
sequence which is bounded in the norm ‖ · ‖1 has a convergent subsequence in
the norm ‖ · ‖2.

Lemma 2.16 If the norm D on Di is completely continuous with respect
to ‖ · ‖V i then Hi is finite dimensional.

Proof. Observe that if u, v ∈ Hi then D(u, v) = (u, v)V i . Suppose that
the dimension of Hi is infinite. Then there exists an infinite sequence {uν}
of orthonormal elements in Hi. Since D(uν) = ‖uν‖V i = 1 the sequence {uν}
contains a convergent subsequence. But this is at variance with the fact that
if ν 6= µ then ‖uν − uµ‖V i =

√
2.

�

Lemma 2.17 If the norm D on Di is completely continuous with respect
to ‖ · ‖V i then there exists a constant c > 0 such that for all u ∈ Di orthogonal
to Hi, we have

‖Tu‖2V i+1 + ‖T ∗u‖2V i−1 ≥ c ‖u‖2V i .
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Proof. Consider the Hilbert space V i+1×V i−1 which is equipped with the
norm

‖{f, v}‖ =
(
‖f‖2V i+1 + ‖v‖2V i−1

)1/2
.

Let M : Di → V i+1 × V i−1 be the mapping defined by Mu = {Tu, T ∗u}. We
note that M is a closed operator.

We will prove that the range of M is closed. Suppose that MDi is not
closed. Then there exists a sequence {uν} in Di, such that lim Muν = {f, v}
and {f, v} 6∈MDi.

Set u′ν = uν −Huν , then u′ν are orthogonal to Hi and lim Mu′ν = {f, v}. If
‖u′ν‖V i are bounded then

D(u′ν) = (‖Mu′ν‖2 + ‖u′ν‖2V i)1/2

are bounded, too. Then by hypothesis {u′ν} has a convergent subsequence
with a limit u, and since M is closed then Mu = {f, v} which contradicts the
assumption that {f, v} 6∈MDi. Thus by choosing a subsequence, if necessary,
we may assume that lim ‖u′ν‖V i =∞.

Now set Uν = u′ν/‖u′ν‖V i . Then lim ‖MUν‖ = 0 and D(Uν) are bounded.
Therefore {Uν} has a convergent subsequence {Uνk

} such that

lim Uνk
= U,

lim MUνk
= {0, 0}.

Hence MU = 0 so that U ∈ Hi. Since Uν is orthogonal to Hi we have U = 0,
but ‖Uν‖V i = 1. This contradiction proves that the range MDi is closed in
V i+1 × V i−1.

Let R be the restriction of M to the orthogonal complement of Hi in Di.
Then R is one-to-one and has a closed range. By the Closed Graph Theorem,
the inverse R−1 is bounded. Hence there is c > 0 such that ‖Ru‖2 ≥ c ‖u‖2V i .
This proves the lemma.

�

Theorem 2.18 If the norm D on Di is completely continuous with respect
to the norm ‖ · ‖V i, then LDi is closed.

Proof. By Lemma 2.17 there exists c > 0 with the property that for all
u ∈ Di

L which are orthogonal to Hi we have

(Lu, u)V i ≥ c ‖u‖2V i ,

so that ‖Lu‖V i ≥ c ‖u‖V i .
Set f = lim Luν . We may assume that uν are orthogonal to Hi, and

then ‖uν‖V i are uniformly bounded. Therefore, {uν} has a subsequence whose
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arithmetic means converge 1. Denoting this limit by u, we get f = Lu, which
completes the proof.

�
The question of when the norm D on Di is completely continuous with

respect to the norm ‖ · ‖V i , is very difficult in the general case and it requires
special consideration. We present some consequences here.

Corollary 2.19 Suppose the norm D on Di is completely continuous with
respect to the norm ‖·‖V i. Then for the complex {Ei, Ai} the Neumann problem
is solvable at step i in the sense that there exist operators H and N in V i with
properties 1)–3) of Lemma 2.14.

Proof. This follows immediately from Lemma 2.14 and Theorem 2.18.
�

For compact manifolds with boundary X the subspace H0 is usually infini-
te-dimensional. So by Lemma 2.16 the Dirichlet norm D may not be com-
pletely continuous with respect to the norm ‖ · ‖V 0 on D0. But the following
result holds.

Theorem 2.20 If the norm D on D1 is completely continuous with respect
to the norm ‖ · ‖V 1 then LD0

L is closed.

Proof. It suffices to prove that there exists a constant c > 0 such that
‖Lf‖V 0 ≥ c ‖f‖V 0 for all f ∈ D0

L which are orthogonal to H0.
First, if u ∈ D0

L then Tu ∈ D1 and Tu ⊥ H1. Thus by Lemma 2.17 we
obtain

‖T ∗Tu‖2V 0 = ‖Lu‖2V 0

≥ c ‖Tu‖2V 1 .

Further, since f ⊥ H0 then by the weak orthogonal decomposition (2.7)

f ∈ LD0
L. Hence, for each ε > 0 there exists u ∈ D0

L such that ‖f−Lu‖V 0 < ε.
Thus,

‖f‖2V 0 ≤ (Lu, f)V 0 + ε ‖f‖V 0

≤ ‖Tu‖V 1‖Tf‖V 1 + ε ‖f‖V 0

≤ 1

c
‖Lu‖V 0‖Lf‖V 0 + ε ‖f‖V 0

≤ 1

c
‖f‖V 0‖Lf‖V 0 + ε

(
1

c
‖Lf‖V 0 + ‖f‖V 0

)
.

1This actually puts some restrictions on the spaces V i under study.



Duality by Reproducing Kernels 21

Since ε can be made arbitrarily small by choosing Lu close enough to f we
obtain ‖Lf‖V 0 ≥ c ‖f‖V 0 , which concludes the proof.

�
The next result follows from Lemma 2.14 and Theorem 2.18. Recall that

H0 = ker T 0.

Corollary 2.21 Suppose the norm D on D1 is completely continuous with
respect to the norm ‖ · ‖V 1. Then f = Hf + T ∗NTf for any section f ∈ D0

T ,
where H : V 0 → H0 is the orthogonal projection.

By assumption, the differential operator A0 = A has injective symbol. It
follows that A0 is hypoelliptic in the interior of X whence

H0 = {u ∈ V 0 ∩ C∞
loc(

◦

X, E0) : Au = 0},

i.e., the operator H0 is a generalisation of the Bergman projector from complex
analysis. Corollary 2.21 gives

π := H0

= I − T ∗NT.

As mentioned, a priori estimates for solutions of elliptic equations imply
that for each interior point x of X the “evaluation functional” δx(u) = u(x) is
bounded on H0. Therefore, H0 is a Hilbert space with reproducing kernel, cf.
[Aro50].

Let {eν}ν=1,2,... be some complete orthonormal system inH0. If u ∈ H0 then
this section decomposes into the Fourier series u =

∑
cνeν which converges in

the norm of the space V 0, and hence uniformly along with all derivatives on
compact subsets of the interior of X. In the interior of X ×X we consider the
series

K(x, y) = KH(x, y)

=
∞∑

ν=0

∗E eν(x)⊗ eν(y). (2.11)

Theorem 2.22 Series (2.11) converges uniformly along with all deriva-
tives on compact subsets of the interior of X ×X, so that

KH ∈ C∞
loc(

◦

X ×
◦

X, E∗ � E).

If x ∈
◦

X is fixed, then this series actually converges in the norm of the space
E∗

x ⊗ V 0.
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Proof. To shorten notation, we will restrict the discussion to the case
where X is a closed domain in Rn.

Let

eν(x) =

 eν,1(x)
. . .

eν,k(x)


be representations of the sections eν , where k is the rank of E. Pick compact
sets K1 and K2 in the interior of X. If x ∈ K1 is a fixed point, then in view of
the orthonormality of the system {eν} we obtain for j = 1, . . . , k( N∑

ν=0

|eν,j(x)|2
)2

≤
∣∣∣ N∑

ν=0

eν,j(x)eν(x)
∣∣∣2

≤ c1

∥∥∥ N∑
ν=0

eν,j(x)eν(y)
∥∥∥2

V 0

= c1

N∑
ν=0

|eν,j(x)|2,

the constant c1 > 0 depending on A and K only. Hence

N∑
ν=0

|eν,j(x)|2 ≤ c1 (2.12)

for all x ∈ K1.
Therefore, denoting by c2 the constant obtained by analogy for the set K2,

we get for (x, y) ∈ K1 ×K2

N∑
ν=0

| ∗E eν(x)⊗ eν(y)| =
N∑

ν=0

|eν(x)| |eν(y)|

≤ k
√

c1c2.

This proves the absolute and uniform convergence of the series (2.11) on
compact subsets of the interior of X ×X.

Finally, (2.12) implies that for fixed x ∈
◦

X, the equality (2.11) gives the
expansion of K(x, y) in the complete orthonormal system {eν}. To finish the
proof, it is sufficient to observe that x and y enter into K(x, y) in a symmetric
way.

�

Theorem 2.23 (Bergman formula) If u ∈ H0 then

u(x) = (u, K(x, ·))V 0

for all x ∈
◦

X.
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Proof. Let u =
∑

cµeµ. Then by the previous theorem we get for fixed x
in the interior of X

(u, K(x, ·))V 0 =
∑
µ,ν

cµ (eµ, eν)V 0 eν(x)

=
∑

ν

cν (eν , eν)V 0 eν(x)

= u(x),

and the proof is complete. �
Thus, in order to discover the properties of π = H we might study the

Neumann operator N1. However, “good” properties of N1 is not what we
can generally expect. It is rather an instrument to produce examples for the
general scheme.

2.4 Hodge theory on manifolds with boundary

Given a vector space V with norm ‖ · ‖, we write C(V, ‖ · ‖) for the completion
of V under the norm ‖ · ‖.

In this section we describe the Hodge theory of the Dirichlet problem for
the Laplacian ∆ = A∗A in the class of generalised sections of E on X. In order
to define what is meant by the “solution” of the boundary value problem, we
employ negative norms. This idea is certainly not new and goes back at least
as far as [Sch60] and [Roi96].

Pick a Dirichlet system Bj, j = 0, 1, . . . ,m − 1, of order m − 1 on the
boundary of X. More precisely, Bj is a differential operator of type E → Fj

and order mj ≤ m − 1 in a neighbourhood U of ∂X. Moreover, the orders
mj are pairwise different and the symbols σ(Bj), if restricted to the conormal
bundle of ∂X, have ranks equal to the dimensions of Fj.

We actually assume that the dimensions of Fj are the same and equal to
that of E.

Let Cj, j = 0, 1, . . . ,m − 1, be the adjoint system for {Bj} with respect
to Green’s formula, cf. [Tar95b]. Thus, Cj is a differential operator of type
F ∗ → F ∗

j and order m−mj − 1 in a smaller neighbourhood U of ∂X. We now
set

t(u) =
m−1⊕
j=0

Bju,

n(f) =
m−1⊕
j=0

∗−1
Fj

Cj∗F

for u ∈ Cm−1
loc (U,E) and f ∈ Cm−1

loc (U, F ).
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Lemma 2.24 (Green’s formula) For each u, v ∈ H2m(X, E), the fol-
lowing formula holds:∫

∂X

(
(t(u), n(Av))x − (n(Au), t(v))x

)
ds =

∫
X

(
(∆u, v)x − (u, ∆v)x

)
dx.

Proof. Cf. Corollary 9.2.12 in [Tar95b].
�

Given F , we consider the boundary value problem{
∆u = F in X,
t(u) = 0 on ∂X,

(2.13)

which is an obvious generalisation of the classical Dirichlet problem, cf. 9.2.4
in [Tar95b].

Suppose s > 0. For sections u ∈ C∞(X, E) we define two types of negative
norms

‖u‖−s = sup
v∈C∞(X,E)

|(u, v)|
‖v‖s

,

|u|−s = sup
v∈C∞(X,E)

t(v)=0

|(u, v)|
‖v‖s

,

where (·, ·) is the scalar product in L2(X, E). We denote the completions of
C∞(X, E) with respect to these norms by H−s(X, E) and C(C∞(X, E), | · |−s),
respectively. They are obviously Banach spaces and satisfy

H−s(X, E) ↪→ C(C∞(X, E), | · |−s),

for ‖u‖−s ≥ |u|−s.
We can define (u, v) for u ∈ H−s(X, E) and v ∈ C∞(X, E) as follows. By

definition, there is a sequence {uν} in C∞(X, E) such that ‖uν − u‖−s → 0 as
ν →∞. Then

|(uν − uµ, v)| ≤ ‖uν − uµ‖−s‖v‖s
→ 0

as µ, ν → ∞. Set (u, v) = lim(uν , v). Clearly, this limit does not depend on
the particular sequence {uν}, for if ‖uν‖−s → 0 then |(uν , v)| ≤ ‖uν‖−s‖v‖s
tends to zero, too. From the definition it follows that for all u ∈ H−s(X, E)
and v ∈ C∞(X, E) we get

|(u, v)| ≤ ‖u‖−s‖v‖s. (2.14)
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In a similar way we can define the pairing (u, v) for u ∈ C(C∞(X,E), | · |−s)
and v ∈ C∞(X, E) with t(v) = 0. Corresponding to (2.14) we have obviously
|(u, v)| ≤ |u|−s‖v‖s.

Let F be in C(C∞(X, E), | · |−s−2m), where s ≥ 0. We shall say that
u ∈ H−s(X, E) is a strong solution of (2.13) if there is a sequence of sections
uν ∈ C∞(X, E) with t(uν) = 0, such that

‖uν − u‖−s → 0,
|∆uν − F |−s−2m → 0

(2.15)

as ν →∞.

Denote by H(X) the set of all u ∈ C∞(X, E) that satisfy ∆u = 0 in the
interior of X and t(u) = 0 on ∂X. Since (2.13) is an elliptic boundary value
problem, H(X) is finite dimensional. Moreover, for any u ∈ H(X) we actually
obtain

0 = (∆u, u)

= (Au, Au)

whence Au = 0 in X. Therefore, the space H(X) consists of all u ∈ SA(
◦

X)
which are C∞ up to the boundary of X and which vanish up to the infinite
order on ∂X.

Lemma 2.25 Let s ≥ 0. If F ∈ C(C∞(X, E), | · |−s−2m) and F ⊥ H(X),
then there is a strong solution u ∈ H−s(X, E) of (2.13) satisfying u ⊥ H(X)
and

‖u‖−s ≤ c |F |−s−2m, (2.16)

where the constant c does not depend on F and u.

Proof. Cf. [Sch60].

�
The definition (2.15) of a strong solution to (2.13) obviously corresponds

to an appropriate closure L : DL → C(C∞(X, E), | · |−s−2m) of the Laplacian
∆ = A∗A, cf. Chapter 2 in [Dez80]. Namely, we denote by DL the set of all
sections u ∈ H−s(X, E), for which there is a sequence {uν} with the following
properties:

1) uν ∈ C∞(X, E) satisfies t(uν) = 0;

2) {uν} converges to u in H−s(X,E); and

3) {∆uν} is a Cauchy sequence in C(C∞(X, E), | · |−s−2m).
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The closed densely defined operator L : DL → C(C∞(X, E), | · |−s−2m)
given by Lu = lim ∆uν , where {uν} is any sequence with properties 1)–3), is
called the strong extension of ∆ under the boundary conditions t(u) = 0. It is
clear that u ∈ H−s(X, E) is a strong solution to problem (2.13) if and only if
Lu = F .

It is worth pointing out that the case ∂X = ∅ is formally permitted in the
following theorem.

Theorem 2.26 Suppose s ≥ 0. There are bounded linear operators

H : C(C∞(X,E), | · |−s−2m) → H(X),
G : C(C∞(X,E), | · |−s−2m) → DL

such that

1) H has the kernel KH(x, y) =
∑

ν hν(x) ⊗ ∗Ehν(y) where {hν} is an or-
thonormal basis of H(X);

2) AH = 0 and GH = HG = 0;

3)
GLu = u−Hu for all u ∈ DL,
LGF = F −HF for all F ∈ C(C∞(X, E), | · |−s−2m).

Proof. This follows by the same method as in Theorem 3.3 of [SST00],
with Lemma 3.2 therefrom replaced by Lemma 2.25.

�
The operators H and G are actually independent of s since they are unique

extensions by continuity of these operators on the dense subspace C∞(X, E)
of C(C∞(X, E), | · |−s−2m).

When restricted to L2(X, E), the operator G is selfadjoint. Indeed, given
any F, v ∈ L2(X,E), we may invoke the elliptic regularity of the Dirichlet
problem (2.13) to conclude that both GF and Gv belong to H2m(X, E) and
satisfy the boundary condition t(·) = 0. It follows that LGF = ∆GF and
LGv = ∆Gv whence

(GF, v) = (GF, Hv + LGv)

= (GF, A∗A Gv)

= (A∗A GF, Gv)

= (F, Gv) ,

which is due to Theorem 2.26. Hence the Schwartz kernel of G is Hermitean,
i.e., KG(x, y)∗ = KG(y, x) for all (x, y) away from the diagonal of X ×X.
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Corollary 2.27 If, in addition, F ∈ H−s−2m(X, E), then there is a se-
quence of sections uν ∈ C∞(X, E) with t(uν) = 0, such that

‖uν − u‖−s → 0,
‖∆uν − F‖−s−2m → 0

(2.17)

as ν →∞.

¿From Lemma 2.24 we deduce that when u is smooth enough, it fulfills
t(u) = 0 if and only if (∆u, v) = (u, ∆v) for all v satisfying t(v) = 0. This gives
rise to the concept of a weak extension of ∆ under the boundary conditions
t(u) = 0, cf. Chapter 2 in [Dez80]. Given an F ∈ C(C∞(X, E), | · |−s−2m), a
section u is said to be a weak solution of (2.13) if it is in H−s′(X,E) for some
s′ ≥ 0 and

(u, ∆v) = (F, v) (2.18)

for all v ∈ C∞(X, E) satisfying t(v) = 0.

Lemma 2.28 Suppose that F ∈ C(C∞(X, E), | · |−s−2m) where s ≥ 0. If
u ∈ H−s′(X, E) is a weak solution of (2.13), then actually u ∈ H−s(X,E) and
it is a strong solution of (2.13). Moreover, there is a constant c not depending
on F or u, such that

‖u‖−s ≤ c (|F |−s−2m + ‖u‖−s′) .

Proof. Cf. [Sch60].
�

To study the Dirichlet problem with nonzero boundary data t(u) = u0 we
need a result of [Roi96]. Denote by H−s,B(X, E) the completion of C∞(X, E)
with respect to the norm

‖u‖−s,B := ‖u‖−s + ‖t(u)‖
⊕H−s−mj−

1
2 (∂X,Fj)

+ ‖n(Au)‖
⊕H−s−2m+mj+1

2 (∂X,Fj)
.

(2.19)

The advantage of using these spaces is that for each u ∈ H−s,B(X, E)
there is a sequence {uν} in C∞(X, E), such that uν → u in H−s(X,E),

and {t(uν)}, {n(Auν)} are Cauchy sequences in ⊕H−s−mj− 1
2 (∂X, Fj) and

⊕H−s−2m+mj+
1
2 (∂X, Fj), respectively. Moreover, {∆uν} is a Cauchy sequence

in H−s−2m(X, E), which follows by manipulations of Green’s formula. Hence to
any element u ∈ H−s,B(X, E) we can assign both t(u), n(Au) and ∆u defined
in the above strong sense.
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Lemma 2.29 For each pair

u0 ∈
m−1⊕
j=0

H−s−mj− 1
2 (∂X, Fj),

u1 ∈
m−1⊕
j=0

H−s−2m+mj+
1
2 (∂X, Fj),

there is a section u ∈ H−s,B(X, E) with the property that t(u) = u0 and
n(Au) = u1. Moreover, the mapping (u0, u1) 7→ U is continuous in the relevant
norms.

Proof. See Lemma 6.1.2 in [Roi96].
�

Given any
F ∈ C(C∞(X, E), | · |−s−2m),

u0 ∈ ⊕H−s−mj− 1
2 (∂X, Fj),

we now consider the inhomogeneous Dirichlet problem{
∆u = F in X,
t(u) = u0 on ∂X.

(2.20)

A section u is said to be a weak solution of (2.20) if it is in H−s′(X, E) for
some s′ ≥ 0 and

(u, ∆v) = (F, v)−
∫

∂X

(u0, n(Av))xds (2.21)

for all v ∈ C∞(X, E) satisfying t(v) = 0.

Theorem 2.30 Suppose s ≥ 0. If F ⊥ H(X), then there is a weak solution
u ∈ H−s′(X, E) to (2.20) with u ⊥ H(X). Moreover, u ∈ H−s(X, E) satisfies
(2.20) in a strong sense, and there is a constant c independent of F , u0 and
u, such that

‖u‖−s ≤ c
(
|F |−s−2m + ‖u0‖⊕H−s−mj−

1
2 (∂X,Fj)

)
. (2.22)

Proof. Using Lemma 2.29 we reduce (2.21) to (2.18) with a suitable right
side F . To this end we choose U ∈ H−s,B(X, E) such that t(U) = u0 and
n(AU) = u1, u1 being arbitrary. By the above, there is a sequence {uν} in
C∞(X,E) such that

uν → U in H−s(X, E),

t(uν) → u0 in ⊕H−s−mj− 1
2 (∂X, Fj),

n(Auν) → u1 in ⊕H−s−2m+mj+
1
2 (∂X, Fj)
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and ∆uν → F ′ in H−s−2m(X,E).
By Green’s formula, we get

(uν , ∆v) = (∆uν , v)−
∫

∂X

(t(uν), n(Av))x ds

for all v ∈ C∞(X, E) satisfying t(v) = 0. Letting ν → ∞ in this equality
yields

(U, ∆v) = (F ′, v)−
∫

∂X

(u0, n(Av))x ds. (2.23)

Subtracting (2.23) from (2.21) we obtain

(u− U, ∆v) = (F − F ′, v)

for all v ∈ C∞(X, E) satisfying t(v) = 0, i.e., u − U is a weak solution of the
Dirichlet problem (2.13) with F replaced by F −F ′. Moreover, it follows from
(2.23) that

(F ′, v) = 0

for all v ∈ H(X). Combining Lemmas 2.28 and 2.25 thus results in the desired
assertion. �

We now derive a Poisson formula for solutions of the inhomogeneous Dirich-
let problem.

To this end, we choose a Green operator GA(·, ·) for A on X, cf. 9.2.1 in
[Tar95b]. Given an oriented hypersurface S ⊂ X, we denote by [S]A the kernel
on X ×X defined by

〈
[S]A, g ⊗ u

〉
X×X

=

∫
S

GA(g, u)

for all g ∈ C∞(X, F ∗) and u ∈ C∞(X, E) whose supports meet each other in
a compact set.

In particular, the kernel [∂X]A is obviously supported on the diagonal of
∂X × ∂X.

For a section u ∈ C∞(X, E), we set

(Mu)(x) = −GA∗ ([∂X]Au
)

= −
∫

∂X

GA(KGA∗(x, ·), u)

when x ∈
◦

X, KGA∗ being the Schwartz kernel of GA∗. The integral on the
right-hand side is well defined, for KGA∗ is a C∞ section of E � F ∗ outside of
the diagonal of X ×X.
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Corollary 2.31 As defined above, M induces a continuous mapping P of
⊕H−s−mj− 1

2 (∂X, Fj) to H−s(X, E) such that Pt(u) = Mu. Moreover, for each
weak solution u of (2.20) it follows that

u = Hu + G∆u + Pt(u). (2.24)

Proof. Let u ∈ H−s′(X, E) be a weak solution to (2.20). From Theorem
2.30 we deduce that u ∈ H−s(X, E) satisfies (2.20) in a strong sense. More
precisely, there exists a sequence uν ∈ C∞(X, E) which approximates u in
H−s(X, E), such that t(uν)→ t(u) and ∆uν → ∆u in the relevant norms. We
now set

Pu0 := lim
ν→∞

(
uν −Huν −G (∆uν)

)
= u−Hu−G (∆u) , (2.25)

the limit existing in H−s(X, E) by Theorem 2.26. Moreover, it is independent
of the particular choice of u with a well-defined ∆u and t(u) = u0, which is
again due to Theorem 2.26.

Obviously, u0 7→ Pu0 is a continuous mapping of ⊕H−s−mj− 1
2 (∂X, Fj) to

H−s(X, E), and it remains to prove that it agrees with −GA∗ ([∂X]Au
)

in the
interior of X.

If v ∈ C∞(X, E) has a compact support in the interior of X then by
Theorem 2.26 we get

(Pu0, v) = (u, v)− (u, Hv)− (∆u, Gv)

= (u, v −Hv −∆(Gv))−
∫

∂X

(t(u), n(AGv))x ds

= −
∫

∂X

(t(u), n(AGv))x ds,

for t(Gv) = 0. The right-hand side here just amounts to (−GA∗ ([∂X]Au
)
, v),

provided that u is smooth enough.
�

¿From (2.25) it follows that Pu0 is the unique solution to the Dirichlet
problem {

∆u = 0 in X,
t(u) = u0 on ∂X,

which is orthogonal to H(X). We call Pu0 the Poisson integral of u0. By
Theorem 2.30,

‖Pu0‖−s ≤ c ‖u0‖⊕H−s−mj−
1
2 (∂X,Fj)

(2.26)

with c a constant independent of u0.
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Theorem 2.32 The quotient space S(f)
∆ (

◦

X)/H(X) is topologically isomor-
phic to ⊕m−1

j=0 D′(∂X, Fj).

Proof. Given any u ∈ S(f)
∆ (

◦

X), the Cauchy data t(u) and n(Au), being
first defined near ∂X, have weak limit values u0 and u1 on ∂X belonging to
⊕m−1

j=0 D′(∂X, Fj), cf. [Tar95b, 9.4]. Pick a regularisation of u on ∂X, i.e.,

any section U ∈ H−s′(X, E) which coincides with u in the interior of X, cf.
[Tar95b, 9.3.6].

Using the parametrix G of ∆ given by Theorem 2.26, we get by Green’s
formula

u(x)−HU(x) = −
∫

∂X

(
(u0, n(AKG(·, x)))y − (u1, t(KG(·, x)))y

)
ds

for x ∈
◦

X. Since t(KG(·, x)) = 0 for all x ∈
◦

X, it follows that u = HU + Pu0,
the section HU ∈ H(X) being independent of the particular choice of the
regularisation U .

We have thus proved that any solution u ∈ S(f)
∆ (

◦

X) is representable through
the weak limit values t(u) on ∂X by the Poisson formula (2.24). Furthermore,

⊕m−1
j=0 D′(∂X, Fj) is the inductive limit of the sequence⊕m−1

j=0 H−s−mj− 1
2 (∂X, Fj),

s ∈ N, for the boundary of X is a compact closed C∞ manifold. Combining
this with (2.26) we deduce that the mapping u 7→ t(u) gives the desired iso-
morphism.

�
Since S(f)

A (
◦

X) is obviously a closed subspace of S(f)
∆ (

◦

X), the mapping

S(f)
A (

◦

X)

H(X)
→

m−1⊕
j=0
D′(∂X, Fj)

given by u 7→ t(u) identifies the quotient space with a closed subspace of
⊕m−1

j=0 D′(∂X, Fj).

2.5 Hardy spaces

Suppose U ⊂⊂
◦

X is a domain with C∞ boundary. Fix a Dirichlet system
B = {Bj}m−1

j=0 of order m − 1 on ∂U , each Bj being a differential operator of
order mj and type E → Fj in a neighbourhood N of ∂U . For a section u of E
near ∂U we set

t(u) =
m−1⊕
j=0

Bju |∂U ,

if defined.
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Since ∆ = A∗A satisfies the condition (U)s in the interior of X, the
sesquilinear form

h(u, v) =

∫
∂U

(t(u), t(v))xds (2.27)

defines a scalar product on S∆(U)∩C∞(U, E). Denote by H
(B)
∆ (U) the comple-

tion of S∆(U)∩C∞(U, E) in the norm u 7→
√

h(u, u). These spaces are called
the Hardy spaces, by analogy to the classical Hardy spaces of harmonic func-
tions. Alternatively H

(B)
∆ (U) can be described as the space of all u ∈ S∆(U)

of finite order of growth, for which the weak boundary values of t(u) belong
to ⊕m−1

j=0 L2(∂U, Fj).

Lemma 2.33 H
(B)
∆ (U) is a separable Hilbert space with a reproducing ker-

nel.

Proof. By the very definition, H
(B)
∆ (U) can be identified as a closed sub-

space in ⊕L2(∂U, Fj). In particular, H
(B)
∆ (U) is a separable Hilbert space

because ⊕L2(∂U, Fj) is.

Theorem 2.32 implies that each element u0 ∈ H
(B)
∆ (U) can be actually

thought of as a solution from S(f)
∆ (U). To make this more precise we invoke

Theorem 2.30, with U in place of X. Since H(U) is trivial in this case, and
L2(∂U, Fj) ↪→ H−mj(∂U, Fj) for j = 0, 1, . . . ,m − 1, there is a unique section
u ∈ H1/2(U,E) satisfying ∆u = 0 and t(u) = u0 in a strong sense. Moreover,
we have

‖u‖H1/2(U,E) ≤ c ‖u0‖⊕H−mj (∂U,Fj)

with c a constant independent of u0.
By (2.24), we get u = PUu0 where PU is the Poisson integral related to

the domain U . This gives us the desired identification of H
(B)
∆ (U) within

S(f)
∆ (U), for PU is a topological isomorphism of ⊕m−1

j=0 D′(∂U, Fj) onto S(f)
∆ (U),

cf. Theorem 2.32.
Using this fact we easily conclude that for any x ∈ U all the evaluation

functionals u 7→ δ
(j)
x u := uj(x), j = 1, . . . , k, are continuous on H

(B)
∆ (U).

Moreover, a stronger property than the continuity holds. Namely, for each
compact set K ⊂ U there is a constant CK such that ‖δ(j)

x ‖ < CK for all

x ∈ K. Hence, H
(B)
∆ (U) is a Hilbert space with a reproducing kernel, cf.

[Aro50].
�

Obviously, SA(U) ⊂ S∆(U) holds. Denote by H
(B)
A (U) the Hardy space for

A in U , i.e., the subspace of H
(B)
∆ (U) consisting of all solutions to Au = 0 in

U .

Lemma 2.34 H
(B)
A (U) is a separable Hilbert space with a reproducing ker-

nel.
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Proof. The statement will follow from Lemma 2.33 once we prove that
H

(B)
A (U) is a closed subspace in H

(B)
∆ (U). This latter assertion is a consequence

of the Poisson formula (2.24) which shows that the original topology of H
(B)
∆ (U)

is finer than that induced from C∞
loc(U,E).

�
As mentioned, the Dirichlet problem for ∆ in U is uniquely solvable, and

its Hodge parametrix GU is, in fact, a Green function of U , i.e., HU = 0.

Lemma 2.35 Let K(·, ·) be the reproducing kernel of H
(B)
∆ (U). Then for

all (x, y) ∈ U × U we have

K(x, y) =

∫
∂U

(n(AKGU
(·, x)), n(AKGU

(·, y)))z ds. (2.28)

Moreover, for every fixed x ∈ U , the columns of the matrix K(x, ·) belong to
S∆(U) ∩ C∞

loc(U, E).

Proof. Note that the integral on the right-hand side of (2.28) is well
defined for all (x, y) ∈ U × U , and it belongs to E∗

x ⊗ S∆(U) in y, for every
fixed x ∈ U . By the elliptic regularity, it is actually in E∗

x ⊗ C∞
loc(U, E), as

claimed.
Let u ∈ H

(B)
∆ (U). Combining the Poisson formula (2.24) and the Bergman

formula of Theorem 2.23, we get

0 =

∫
∂U

(
(t(u), n(AKGU

(·, x)))z + (t(u), t(K(x, ·)))z

)
ds

for all x ∈ U . Hence it follows that t(K(x, ·)) = −n(AKGU
(·, x)) on ∂U , for

each x ∈ U . We thus have{
∆K(x, ·) = 0 in U,
t(K(x, ·)) = −n(AKGU

(·, x)) on ∂U
(2.29)

for every fixed x ∈ U . Once again using the Poisson formula we arrive at
(2.28), as desired.

�
It is obvious that(∫

∂U

(n(AKGU
(·, x)), n(AKGU

(·, y)))z ds
)∗

=

∫
∂U

(n(AKGU
(·, y)), n(AKGU

(·, x)))z ds,

which recovers the equality K(x, y)∗ = K(y, x).
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3 Duality for solutions of finite order of growth

In this section we describe the dual space of S(f)
A (U) by using various pairings

in Hilbert spaces of solutions to the system Au = 0 in U .

3.1 Pairing in Hardy spaces

According to the general scheme we will study in this and the next subsection
the case

Σ1 = S(f)
∆ (U),

Σ2 = S∆(U) ∩ C∞(U, E).

Let V = H
(B)
∆ (U). The Poisson formula implies that each element of

H
(B)
∆ (U) belongs to S(f)

∆ (U). Write

i1 : H
(B)
∆ (U) → S(f)

∆ (U),

i2 : S∆(U) ∩ C∞(U, E) → H
(B)
∆ (U)

for the canonical embeddings.
The mappings i1 and i2 are always injective. As mentioned, the Poisson

formula (2.24) implies the continuity of i1. The mapping i2 is continuous
because the topology of ⊕C∞(∂U, Fj) is stronger than that of ⊕L2(∂U, Fj).
Moreover, it follows from Theorem 2.32 that S∆(U) ∩ C∞(U, E) is dense in

S(f)
∆ (U).

The task is now to extend the sesquilinear pairing h(·, ·), cf. (2.27), from

H
(B)
∆ (U)×H

(B)
∆ (U) to Σ1 × Σ2.

Choose a smooth real-valued function %(x) on X with the property that
U = {x ∈ X : %(x) < 0} and ∇%(x) 6= 0 on ∂U . Set

Uε = {x ∈ X : %(x) < ε},

then U−ε b U b Uε for all sufficiently small ε > 0, and ∂U±ε is as smooth as
∂U .

Lemma 3.1 Given any solutions u ∈ S(f)
∆ (U) and v ∈ S∆(U)∩C∞(U,E),

the limit

h̃(u, v) = lim
ε→0+

∫
∂U−ε

(t(u), t(v))x ds−ε (3.1)

exists. The corresponding pairing h̃ : Σ1 × Σ2 → C is separately continuous,
and its restriction to H

(B)
∆ (U)×H

(B)
∆ (U) coincides with h.

Proof. We first note that the limit (3.1) is none other than the definition of
weak boundary values t(u). Therefore, its existence and the separate continuity
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of the corresponding pairing h̃ is a direct consequence of this definition. The
second part of the lemma follows immediately from the definition of Hardy
space H

(B)
∆ (U).

�

Theorem 3.2 The mapping J : S∆(U) ∩ C∞(U, E) → S(f)
∆ (U)′ induced

by (3.1) is a topological isomorphism of these spaces.

Proof. Since the natural inclusion i2 is one-to-one, the mapping J is
one-to-one, too, cf. Lemma 2.2.

In this concrete situation we can easily prove the surjectivity of the mapping
J directly, i.e., without using Theorem 2.3.

Indeed, Theorem 2.32 states that the mapping t : S(f)
∆ (U)→ ⊕D′(∂U, Fj)

is a topological isomorphism, with t−1 given by the Poisson integral PU , cf.
(2.24). Let F be a continuous linear functional on S(f)

∆ (U). Then the com-
position F ◦ PU is a continuous linear functional on ⊕D′(∂U, Fj). Since
⊕D(∂U, F ∗

j ) is a reflexive space, there is an element v0 ∈ ⊕D(∂U, F ∗
j ) such

that

〈F ◦ PU , u0〉 = 〈u0, v0〉

for all u0 ∈ ⊕D′(∂U, Fj).
Set

v = PU ∗−1
⊕Fj

v0,

then v ∈ S∆(U) ∩ C∞(U,E), which is due to the properties of the Poisson

integral. If u ∈ S(f)
∆ (U) then

F(u) = 〈F , PU t(u)〉

= 〈F ◦ PU , t(u)〉

= 〈t(u), v0〉

=

∫
∂U

(t(u), t(v))x ds

= h̃(u, v),

i.e., J v = F . This proves that J is surjective.
We have thus proved that the mapping J is an isomorphism of the vector

spaces S∆(U) ∩ C∞(U, E) and S(f)
∆ (U)′. Moreover, both J and J −1 are con-

tinuous, which is clear from the explicit construction of J . This completes the
proof.

�
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Corollary 3.3 The mapping J ′ : S(f)
∆ (U) →

(
S∆(U) ∩ C∞(U, E)

)′
in-

duced by (3.1) is a topological isomorphism of these spaces.

Proof. According to Theorem 2.32 the space S(f)
∆ (U) is reflexive, i.e.,

under the natural pairing, we have(
S(f)

∆ (U)′
)′ top.∼= S(f)

∆ (U),

where both S(f)
∆ (U)′ and (S(f)

∆ (U)′)′ are endowed with the strong topology of
the dual space. Thus, the desired statement follows immediately from Theorem
3.2.

�
Since we have a commutative diagram

S∆(U) ∩ C∞(U, E)
i2
↪→ H

(B)
∆ (U)

i1
↪→ S(f)

∆ (U)
∪ ∪ ∪

SA(U) ∩ C∞(U, E)
i2
↪→ H

(B)
A (U)

i1
↪→ S(f)

A (U)

the pairing h̃(·, ·) induces a continuous mapping

J : SA(U) ∩ C∞(U, E)→ S(f)
A (U)′

which is the restriction of J .
Write π for the Szegö projection

π : H
(B)
∆ (U)→ H

(B)
A (U).

Corollary 3.4 The mapping J is a topological isomorphism of the space
SA(U) ∩ C∞(U,E) onto S(f)

A (U)′ if and only if

1) SA(U) ∩ C∞(U,E) is dense in S(f)
A (U);

2) π maps S∆(U) ∩ C∞(U, E) continuously into SA(U) ∩ C∞(U, E).

Proof. Set
S1 = S(f)

A (U),
S2 = SA(U) ∩ C∞(U, E),

V = H
(B)
A (U)

and apply Corollary 2.7.
�

Example 3.5 Let X = Rn, n ≥ 3, and let U be a ball. Consider a Dirac
operator A in Rn, i.e., a homogeneous first order differential operator with
constant coefficients, such that −A∗A is a diagonal matrix with the usual
Laplace operator on the diagonal.

It is proved in [Shl96] that there are systems {bν} and {cµ} of (Ck -valued)
homogeneous harmonic polynomials, such that
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a) {bν} is an orthogonal basis in all the spaces S(s)
A (U), s ∈ Z+, simultane-

ously, and an orthonormal basis in H
(B)
A (U);

b) {bν} ∪ {cµ} is an orthogonal basis in all the spaces S(s)
∆ (U), s ∈ Z+,

simultaneously, and an orthonormal basis in H
(B)
∆ (U).

Property a) implies, in particular, that condition 1) of Corollary 3.4 is

fulfilled. Moreover, the projection π, if restricted to S(s)
∆ (U), coincides with

the Hs(U,E) -orthogonal projection S(s)
∆ (U)→ S(s)

A (U). It follows that π maps
S∆(U)∩C∞(U, E) continuously into SA(U)∩C∞(U, E). The isomorphism of
Corollary 3.4 holds for A.

Example 3.6 Let A be a determined elliptic operator such that both A
and A∗ possess the Unique Continuation Property. Then condition 1) of Corol-
lary 3.4 holds true.

Write H
(C)
A∗ (U) for the closed subspace of the Hardy space H

(C)
AA∗(U) con-

sisting of all solutions to A∗g = 0 in U . We consider the extension of A to an
operator

T : H
(B)
∆ (U)→ H

(C)
A∗ (U),

whose domain DT consists of all u ∈ H
(B)
∆ (U) with the property that there is

a sequence {uν} in S∆(U) ∩ C∞(U, E), such that

1) uν → u in H
(B)
∆ (U);

2) Auν is a Cauchy sequence in H
(C)
A∗ (U).

Using the existence of a two-sided fundamental solution Φ for A, one easily
verifies that T is a densely defined closed operator.

Let PU denote the Poisson integral of the Dirichlet problem for A∗A in U .
Then the adjoint

T ∗ : DT ∗ → H
(B)
∆ (U)

is given by
T ∗g = PU n (APU n(g))

for every g ∈ SA∗(U) ∩ C∞(U, F ). Indeed, by the elliptic regularity of the
Dirichlet problem we deduce that PU n (APU n(g)) ∈ S∆(U) ∩ C∞(U,E) for
each g ∈ SA∗(U) ∩ C∞(U, F ). Then∫

∂U

(t(u), t(PU n(APU n(g))))x ds =

∫
∂U

GA(∗F APU n(g), u)

=

∫
∂U

GA∗(∗EPU n(g), Au)

=

∫
∂U

(n(Au), t(PU n(g)))x ds

=

∫
∂U

(n(Au), n(g))x ds
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for all u ∈ DT . In particular, this means that T ∗ is a closed densely defined
operator.

Further, the existence of a fundamental solution implies that the range of
T is closed and equals to H

(C)
A∗ (U). Hence T ∗ and L1 = TT ∗ are one-to-one

operators with closed range.
It is clear that TT ∗ = (APU n)2. To identify the operator N1 = (TT ∗)−1,

we denote by P 1
U the Poisson integral of the Dirichlet problem for AA∗ in U .

Then we have
(APU n)−1 g = P 1

U t(ΦUg)

for all g ∈ H
(C)
A∗ (U). Indeed, by the properties of the Poisson integral we see

that

n
(
P 1

U t(ΦUg)
)

= t (ΦUg) ,

PU t (ΦUg) = ΦUg,

APU t (ΦUg) = g

because A∗AΦUg = A∗g = 0 in U .
Finally, since Φ has the transmission property with respect to ∂U and

the Dirichlet problem is elliptic we conclude that (APU n)−1 maps C∞(U, F )
to itself. Therefore, the projection π maps S∆(U) ∩ C∞(U, E) continuously
into SA(U) ∩ C∞(U, E), cf. Section 2.3. By Corollary 3.4, J is a topological
isomorphism of

SA(U) ∩ C∞(U, E)
∼=→ S(f)

A (U)′.

Example 3.7 Suppose A is included into an elliptic compatibility complex
of differential operators Ai ∈ Diffmi(X; Ei, Ei+1), i = 0, 1, . . . , N , over X, with
A0 = A. As usual we introduce the Laplace operators ∆i = Ai∗Ai +Ai−1Ai−1∗

for every i. They are not elliptic in general, for the orders mi may be pairwise
different.

However, any ∆i admit a well-posed Dirichlet problem, cf. Section 2.4.
Namely, denote by Bi the boundary system consisting of the Cauchy data
with respect to Ai and the Cauchy data with respect to Ai−1∗ on ∂U . In the
notation of [Tar95a], these are t(u) and n(u), respectively. It is easy to verify
that if ∆iu = 0 in U and t(u) = 0, n(u) = 0 on ∂U then u actually satisfies
Aiu = 0 and Ai−1∗u = 0 in U . Since the complex is elliptic we deduce that u
is a C∞ section of Ei with a support in U .

Suppose any Laplacian ∆i has the property (U)s in
◦

X. Then we can

introduce Hardy spaces H
(Bi)

∆i (U) as in Section 2.5. Since A∆ = ∆A, the

differential A preserves the elements of H
(Bi)

∆i (U) that are sufficiently smooth
up to the boundary. Hence {Ei, Ai} gives rise to a complex of closed operators
in Hilbert spaces

0 −→ H
(B)
∆ (U)

T−→ H
(B1)

∆1 (U)
T−→ . . .

T−→ H
(BN )

∆N (U) −→ 0, (3.2)
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cf. Section 2.3.
The complex (3.3) has a distinguished subcomplex corresponding to the

subspaces of H
(Bi)

∆i (U) with t(u) = 0. Factorising (3.3) by this subcomplex
leads to the so-called tangential complex on ∂U . More precisely, the spaces

of the tangential complex are those subspaces of H
(Bi)

∆i (U) which consist of
sections with n(u) = 0, while its differential Tb is a quotient of T . By the
unique solvability of the Dirichlet problem for ∆i in U , these latter subspaces
can be specified as spaces of L2 -sections of certain vector bundles Ei

b over
the boundary of U . In particular, E0

b = ⊕m−1
j=0 Fj |∂U . In fact, the tangential

complex corresponds to a complex {Ei
b, A

i
b} of differential operators on ∂U , cf.

[Tar95a, 3.1.5]. We get

0 −→ L2(∂U, E0
b )

Tb−→ L2(∂U, E1
b )

Tb−→ . . .
Tb−→ L2(∂U, EN−1

b ) −→ 0, (3.3)

so that H
(B)
A (U) ∼= {u ∈ L2(∂U, E0

b ) : Tbu = 0}.
If the domain U ⊂⊂ X is strictly pseudoconvex relative to the Levi form of

{Ei, Ai} at step 1, then the Neumann problem for this complex in U is solvable
at step 1. Moreover, the Neumann operator N preserves C∞ sections of F up
to the boundary, cf. [Tar95a, 4.1.5]. Hence the operator I − T ∗

b NTb, i.e., the
orthogonal projection from L2(∂U, E0

b ) to ker T 0
b , maps C∞(U, E) continuously

to itself. As L2(∂U, E0
b ) = H

(B)
∆ (U) we see that the projection π has the same

property.
The question on the density of SA(U) ∩ C∞(U, E) in S(f)

A (U) requires a
separate discussion, cf. for instance [Tar95b]. We only mention that this is
the case if A is a differential operator with constant coefficients in Rn and
U ⊂⊂ Rn is convex.

Thus, we can invoke Corollary 3.4 to see that the mapping J is a topological
isomorphism of SA(U)∩C∞(U, E) onto S(f)

A (U)′. By reflexivity, the transpose
J′ gives a topological isomorphism of the dual of SA(U) ∩ C∞(U, E) onto

S(f)
A (U).

3.2 Pairing in Lebesgue spaces

As before, we consider

Σ1 = S(f)
∆ (U),

Σ2 = S∆(U) ∩ C∞(U, E).

Let V = S(0)
∆ (U). Again the Poisson formula shows that each element of

S(0)
∆ (U) belongs to S(f)

∆ (U). Write

i1 : S(0)
∆ (U) → S(f)

∆ (U),

i2 : S∆(U) ∩ C∞(U,E) → S(0)
∆ (U)
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for the natural inclusions.
The mappings i1 and i2 are always injective. As is already mentioned,

the Poisson formula (2.24) implies the continuity of i1. The mapping i2 is
continuous, too, because the topology of C∞(U, E) is finer than the topology
of L2(U,E).

Moreover, it follows from Theorem 2.32 that S∆(U) ∩ C∞(U, E) is dense

in S(f)
∆ (U).
Our next task is to extend the natural sesquilinear pairing h(·, ·) from

S(0)
∆ (U)× S(0)

∆ (U) to Σ1 × Σ2.

Lemma 3.8 For each u ∈ S(f)
∆ (U) and v ∈ S∆(U)∩C∞(U, E) there exists

a limit

h̃(u, v) := lim
ε→0+

∫
U−ε

(u, v)x dx. (3.4)

The corresponding pairing h̃(·, ·) is separately continuous on Σ1 × Σ2 and

h̃(u, v) = h(u, v) for all u, v ∈ S(2)
∆ (U).

Proof. Using Lemma 2.25 we see that there exists a unique w ∈ C∞(U, E)
satisfying {

∆w = v in U ;
t(w) = 0 on ∂U.

Then

h̃(u, v) = lim
ε→0+

∫
U−ε

(u, v)x dx

= − lim
ε→0+

∫
∂U−ε

G∆(∗Ew, u)

= lim
ε→0+

(∫
∂U−ε

(t(u), n(Aw))x ds−ε −
∫

∂U−ε

(n(Au), t(w))x ds−ε

)
=

∫
∂U

(t(u), n(Aw))x ds,

the last equality being due to the existence of weak boundary values t(u) and
n(Au) on ∂U , cf. [ST95].

The separate continuity of the pairing h̃(·, ·) follows from (3.5) and Lemma
2.25.

Finally, the restriction of h̃(u, v) to u ∈ S(0)
∆ (U) and v ∈ S∆(U)∩C∞(U, E)

coincides with h(u, v) since the Lebesgue integral is a continuous function of
measurable sets.

�
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It is well known that S(0)
∆ (U) is a separable Hilbert space with a reproducing

kernel (see, for instance, [Tar95a]).
As the Unique Continuation Property holds for ∆ in a neighbourhood of

U , the Dirichlet problems for both ∆ and ∆2 in U are uniquely solvable and
their Hodge parametrices GU and G∆2,U are, in fact, Green functions.

Lemma 3.9 Let K(·, ·) be the reproducing kernel of S(0)
∆ (U). Then for all

(x, y) ∈ U × U we have

K(x, y) = −∆y

∫
∂U

(
n(AKGU

(·, x)), t(∆KG∆2,U
(·, y))

)
z
ds. (3.5)

Moreover, for every fixed x ∈ U , the columns of the matrix K(x, ·) belong to
S∆(U) ∩ C∞(U,E).

Proof. Given any fixed x ∈ U , we solve the Dirichlet problem for ∆2 with
data 

∆2V (x, ·) = 0 in U,
t(V (x, ·)) = 0 on ∂U,

n(AV (x, ·)) = −n(AKGU
(·, x)) on ∂U.

(3.6)

By the Poisson formula (2.24), for every solution u ∈ S(0)
∆ (U) and each

x ∈ U we have

u(x) = −
∫

∂U

(t(u), n(AKGU
(·, x)))y ds

=

∫
∂U

G∆(∗EV (x, ·), u)

= −
∫

U

(u, ∆V (x, ·))y dy

whence

0 =

∫
U

(u, ∆V (x, ·) + K(x, ·))y dy.

Since the columns of ∆V (x, ·) + K(x, ·) belong to S(0)
∆ (U) we deduce readily

that
∆yV (x, y) = −K(x, y)

for all x, y ∈ U . Representing V (x, y) in y ∈ U by the Poisson formula for ∆2

and using (3.6), we arrive at (3.5).
For each x, y ∈ U , the integral on the right-hand side of (3.5) is well defined,

and it belongs to S∆(U) in y for every fixed x ∈ U . By the elliptic regularity,
it is actually in E∗

x ⊗
(
S∆(U) ∩ C∞(U, E)

)
, as desired.

�
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Theorem 3.10 The mapping J : S∆(U)∩C∞(U, E)→ S(f)
∆ (U)′ induced

by (3.4) is a topological isomorphism of these spaces.

Proof. Since the natural inclusion i2 is injective the mapping J is injective,
too (see Lemma 2.2).

By Theorem 2.3, to prove the surjectivity of the mapping J we need to
show that the reproducing kernel K(·, ·) of the space S(0)

∆ (U) has the following
property:

for every F ∈ S(f)
∆ (U)′, the section x 7→ ∗−1

E 〈F , K(x, ·)〉 belongs to
S∆(U) ∩ C∞(U,E).

Fix any F ∈ S(f)
∆ (U)′. Since the space S(f)

∆ (U) is the inductive limit of the

sequence S(−s)
∆ (U), s ∈ N, it can be specified as a subspace of D′

U
(X, E). By

the Hahn-Banach Theorem, there is a section v ∈ C∞(U, E) with the property
that

F(u) =

∫
U

(u, v)ydy

for all u ∈ S(f)
∆ (U). In particular, we get

∗−1
E 〈F , K(x, ·)〉 = ∗−1

E

∫
U

(K(x, ·), v)y dy

=

∫
U

(v, K(x, ·))y dy

=

∫
U

(∆ GUv, K(x, ·))y dy

=

∫
∂U

G∆ (∗EK(x, ·), GUv)

=

∫
∂U

(n(A GUv), t(K(x, ·)))y ds

if x ∈ U .
Obviously, the integral on the right-hand side of this formula lies in S∆(U).

As v ∈ C∞(U, E) we see that n(A GUv) belongs to ⊕m−1
j=0 C∞(∂U, Fj). From

Lemma 3.9 and the regularity properties of the Poisson kernels KGU
(·, ·) and

KG∆2,U
(·, ·) it follows that the section ∗−1

E 〈F , K(x, ·)〉 is C∞ up to the boundary
of U , as desired.

�
Since we have a commutative diagram

S∆(U) ∩ C∞(U, E)
i2
↪→ S(0)

∆ (U)
i1
↪→ S(f)

∆ (U)
∪ ∪ ∪

SA(U) ∩ C∞(U, E)
i2
↪→ S(0)

A (U)
i1
↪→ S(f)

A (U)
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the pairing h̃(·, ·) induces a continuous mapping

J : SA(U) ∩ C∞(U, E)→ S(f)
A (U)′

which is the restriction of J .

Write π for the Bergman projection

π : S(0)
∆ (U)→ S(0)

A (U).

Corollary 3.11 The mapping J is a topological isomorphism of the space
SA(U) ∩ C∞(U,E) onto S(f)

A (U)′ if and only if

1) SA(U) ∩ C∞(U,E) is dense in S(f)
A (U);

2) π maps S∆(U) ∩ C∞(U, E) continuously into SA(U) ∩ C∞(U, E).

Proof. According to the general scheme we put

S1 = S(f)
A (U),

S2 = SA(U) ∩ C∞(U, E),

V = S(0)
A (U).

Then the statement follows from Corollary 2.7.

�

Example 3.12 Let A be a determined elliptic operator. In this case the
complex {Ei, Ai} has only one nonzero operator, which is A0 = A. It is easy
to check that the Neumann problem for this complex, cf. Section 2.3, is just
the Dirichlet problem in L2(U, F ) for the Laplacian AA∗ with the Dirichlet
data n(·) instead of t(·).

Suppose the Unique Continuation Property holds for the formal adjoint A∗.
Then the Neumann operator N is the Green function GAA∗,U of the Dirichlet
problem.

The elliptic regularity of the Dirichlet problem now implies that N maps
C∞(U, F ) continuously to C∞(U, F ). Therefore, π = I−A∗NA is a continuous
mapping of C∞(U, E) to itself.

Further, by the Runge theorem for determined elliptic operators, cf. [Tar97,

4.1.9], SA(U) ∩ C∞(U, E) is dense in S(f)
A (U).

Hence, according to Corollary 3.11, the mapping J is a topological iso-
morphism of SA(U) ∩ C∞(U,E) onto S(f)

A (U)′. By reflexivity, the transposed
mapping J′ is a topological isomorphism of the dual to SA(U)∩C∞(U, E) onto

S(f)
A (U).
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Example 3.13 Let A be a column of scalar differential operators with con-
stant coefficients in Rn. Then A can be included into a Hilbert compatibility
complex of differential operators with constant coefficients {Ei, Ai}. Under fa-
miliar hypotheses on A the compatibility complex is simply a so-called Koszul
complex, cf. [Tar95a, 1.2.8].

If U ⊂⊂ Rn is a strictly convex domain with smooth boundary then the
Neumann problem for V i = L2(U,Ei) is solvable at step 1. Moreover, the
Neumann operator N preserves sections from C∞(U, F ), cf. ibid.

For any convex domain U ⊂⊂ Rn, the space SA(U) ∩ C∞(U, E) is known

to be dense in S(f)
A (U). By Corollary 3.11, the mapping J is a topological

isomorphism of SA(U)∩C∞(U, E) onto S(f)
A (U)′. The transposed mapping J′

then gives a topological isomorphism of the dual to SA(U) ∩ C∞(U, E) onto

S(f)
A (U).

3.3 Grothendieck duality

Suppose U is an open subset of
◦

X with C∞ boundary, such that ∂X ∩ U = ∅
or ∂X ∩ U = ∂X. Set

Σ1 =
S(f)

∆ (U)

H(X)
,

Σ2 =
{u ∈ S∆(

◦

X \ U) ∩ C∞(X \ U,E) : t(u) = 0 on ∂X ∩ U}
H(X)

and
Hm((U, ∂X), E) = {u ∈ Hm(U,E) : t(u) = 0 on ∂X ∩ U}.

For u ∈ Hm(U,E), we define

EU(u) ∈
◦

Hm(X, E)

= Hm((X, ∂X), E)

by 
EU(u) = u in U ;

∆EU(u) = 0 in X \ U ;
t(EU(u)) = t(u) on ∂U.

Since A possesses the Unique Continuation Property in
◦

X the section EU(u)
is uniquely determined for every u ∈ Hm((U, ∂X), E).

Write H for the Hodge projection onto H(X), cf. Theorem 2.26. It was
proved in [SST00] that the Hermitean form

hU(u, v) =

∫
X

(AEU(u), AEU(v))x dx +

∫
X

(HEU(u), HEU(v))x dx (3.7)



Duality by Reproducing Kernels 45

is a scalar product on Hm((U, ∂X), E) which induces a topology equivalent to
the original one.

Obviously, H(X) is a closed subspace of

S(m)
∆ (X \ U, ∂X) := S∆(

◦

X \ U) ∩Hm((X \ U, ∂X), E),

and we put
V = S(m)

∆ (X \ U, ∂X)	H(X),

“	” meaning the orthogonal complement with respect to the scalar product
hX\U(·, ·).

Lemma 3.14 As defined above, V is a Hilbert space with reproducing ker-
nel. If H(X) = 0 then this kernel is given by

K(x, ·) = EU ∗−1
E KG(x, ·)

for every x ∈ X \U , where G is the Hodge parametrix for the Dirichlet problem
in X.

Proof. The space under study is a closed subspace of S(m)
∆ (

◦

X \ U), hence
it is a Hilbert space with reproducing kernel.

If, in addition, H(X) = 0 then G is a two-sided fundamental solution of ∆
in the interior of X. It follows that ∆EUKG(·, x) = 0 away from ∂U , for every
fixed x ∈ X \ U .

By the definition of a reproducing kernel, we get

u(x) = hX\U(u, K(x, ·)) (3.8)

in
◦

X \ U for all u ∈ V . On the other hand, if x ∈
◦

X \ U then by Stokes’
formula we have

u(x) =

∫
∂U

G∆(KG(x, ·), u)

=

∫
∂U

(
t(u), n(A ∗−1

E KG(x, ·)
)

y
ds−

∫
∂U

(
n(Au), t(∗−1

E KG(x, ·)
)

y
ds

= hX\U(u, EU ∗−1
E KG(x, ·)),

which gives the desired conclusion when combined with (3.8).
�

Define the mapping i2 : Σ2 → V in the following way. Pick an element
[u] ∈ Σ2, [u] being the equivalence class of any u ∈ S(∞)

∆ (X \ U) satisfying

t(u) = 0 on ∂X ∩ U . Obviously, u ∈ S(m)
∆ (X \ U, ∂X). We set i2[u] to be the



46 A. Shlapunov and N. Tarkhanov

orthogonal projection of u to V . It is easy to check that i2 : Σ2 → V is well
defined and continuous.

Further, for u ∈ V we set i1u to be the equivalence class in Σ1 of the
restriction of EX\U(u) to U .

Our next task is to extend the scalar product hX\U(·, ·) from V × V to
Σ1×Σ2. Let [u] ∈ Σ1 and [v] ∈ Σ2. For any representative u ∈ [u], the Cauchy
data t(u) and n(Au) have weak boundary values on the boundary of U , cf.
[ST95]. We set

h̃X\U ([u], [v]) = −
∫

∂U

G∆(∗Ev, u) (3.9)

where v ∈ [v].

Lemma 3.15 The pairing (3.9) does not depend on the particular choice
of the representatives u ∈ [u] and v ∈ [v]. Moreover, it is separately continuous
and

h̃X\U (i1u, [v]) = hX\U (u, i2[v])

for all u ∈ V and [v] ∈ Σ2.

Proof. By Stokes’ formula, we get∫
∂U

G∆(∗Ev, u) =

∫
U

(∆u, v)xdx−
∫

U

(u, ∆v)xdx

= 0

for v ∈ H(X). Similarly

−
∫

∂U

G∆(∗Ev, u) =

∫
X\U

(∆u, v)xdx−
∫

X\U
(u, ∆v)xdx

= 0

for any u ∈ H(X). This shows that h̃X\U(·, ·) is independent of the choice of
u ∈ [u] and v ∈ [v].

By the above, the convergence of a sequence {uν} in S(f)
∆ (U) implies the

convergence of both {t(uν)} and {n(Auν)} in ⊕m−1
j=0 D′(∂U, Fj). Therefore,

h̃X\U(·, ·) is separately continuous provided the spaces Σ1 and Σ2 are endowed
with the quotient topology.

Since the solutions of V have finite order of growth close to ∂U it follows
that

h̃X\U (i1u, [v]) = −
∫

∂U

G∆

(
∗Ev, EX\Uu |U

)
=

∫
∂U

(
(n(AEX\Uu |U), t(v))y − (t(EX\Uu |U), n(Av))y

)
ds
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=

∫
∂U

(
n(AEX\Uu |U), t(EX\Uv)

)
y
ds−

∫
∂U

(t(u), ν(Av))y ds

= hX\U(u, v)−
∫

X

(
HEX\Uu, HEX\Uv

)
x
dx

= hX\U(u, v),

the last equality being a consequence of the fact that w is orthogonal to H(X)
with respect to hX\U(·, ·). The right-hand side here is obviously equal to
hX\U(u, i2[v]), which completes the proof.

�
This lemma gives rise to a mapping J : Σ2 → Σ′

1 induced by the pairing
hX\U(·, ·).

Theorem 3.16 The mapping

J :
S(∞)

∆ (
◦

X \ U, ∂X)

H(X)
→

(
S(f)

∆ (U)

H(X)

)′

induced by (3.9) is a topological isomorphism of these spaces.

Proof. By the very construction, the mapping i2 is one-to-one. Lemma
2.2 shows that J is one-to-one, too.

Let us prove the surjectivity of J . To this end, pick a continuous linear
functional F on Σ1. Since H(X) is finite dimensional, F can be specified to

a continuous linear functional on S(f)
∆ (U) vanishing on H(X). By Theorem

3.10, there is a section w ∈ S∆(U) ∩ C∞(U, E) orthogonal to H(X), with the
property that

〈F , [u]〉 =

∫
U

(u, w)x dx (3.10)

for all [u] ∈ Σ2, u being a representative of [u].

Set

v(y) = ∗−1
E

∫
U

(KG(·, y), w)x dx

= G (χUw) (y)

for y ∈
◦

X, where χU is the characteristic function of U . By Theorem 2.26 we
deduce that v ∈ H2m(X, E).

Further, G is a Hodge parametrix whence t(v) = 0 on ∂X. We assert that
∆v = 0 away from U in the interior of X.
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Indeed, let u ∈ C∞(X, E) have compact support in
◦

X \ U . Then∫
X\U

(∆u, v)y dy =

∫
X

(∆u, v)y dy

=

∫
U

(G∆u, w)x dx

=

∫
U

(u, w)x dx−
∫

U

(Hu, w)x dx

= 0,

for u ≡ 0 in U and w is orthogonal to H(X).
Since G has the transmission property with respect to ∂U , we see that

v ∈ C∞(U, E) whence t(v) ∈ ⊕m−1
j=0 C∞(∂U, Fj). The elliptic regularity of

the Dirichlet problem now yields v ∈ C∞(X \ U,E), and so u determines an
equivalence class [v] ∈ Σ2.

If u ∈ S(f)
∆ (U) then

u(x) = − lim
ε→0+

∫
∂U−ε

G∆(KG(x, ·), u) + lim
ε→0+

H
(
χU−εu

)
(x)

for all x ∈ U . Hence it follows that

〈F , [u]〉 =

∫
U

(u, w)x dx

= − lim
ε→0+

∫
∂U−ε

G∆(∗Ev, u) + lim
ε→0+

∫
U

(
H
(
χU−εu

)
, w
)

x
dx

= − lim
ε→0+

∫
∂U−ε

G∆(∗Ev, u)

= h̃X\U(u, v)

because w is orthogonal to H(X).
Finally, the topological arguments are the same as in Theorem 3.2, which

completes the proof.
�

3.4 Pairing in Sobolev spaces

Set

Σ1 =
S(f)

∆ (U)

H(X)
,

Σ2 =
S∆(U) ∩ C∞(U, E)

H(X)
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and

V = S(m)
∆ (U)	H(X),

“	” meaning the orthogonal complement with respect to the scalar product
hU(·, ·). When equipped with the scalar product hU(·, ·), the space V is obvi-
ously Hilbert.

For [u] ∈ Σ2 we set

EU ([u]) = [EU(u) |X\U ],

the right-hand side being an equivalence class in S(∞)
∆ (X \U, ∂X)/H(X). This

class is independent of which representative u of [u] we choose to define it. In-
deed, from the Unique Continuation Property for ∆ and the elliptic regularity
of the Dirichlet Problem it follows that EU induces a topological isomorphism
of S∆(U) ∩ C∞(U, E) onto S(∞)

∆ (X \ U, ∂X). In particular, if u ∈ H(X) then
EU(u) = u in the complement of U . This gives us the desired independence,
hence EU is well defined.

Since the space H(X) is finite dimensional we immediately obtain the fol-
lowing lemma.

Lemma 3.17 The mapping EU is a topological isomorphism

S∆(U) ∩ C∞(U, E)

H(X)

∼=→ S(∞)
∆ (X \ U, ∂X)

H(X)
.

Combining Lemma 3.17 and Theorem 3.16 we see that Σ2 and Σ′
1 are

topologically isomorphic. However, we want to recover this result within the
general scheme of Section 2.

To this end, we write i1 : V → Σ1 and i2 : Σ2 → V for the natural embed-
dings. They are obviously injective and continuous. We define an extension
h̃U(·, ·) of hU(·, ·) by

h̃U ([u], [v]) = h̃X\U ([u], EU([v])) . (3.11)

Lemma 3.18 As defined by (3.11), the pairing h̃U(·, ·) does not depend on
the choice of u ∈ [u] and v ∈ [v]. Moreover, it is separately continuous and
satisfies

h̃U (i1u, [v]) = hU (u, i2[v])

for all u ∈ V and [v] ∈ Σ2.

Proof. The pairing is independent of the choice of u ∈ [u] and v ∈ [v]
because so are the pairing h̃X\U and the mapping EU .
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Furthermore, from the definition of EU it follows that EX\UEU = EU on

S(m)
∆ (U). Hence, by Lemma 3.15 we get

h̃U (i1u, [v]) = h̃X\U

(
i1EX\UEU(u), EU([v])

)
= hX\U

(
EX\UEU(u), i2EU([v])

)
= hU (u, i2[v]) ,

as desired. �

Theorem 3.19 The mapping

J :
S∆(U) ∩ C∞(U, E)

H(X)
→

(
S(f)

∆ (U)

H(X)

)′
induced by (3.11) is a topological isomorphism of these spaces.

Proof. As mentioned, this assertion follows from Lemma 3.17 and Theo-
rem 3.16.

�
As we have a commutative diagram

S∆(U) ∩ C∞(U, E)

H(X)

i2
↪→ S(m)

∆ (U)	H(X)
i1
↪→ S(f)

∆ (U)

H(X)
∪ ∪ ∪

SA(U) ∩ C∞(U, E)

H(X)

i2
↪→ S(m)

A (U)	H(X)
i1
↪→ S(f)

A (U)

H(X)

the pairing h̃U(·, ·) induces a continuous mapping

J :
SA(U) ∩ C∞(U, E)

H(X)
→

(
S(f)

A (U)

H(X)

)′
(3.12)

which is the restriction of J .
Write π for the hU -orthogonal projection

π : S(m)
∆ (U)	H(X)→ S(m)

A (U)	H(X).

Corollary 3.20 The mapping J is a topological isomorphism of the spaces
(3.12) if and only if

1) SA(U) ∩ C∞(U,E) is dense in S(f)
A (U);

2) π maps S∆(U) ∩ C∞(U, E) continuously into SA(U) ∩ C∞(U, E).
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Proof. According to the general scheme we put

S1 =
S(f)

A (U)

H(X)
,

S2 =
SA(U) ∩ C∞(U, E)

H(X)
,

V = S(m)
A (U)	H(X).

Then the statement follows from Corollary 2.7.
�

We thus see that Corollary 3.20 is formulated in just the same way as
Corollary 3.11, the only difference being in the pairing h̃ and corresponding
orthogonal projection π.

Note that the projection π can be described as the limit of iterations of
double layer potentials, cf. [NS96, SST00]. We next make use of this descrip-
tion in order to find several cases where the conditions 1) and 2) of Corollary
3.20 are fulfilled.

Example 3.21 Let A be a determined elliptic homogeneous operator of
order m < n/2 with constant coefficients in X = Rn. Then the Laplacian
∆ = A∗A has a two-sided fundamental solution of convolution type vanishing
at infinity (see for instance [Tar95b]). By the Liouville Theorem we deduce
that H(X) = {0}.

Since ∆ is formally selfadjoint, there is a formally selfadjoint fundamental
solution of convolution type, say G. It was proved in [SST00] that

π = lim
N→∞

MN

where

(Mu) (x) = −
∫

∂U

GA(KGA∗(x− ·), u)

for all u ∈ Hm(U,E), the limit being in the strong operator topology of
Hm(U,E).

We can certainly assume that G is of the form G = ad A(D) ad A∗(D) g
where ad A(D) is the inverse array of A(D), and g a fundamental solution of
the (scalar) operator det ∆(D) = | det A(D)|2. It is easy to verify that in this
particular case the kernel KGA∗(x− y) gives a two-sided fundamental solution
for A. Hence M2 = M and π = M .

Finally, as GA∗ has the transmission property with respect to any smooth
hypersurface in Rn we conclude that M maps C∞(U, E) continuously into
SA(U) ∩ C∞(U,E).
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Example 3.22 Let A be a determined elliptic operator as in Example
3.12, and let A∗ possess the Unique Continuation Property in the interior of
X. Then the condition 1) of Corollary 3.20 is fulfilled.

We are going to invoke the Neumann operator for the short complex con-
sisting of A0 = A only, cf. Section 2.3, in order to prove that the condition 2)
of Corollary 3.20 also holds.

Consider the continuous operator T : Hm(U,E)→ L2(U, F ) induced by A,
i.e., Tu = Au. According to Theorem 6.2 from [SST00] the adjoint T ∗ of T
with respect to hU(·, ·) is given by TUf = GA∗ (χUf) where A∗ is the formal
adjoint of A.

As we are interested in the projection to S(m)
A (U)	H(X) we need to identify

the adjoint of the restriction of T to Hm(U,E)	H(X). Obviously, this adjoint
is equal to (1− πH(X))T

∗ where πH(X) is the orthogonal projection onto H(X)
with respect to hU(·, ·).

We have πH(X) = HEU where H is the L2(X,E) -orthogonal projection to
H(X). Since ∆ (TUf) = A∗ (χUf) in the sense of distributions in the interior
of X, we get EUTU = TU on all of X. It follows that(

1− πH(X)

)
T ∗ = (1−HEU) TU

= (1−H) TU .

The Laplacian L1 = TT ∗ is a bounded selfadjoint operator in L2(U, F ).
Let us show that it is injective.

Indeed, L1f = 0 if and only if TUf = 0, for T ∗ = TU . Moreover, if TUf = 0
in U then TUf = EUTUf = 0 in X, and so ∆ (TUf) = A∗ (χUf) = 0 in X. As
A∗ possesses the Unique Continuation Property in a neighbourhood of U we
see that χUf ≡ 0 in U .

Since L1 is selfadjoint we conclude that the range of TTU is dense in
L2(U, F ).

Moreover, the range of T is equal to L2(U, F ), and so the range of TU = T ∗

is closed in Hm(U,E), too. It follows that

Hm(U,E) = ker T ⊕ TUL2(U, F ),

hence the range of L1 coincides with that of T . We have thus proved that L1 is
an isomorphism of L2(U, F ). In fact, L1 = 1 in the case considered in Example
3.21.

We next show that TU (L1) −1T maps C∞(U, E) continuously to C∞(U, E),
and hence π does so. For this purpose, pick g ∈ L2(U, F ). Then there exists
f ∈ L2(U, F ) satisfying TTUf = g in U .

Note that ATUf is defined on all of X and belongs to L2(X,F ). Therefore,
g can be extended to a section g̃ ∈ L2(X, F ) in such a way that ATUf = g̃ in
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X. It follows from Theorem 2.26 that

A∗g̃ = A∗A TUf

= (1−H) A∗ (χUf)

= A∗ (χUf) , (3.13)

in H−m(X, E), for HA∗ = 0.

This formula implies, in particular, that AA∗g̃ = 0 away from U in the
interior of X, and thus g̃ is C∞ on this set.

Since A∗ (as well as A) possesses the Unique Continuation Property in
◦

X,
there exists a two-sided fundamental solution to this operator, say ΦA∗ in a
neighbourhood O of U . Applying it to both sides of formula (3.13) yields for
each x ∈ U (

L1
)−1

g (x) = g̃(x) +

∫
∂O

GA∗ (KΦA∗ (x, ·), g̃) . (3.14)

It is well known that the kernel of ΦA∗ is smooth outside of the diagonal
{x = y}. Therefore, the boundary integral in (3.14) is a C∞ section of F near
U .

We thus deduce that the inverse (L1)
−1

preserves the C∞ sections of F
over U .

Finally, if u ∈ C∞(U,E) then (L1)−1Au ∈ C∞(U, F ), and so TU (L1)
−1

Au
belongs to C∞(U, E) because the Green operator G has the transmission prop-
erty with respect to ∂U . The continuity of π now follows from the equality
π = I − TU (L1)

−1
T modulo the smoothing operator H TU (L1)

−1
T . Thus,

conditions 1) and 2) of Corollary 3.20 hold for A.

Example 3.23 Let A be included to an elliptic complex of differential
operators Ai ∈ Diffm(X; Ei, Ei+1) of the same order on X, so that A0 = A.
We formulate a particular Neumann problem, cf. Section 2.3, corresponding
to our situation.

We have a continuous operator A : Hm(U,E)	H(X)→ L2(U, F ). Arguing
as in Example 3.22 we see that the adjoint A∗ of A with respect to hU(·, ·) is
given by TUf = GA∗ (χUf).

Let nA2 represent the Cauchy data with respect the formal adjoint of A2

and

Hm
nA

(U,E2) = {u ∈ Hm(U,E2) : nA(u) = 0}

on ∂U . Obviously, it is a closed subspace of Hm(U,E2).

For x ∈ U , pick a cut-off function ωx at x, i.e., any C∞ function with a
compact support in U , equal to 1 near x and vanishing outside of a larger
neighbourhood of x. The difference 1− ωx is equal to 1 close to ∂U , hence for
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every w ∈ Hm
νA

(U,E2) we get

TU

(
A1
) ∗w = G (ωx + (1− ωx)) A∗(χUA1∗w)

= (Gωx) A∗A1∗w + (G(1− ωx)) A∗A1∗ (χUw)

= 0

at x.
Consider the complex

0 ←− Hm(U,E)
TU←− L2(U,E1)

A1∗
←− Hm

νA
(U,E2) ←− . . . , (3.15)

the fragments indicated by dots being unimportant in the sequel.
Under our assumptions on {Ei, Ai}, the Laplacians ∆i = Ai∗Ai+Ai−1Ai−1∗

are elliptic operators of order 2m.
Let Bi be the block operator

Bi =

(
Ai

Ai−1∗

)
: Hm(U,Ei)→

L2(U,Ei+1)
⊕

L2(U,Ei−1)

whose Laplacian is Bi∗Bi = ∆i. As ∆i are elliptic differential operators, the
same is true for Bi.

We endow the space Hm(U,E2) with the scalar product

h2
U(f, g) =

∫
X

(
BE2

U(f), BE2
U(g)

)
x
dx +

∫
X

(
HE2

U(f), HE2
U(g)

)
x
dx

constructed for B2 in the same way as the scalar product hU = h0
U on Hm(U,E)

was constructed for A.
Write G2 for the Hodge parametrix of the Dirichlet problem corresponding

to ∆2 in X, and T
(2,2)
U for the composition G2A1χU . Then the adjoint complex

to (3.15) is given by:

0 −→ Hm(U,E)
A−→ L2(U,E1)

p T
(2,2)
U−→ Hm

nA
(U,E2) −→ . . . (3.16)

where p : Hm(U,E2) → Hm
nA

(U,E2) is the orthogonal projection with respect
to h2

U(·, ·). Indeed, by Theorem 6.2 of [SST00] the adjoint B2∗ to B2 with
respect to h2

U(·, ·) is given by

T 2
Uf = G2B2∗ (χUf)

=
(
G2A2∗(χUf), G2A1(χUf)

)
= (T

(2,1)
U , T

(2,2)
U )f

where B2∗ is the formal adjoint of B2.
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It follows that (A1∗)∗ = T
(2,2)
U is the adjoint to A1∗ in the sense of Hilbert

spaces if A1∗ is considered as a bounded operator from Hm(U,E2) to L2(U,E1).

Obviously, p T
(2,2)
U is the adjoint in the sense of Hilbert spaces for the restriction

of A1∗ to Hm
nA

(U,E2). Hence the Laplacian of (3.16) at step 1 is the bounded
selfadjoint operator

L1 = A1∗p T
(2,2)
U + ATU

on L2(U, F ).
¿From now on we assume that H2(X) = 0. Let us show that under this

assumption the null-space of p T
(2,2)
U just amounts to S(m)

A1 (U). Denote by G2
U

the Green function of the Dirichlet problem for ∆2 in U . Then for every
f ∈ Hm(U,E2) we have

f = M2
Uf + G2

U ∆2f

by the Poisson formula (2.24). As E2
U(g) = 0 in X \ U for any g ∈

◦

Hm(U,E2)
we conclude that

h2
U(M2

Uf, G2
U ∆2f) =

∫
U

(B2M2
Uf, B2G2

U∆2f)xdx

=

∫
U

(∆2M2
Uf, G2

U∆2f)xdx−
∫

∂U

GB2∗(∗E2G2
U∆2f, B2M2

Uf)

= 0

because ∆2M2
Uf = 0 in U and G2

U∆2f ∈
◦

Hm(U,E2). We thus deduce that the
Poisson formula gives an orthogonal decomposition with respect to h2

U(·, ·) if
H2(X) = 0. Since

◦

Hm(U,E2) ↪→ Hm
nA

(U,E2)

we actually see that (
Hm

nA
(U,E2)

)⊥
↪→

( ◦

Hm(U,E2)
)⊥

= S(m)

∆2 (U).

Thus, p T
(2,2)
U f = 0 implies ∆2T 2,2

U f = 0 in U . On the other hand, in X we
have

∆2T
(2,2)
U f = A1 (χUf)−H2A1 (χUf)

= A1 (χUf)

because H2A1 = 0. In particular this means that A1f = 0 in U if and only if
∆2T

(2,2)
U f = 0 in U .

Conversely, if A1f = 0 in U then ∆2T
(2,2)
U f = 0 in U , and

T
(2,2)
U f (x) =

∫
∂U

GB2∗ (KG2(x, ·), 0⊕ f)
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for all x ∈ U , the last equality being a consequence of Stokes’ formula. More-
over, for all g ∈ Hm

nA
(U,E2) we have

h2
U

(
T

(2,2)
U f, g

)
=

∫
X

(
B2T

(2,2)
U f, B2E2

Ug
)

x
dx

=

∫
∂U

GB2 (0⊕ ∗E1f, g)

=

∫
∂U

GA1∗ (∗E1f, g)

= 0,

the last equality being due to jump theorems for a single layer potential and
the fact that nA(E2

U(g)) = nA(g) = 0 on ∂U . Hence A1f = 0 in U implies

p T
(2,2)
U f = 0 in U , as desired.
Let us describe the null-space of L1. Note that L1f = 0 if and only if both

TUf and p T
(2,2)
U f vanish, for the operator(

p T
(2,2)
U

TU

)
: L2(U, F )→

Hm
nA

(U,E2)
⊕

Hm(U,E)

is adjoint to the differential operator B1∗.
Hence ker L1 = ker TU ∩S(0)

A1 (U). It was proved in [SST00] (see Lemma 8.4)
that

ker TU ∩ SA1(U) = {f ∈ L2(U, F ) : A∗f = 0, A1f = 0, n(f) = 0 on ∂U}.

This is the so-called “harmonic space” at step 1 for the differential complex
{Ei, Ai} in U . One usually realises it as the null-space for the Neumann
problem in the L2 -setting for {Ei, Ai}.

As the Laplacian L1 is defined everywhere on L2(U, F ) the Neumann prob-
lem for the complex (3.16) at step 1 reads as follows: given any f ∈ L2(U, F ),
find g ∈ L2(U, F ) satisfying L1g = f . If the range of L1 is closed, then so is the
range of A : Hm(U,E)→ L2(U, F ), too. For the Dolbeault complex this latter
fails to be the case even for the small balls U of Cn. Hence for the Dolbeault
complex the Neumann problem in the present setting can not highlight any
properties of the projection π.

The last observation in Example 3.23 leads us to another choice of function
spaces, which could be Hm(U,Ei).

Example 3.24 Let X = Rn, n ≥ 3, U ⊂ Rn a ball, and A a Dirac operator
in Rn, cf. Example 3.5.

It is proved in [Shl96] that there are systems {bν} and {cµ} of (Ck -valued)
homogeneous harmonic polynomials, such that
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a) {bν} is an orthogonal basis in all the spaces S(s)
A (U), s ∈ Z+, simultane-

ously, and an orthonormal basis in S(m)
A (U) with respect to hU(·, ·);

b) {bν} ∪ {cµ} is an orthogonal basis in all the spaces S(s)
∆ (U), s ∈ Z+,

simultaneously, and an orthonormal basis in S(m)
∆ (U) with respect to

hU(·, ·).

Property a) implies, in particular, that condition 1) of Corollary 3.20 is

fulfilled. Moreover, the projection π, if restricted to S(s)
∆ (U), coincides with

the hU(·, ·) -orthogonal projection S(s)
∆ (U) → S(s)

A (U). It follows that π maps
S∆(U)∩C∞(U, E) continuously into SA(U)∩C∞(U, E). Hence Corollary 3.20
holds for A.

4 Duality for solutions of arbitrary order of

growth

In this section we will describe the dual space of SA(U) by using various pair-
ings in Hilbert spaces of solutions to the system Au = 0 in U . We assume that
both X and A are real analytic.

4.1 Duality in Hardy spaces

Let U ⊂⊂ X be a domain with real analytic boundary. In this and the next
section we restrict ourselves to the case Σ1 = S∆(U) and Σ2 = S∆(U). Let

V = H
(B)
∆ (U) and

i1 : H
(B)
∆ (U) → S∆(U),

i2 : S∆(U) → H
(B)
∆ (U)

be natural inclusions.
The mapping i1 is always one-to-one, and the mapping i2 is one-to-one

because of the Unique Continuation Property (U)s. As mentioned, the Poisson
formula (2.24) implies the continuity of i1. The mapping i2 is continuous by a
priori estimates for solutions of elliptic equations.

¿From the Runge theorem for solutions of elliptic systems (see for instance
Theorem 4.1.26 in [Tar97]) it follows that S∆(U) is dense in S∆(U).

Our next goal is to extend the sesquilinear pairing h(·, ·), cf. (2.27), from

H
(B)
∆ (U)×H

(B)
∆ (U) to Σ1 × Σ2.

Note that the analyticity of ∂U implies that also ∂D±ε is real analytic for
each sufficiently small ε > 0.

Theorem 4.1 Let 0 ≤ j ≤ m − 1 and let δ > 0 be small enough. Then
there exist a compact set K ⊂ U , ε0 > 0 and C > 0 depending on j, δ, K and
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ε0, such that for all u ∈ S∆(U), v ∈ S∆(Uδ) ∩ C2m(U δ, E), and ε ∈ (0, ε0] we
have ∣∣∣ ∫

∂U−ε

(Bju, Bjv)x ds−ε

∣∣∣ ≤ C ‖u‖C(K,E) ‖v‖C2m(Uδ ,E). (4.1)

Proof. Let

n(f) =
m−1⊕
j=0

∗−1
Fj

Cj ∗F f

be the Dirichlet system adjoint to the system t with respect to the Green
formula for A. Given any sufficiently small ε > 0, we consider the Cauchy
problem 

A∗Avj,−ε = 0 near ∂U−ε,
t(vj,−ε) = 0 on ∂U−ε,

n(Avj,−ε) = (0, . . . , 0, Bjv, 0, . . . , 0) on ∂U−ε

(4.2)

in a neighbourhood of U−ε. The following statement is a consequence of the
Cauchy-Kovalevskaya Theorem.

Lemma 4.2 Given any δ > 0 small enough, there are ε0 > 0 and C0 > 0
such that for all ε ∈ (0, ε0] the sections vj,−ε belong to S∆(U−ε+r \ U−2ε0) with
some r > 0 independent of ε, and satisfy

‖vj,−ε‖C2m(U−ε+r\U−2ε0 ,E) ≤ C0 ‖v‖C2m(Uδ ,E).

Proof. First we note that there exists a neighbourhood O of ∂U and
sections Wj,−ε, real analytic near O, such that{

t(Wj,−ε) = 0 on ∂U−ε,
n(AWj,−ε) = (0, . . . , 0, Bjv, 0, . . . , 0) on ∂U−ε

and
‖Wj,−ε‖C2m(O,E) ≤ C0 ‖v‖C2m(Uδ ,E). (4.3)

For instance, if mj = j we can take

W0,−ε(x) =
(%(x) + ε)2m−1

(2m− 1)!

(
σ2m−1(∗−1

F0
C0 ∗F A)(x,∇%(x))

)−1
B0v(x),

W1,−ε(x) =
(%(x) + ε)2m−2

(2m− 2)!

(
σ2m−2(∗−1

F1
C1 ∗F A)(x,∇%(x))

)−1
B1v(x)− . . .

and so on.
Hence vj,−ε = Wj,−ε+wj,−ε where wj,−ε is a solution of the following Cauchy

problem 
A∗Awj,−ε = −A∗AWj,−ε near ∂U−ε,

t(wj,−ε) = 0 on ∂U−ε,
n(Awj,−ε) = 0 on ∂U−ε.
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As the Dirichlet system {t, n◦A} represents the Cauchy data for the Lapla-
cian ∆ we see that{

A∗Awj,−ε = −A∗AWj,−ε near ∂U−ε,
wj,−ε vanishes up to order 2m− 1 on ∂U−ε.

Since the hypersurfaces ∂U−ε are real analytic and compact we can argue
locally. Fix a point x0 ∈ ∂U . Then after a suitable bianalytic change of
variables x = δ(y) in a neighbourhood of x0 we obtain the following Cauchy
problem

∆] wj,−ε(δ(y)) = −A∗AWj,−ε(δ(y)) if yn < −ε,(
∂

∂yn

)k

wj,−ε(δ(y)) vanishes for j = 0, 1, . . . , 2m− 1 if yn = −ε,

(4.4)
where ∆] is a differential operator of order 2m with real analytic coefficients.
Obviously, ∆] inherits the ellipticity from ∆.

Finally, complexifying problem (4.4) and using (4.3) and Theorem 9.4.5
from [Hoe83] we arrive at the assertion of the lemma.

�
Further, let G∆ be a Green operator for ∆. Then using Lemma 4.2 and

Stokes’ formula we get∫
∂U−ε

(Bju, Bjv)x ds−ε =

∫
∂U−ε

(t(u), n(Avj,−ε))x ds−ε −
∫

∂U−ε

(n(Au), t(vj,−ε))x ds−ε

=

∫
∂U−ε

G∆ (∗Evj,−ε, u)

=

∫
∂U−ε0

G∆ (∗Evj,−ε, u)

for all 0 < ε ≤ ε0.
Since G∆(·, ·) is a bidifferential operator of order 2m−1 on ∂U we conclude

that∣∣∣ ∫
∂U−ε

(Bju, Bjv)x ds−ε

∣∣∣ ≤ c ‖u‖C2m−1(∂U−ε0 ,E) ‖vj,−ε‖C2m−1(∂U−ε0 ,E), (4.5)

the constant C depending on the coefficients of A and {Bj} only. By Lemma
4.2, there is a constant C0 > 0 such that

‖vj,−ε‖C2m−1(∂U−ε0 ,E) ≤ C0 ‖v‖C2m(Uδ ,E). (4.6)

for all v ∈ S∆(Uδ)∩C2m(U δ, E). Finally, by a priori estimates for solutions of
elliptic systems there exists a constant C1 > 0 such that for all u ∈ S∆(U) we
get

‖u‖C2m−1(∂U−ε0 ,E) ≤ C1 ‖u‖C(U−ε0/2,E). (4.7)
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Combining now inequalities (4.5), (4.6) and (4.7) we obtain (4.1), as de-
sired.

�
In the case where ∆ is the usual Laplace operator in Rn, Stout [Sto95]

proved that ∂D should be necessarily real analytic for the estimate (4.1) to
hold.

Corollary 4.3 For every u ∈ S∆(U) and v ∈ S∆(U), the limit

h̃(u, v) = lim
ε→0+

∫
∂D−ε

(t(u), t(v))x ds−ε. (4.8)

exists. The pairing h̃(·, ·) is separately continuous on S∆(U) × S∆(U), and

h̃(u, v) = h(u, v) for all u ∈ H
(B)
∆ (U) and v ∈ S∆(U).

Proof. By the assumption, there exists a δ > 0 with the property that
v ∈ S∆(Uδ) ∩ C2m(U δ, E).

Given any ε ∈ (0, ε0], ε0 being from Theorem 4.1, we define a continuous
functional Fv,−ε on S∆(U) by

Fv,−ε(u) =

∫
∂U−ε

(t(u), t(v))x ds−ε,

for u ∈ S∆(D). According to Theorem 4.1 there is a constant C > 0 indepen-
dent of ε, such that

|Fv,−ε(u)| ≤ C ‖u‖C(Uε0/2,E)

for all 0 < ε ≤ ε0.
Let Σ be the subset of S∆(U) consisting of all solutions u with the property

that

‖u‖C(Uε0/2,E) <
1

C
.

This means that for each ε ∈ (0, ε0] the functional Fv,−ε belongs to the polar
of Σ, i.e.,

Σ◦ = {F ∈ S∆(U)′ : |F(u)| ≤ 1 for all u ∈ Σ }.

By a familiar theorem of Alaoglu and Banach, this polar is weak∗ compact.
Since the space S∆(U) is separable, this polar is metrisable in the weak∗ topol-
ogy. By compactness, there are limit points for the net {Fv,−ε}0<ε≤ε0 . Let F0

be such a limit point. Thus, for some sequence εk ∈ (0, ε0] converging to 0, we
have

lim
k→∞
Fv,−εk

= F0(u)

for all u ∈ S∆(U).
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It is easy to see that for any u ∈ H
(B)
∆ (U) we have

F0(u) = lim
k→∞
Fv,−εk

(u)

= h(u, v).

Hence, each weak∗ limit point of the net {Fv,−ε}0<ε≤ε0 agrees on H
(B)
∆ (U) with

u 7→ h(u, v).

As S∆(U) is dense in S∆(U), the space H
(B)
∆ (U) is dense there, too. This

implies the existence of a limit

lim
ε→0+

Fv,−ε = F0

which defines an element of S∆(U)′.
Finally, the separate continuity of the pairing h̃(·, ·) follows immediately

from (4.1).
�

Theorem 4.4 The mapping J : S∆(U) → S∆(U)′ induced by (4.8) is a
topological isomorphism of these spaces.

Proof. Since the natural inclusion i2 is one-to-one, the mapping J is
one-to-one, too (see Lemma 2.2).

According to Corollary 2.5 to prove the surjectivity of the mapping we
have to show that the reproducing kernel K(·, ·) of the space H

(B)
∆ (U) has the

following property.

Lemma 4.5 For every fixed x ∈ U , the Szegö kernel K(x, ·) belongs to
E∗

x ⊗ S∆(U).

Proof. Since X, ∂D, ∆ and {Bj} are real analytic Theorem A of [MN57]
implies that any solution u of the Dirichlet problem (2.20) actually satisfies
∆u = 0 in a neighbourhood of U if the data ⊕m−1

j=0 uj are real analytic, cf. for
instance Lemma 4.4 in [NST98]. This means, in particular, that GU(x, ·) is
real analytic in a neighbourhood of ∂U . Hence, we deduce from (2.29) that
K(x, ·) ∈ Ex ⊗ S∆(U) for every fixed x ∈ U , as desired.

�
We have thus proved that the mapping J is an isomorphism of vector

spaces

S∆(U)
∼=
↪→ S∆(U)′.

We are now going to invoke an operator-theoretic argument to conclude
that this algebraic isomorphism is in fact a topological one. To this end, we
note that the spaces S∆(U) and S∆(U)′ are both spaces of type DFS. For
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S∆(U), see the proof of Theorem 1.5.5 in Morimoto [Mor93, p.13]. As the
Closed Graph Theorem is correct for linear mappings between spaces of type
DFS (see Corollary A.6.4 in [Mor93, p.254]), to see that v 7→ Fv is a topological
isomorphism, it suffices to show that it is continuous. The latter conclusion,
however, follows from Theorem 4.1 and the explicit construction of Fv. This
completes the proof.

�
Recently Stout [Sto95] proved Theorem 4.4 for the usual Laplace operator

∆ in Rn.
As we have a commutative diagram

S∆(U)
i2
↪→ H

(B)
∆ (U)

i1
↪→ S∆(U)

∪ ∪ ∪
SA(U)

i2
↪→ H

(B)
A (U)

i1
↪→ SA(U)

the pairing h̃(·, ·) induces a continuous mapping

J : SA(U)→ SA(U)′

which is the restriction of J .
Write π for the Szegö projection

π : H
(B)
∆ (U)→ H

(B)
A (U).

Corollary 4.6 The mapping J is a topological isomorphism of the space
SA(U) onto SA(U)′ if and only if

1) SA(U) is dense in SA(U);

2) π maps S∆(U) continuously into SA(U).

Proof. According to the general scheme we have

S1 = SA(U),
S2 = SA(U),

V = H
(B)
A (U),

hence the statement follows from Corollary 2.7.
�

Stout [Sto95] proved this theorem for the overdetermined Cauchy-Riemann
operator A = ∂ in Cn, n > 1.

In [Shl00] it is proved that conditions 1) and 2) of Corollary 4.6 hold for a
Dirac operator A in a ball of X = Rn, cf. Example 3.5.



Duality by Reproducing Kernels 63

Example 4.7 Let A be a determined elliptic operator with real analytic
coefficients on X. Then both A and A∗ possess the Unique Continuation
Property in the interior of X. Again condition 1) of Corollary 4.6 is fulfilled.

As in Example 3.6 we consider the extension of A to an operator

T : H
(B)
∆ (U)→ H

(C)
A∗ (U)

where H
(C)
A∗ (U) is the closed subspace of the Hardy space H

(C)
AA∗(U) consisting

of all solutions to A∗g = 0 in U .
As is proved in Example 3.6, for any g ∈ H

(C)
A∗ (U) we have

(APU n)−1 g = P 1
U t(ΦUg)

where P 1
U the Poisson integral of the Dirichlet problem for AA∗ in U .

Let u ∈ S∆(U). Then Au ∈ SA∗(U) and hence it is real analytic in a
neighbourhood of U . By Stokes’ formula,

ΦU(Au) (x) = u(x) +

∫
∂U

GA(KΦ(x, ·), u)

for all x ∈ U .
If u ∈ S∆(Uδ) ∩ C2m(U δ, E) with δ > 0 sufficiently small, then by the

Cauchy-Kovalevskaya Theorem there exist a neighbourhood O of ∂U and a
section v ∈ Cm(O, E) such that{

Av = 0 in O,
t(v) = t(u) on ∂U.

By Stokes’ formula,

ΦU(Au) (x) = u(x)− v(x) +

∫
∂O∩U

GA(KΦ(x, ·), v) (4.9)

for all x ∈ O ∩ U .
By the definition of v, the right-hand side of the last equality uniquely

extends to a solution of Au = 0 in O. It follows that ΦU(Au) ∈ S∆(O ∪ U).
Arguing as in the proof of Lemma 4.2 we see that the neighbourhood O

does not depend on u but does on δ and ∂U . Moreover, for every solution
u ∈ S∆(Uδ) ∩ Cm(U δ, E) we get

‖v‖Cm(O,E) ≤ C ‖u‖Cm(Uδ ,E)

with C > 0 a constant independent of u. Hence ΦU(Au) maps S∆(U) contin-
uously into S∆(U).
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Further, since X, ∂U , AA∗ and {Bj} are real analytic, Theorem A of
[MN57] implies that the Poisson integral P 1

UΦU(Au) is real analytic in a neigh-
bourhood of ∂U , provided that u ∈ S∆(U). Therefore, πu is real analytic in a
neighbourhood of ∂U , too.

If {uν converges to u ∈ S∆(U) then ΦU(Auν) converges to ΦUu by (4.9),
and P 1

UΦU(Auν) converges to P 1
UΦU(Au) by [NST98] (see the proof of Lemma

4.4). Hence π maps S∆(U) continuously into SA(U), cf. Section 2.3.
Summarising we conclude that the mapping J is a topological isomorphism

of SA(U) onto SA(U)′.

Example 4.8 Suppose A is an overdetermined elliptic differential operator
with constant coefficients in Rn, as in Example 3.7. If U ⊂⊂ Rn is a strictly
convex domain with real analytic boundary then under reasonable assumptions
on A the Neumann problem for the tangential complex is solvable at step 1,
see Example 3.7 for more details.

Moreover, the Neumann operator N1 possesses the analytic hypoellipticity
property, cf. [Tar95a]. Hence the operator I − T ∗

b NTb, i.e., the orthogonal
projection from L2(∂U, E0

b ) to ker T 0
b , maps S∆(U) continuously to SA(U). As

L2(∂U, E0
b ) = H

(B)
∆ (U) and ker T 0

b = H
(B)
A (U) we see that the projection π has

the same property.
As the domain U is strictly convex we see that SA(U) is dense in SA(U).

By Corollary 3.11, the mapping J is a topological isomorphism of SA(U) onto
SA(U)′. By reflexivity, the transpose J′ gives us a topological isomorphism
between the spaces SA(U)′ and SA(U).

4.2 Duality in Lebesgue spaces

We will now study the case

Σ1 = S∆(U),

Σ2 = S∆(U),

V = S(0)
∆ (U)

and
i1 : S(0)

∆ (U) → S∆(U),

i2 : S∆(U) → S(0)
∆ (U)

are natural inclusions.
The mapping i1 is always one-to-one and the mapping i2 is one-to-one be-

cause of the Unique Continuation Property (U)s. By a priori elliptic estimates,

the mappings i1 and i2 are continuous. As mentioned, S(0)
∆ (U) is a separable

Hilbert space with reproducing kernel. To proceed we thus need to extend the
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pairing

h(u, v) =

∫
U

(u, v)x dx

from L2(U,E)× L2(U,E) to Σ1 × Σ2.

Corollary 4.9 Let δ > 0 be small enough. Then there are a compact set
K ⊂ U , ε0 > 0 and C > 0 depending on δ, K and ε0, such that for all
u ∈ S∆(U) and v ∈ S∆(Uδ) ∩ C2m(U δ, E) we have∣∣∣ ∫

U−ε

(u, v)x dx
∣∣∣ ≤ C ‖u‖C(K,E) ‖v‖C2m(Uδ ,E) (4.10)

whenever ε ∈ (0, ε0].

Proof. Let ε0 be the number from Theorem 4.1. Since ∂U is sufficiently
smooth there exists 0 < ε′ ≤ ε0 such that for 0 < ε ≤ ε′ we have∫

U−ε

(u, v)x dx =

∫
U−ε′

(u, v)x dx +

∫ ε′

ε

dr

∫
∂U−r

(u, v)x ds−r,

whence∣∣∣ ∫
U−ε

(u, v)x dx
∣∣∣ ≤ meas(U) ‖u‖C(U−ε′ ,E)‖v‖C(U−ε′ ,E) + ε′ sup

r∈[ε,ε′]

∣∣∣ ∫
∂U−r

(u, v)x ds−r

∣∣∣.
Now the statement of the corollary follows from Theorem 4.1 with B0 = I,

as desired.
�

In case ∆ is the usual Laplace operator in Rn, Zorn [Zor82] proved that the
boundary of U should be necessarily real analytic in order that the estimate
(4.10) may hold.

Corollary 4.10 For every solutions u ∈ S∆(U) and v ∈ S∆(U) there exists
a limit

h̃(u, v) = lim
ε→0+

∫
U−ε

(u, v)x dx. (4.11)

The corresponding pairing h̃(·, ·) is separately continuous on S∆(U)× S∆(U),

and h̃(u, v) = h(u, v) for all u ∈ S(0)
∆ (U) and v ∈ S∆(U).

Proof. The proof is similar to the proof of Corollary 4.3.
�

Theorem 4.11 The mapping J : S∆(U) → S∆(U)′ induced by (4.11) is
a topological isomorphism of these spaces.



66 A. Shlapunov and N. Tarkhanov

Proof. Since the natural inclusion i2 is one-to-one, the mapping J is
one-to-one, too (see Lemma 2.2).

By Corollary 2.5, to prove the surjectivity of the mapping we have to
show that the reproducing kernel K(·, ·) of the space S(0)

∆ (U) has the following
property.

Lemma 4.12 For every fixed x ∈ U , the Bergman kernel K(x, ·) belongs
to E∗

x ⊗ S∆(U).

Proof. In the proof of Lemma 3.9 we derived the formula

∆V (x, ·) = −K(x, ·)

in U , for any fixed x ∈ U , where V (x, ·) is a solution of the Dirichlet problem
(3.6) for the operator ∆2. Since all the objects X, ∂U , ∆ and {Bj} are real
analytic we deduce by Theorem A of [MN57] that V (x, ·) ∈ E∗

x ⊗ S∆2(U) for
every fixed x ∈ U (see for instance Lemma 4.4 in [NST98]). Hence the lemma
follows, as desired.

�
We have proved that the mapping J is an isomorphism of vector spaces

S∆(U) and S∆(U)′. The topological arguments are actually the same as those
in the proof of Theorem 4.4.

�
Since we have a commutative diagram

S∆(U)
i2
↪→ S(0)

∆ (U)
i1
↪→ S∆(U)

∪ ∪ ∪
SA(U)

i2
↪→ S(0)

A (U)
i1
↪→ SA(U)

the pairing h̃(·, ·) induces a continuous mapping

J : SA(U)→ SA(U)′

which is the restriction of J .
Write π for the Bergman projection

π : S(0)
∆ (U)→ S(0)

A (U).

Corollary 4.13 In order that the mapping J be a topological isomorphism
of the space SA(U) onto SA(U)′ it is necessary and sufficient that

1) SA(U) be dense in SA(U);

2) π would map S∆(U) continuously into SA(U).
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Proof. According to the general scheme we have

S1 = SA(U),
S2 = SA(U),

V = S(0)
A (U),

and so the statement follows from Corollary 2.7.
�

Zorn [Zor82] proved that the conditions of Corollary 4.13 hold for the
Cauchy-Riemann operator A = ∂̄ in any strictly pseudoconvex domain U of
Cn with real analytic boundary.

Example 4.14 Let A be a determined elliptic operator as in Example
3.12. Since X, ∂U , AA∗ and n(·) are real analytic Theorem A of [MN57]
implies that NAu is real analytic in a neighbourhood of ∂U if u ∈ S∆(U).
Therefore πu = u − A∗NAu is real analytic in a neighbourhood of ∂U , too.
Furthermore, if {uν} converges to u ∈ S∆(U) then Nuν converges to Nu,
cf. the proof of Lemma 4.4 in [NST98]. Hence π maps S∆(U) continuously
onto SA(U). Finally, by the Runge theorem for determined elliptic operators,
cf. [Tar97, 4.1.9], SA(U) is dense in SA(U). Hence, according to Corollary
4.13, the mapping J is a topological isomorphism of SA(U) onto SA(U)′. By
reflexivity, the transposed mapping J′ is a topological isomorphism of SA(U)′

onto SA(U).

Example 4.15 Assume that A is a column of first order scalar partial
differential operators with constant coefficients in Rn. Under familiar assump-
tions on A, the compatibility complex of A is simply a Koszul complex, cf.
[Tar95a, 1.2.8]. Let U ⊂⊂ Rn be a strictly convex domain with real analytic
boundary. Then the Neumann problem for the compatibility complex in U is
solvable at step 1, and the Neumann operator N preserves real analytic sec-
tions in a neighbourhood of U . The latter remains still valid with “convex”
replaced by “pseudoconvex” in an appropriate sense, cf. [Tar95a, 4.1.5]. As
the domain U is strictly convex, the subspace SA(U) is dense in SA(D). By
Corollary 4.13, the mapping J arranges a topological isomorphism of SA(U)
onto SA(U)′.

Example 4.16 Let X = Rn, n ≥ 3, U ⊂ Rn a ball, and A a Dirac operator
in Rn, cf. Example 3.5. It is proved in [Shl96] that there are systems {bν} and
{cµ} of (Ck -valued) homogeneous harmonic polynomials, such that

a) {bν} is an orthogonal basis in all spaces S(0)
A (Uε), ε ∈ R, simultaneously;

b) {bν} ∪ {cµ} is an orthogonal basis in all spaces S(0)
∆ (Uε), ε ∈ R, simulta-

neously.
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Property a) implies that condition 1) of Corollary 3.11 is satisfied. Moreover,

the projection π restricted to S(0)
∆ (Uε), ε > 0, coincides with the orthogonal

projection
S(0)

∆ (Uε)→ S(0)
A (Uε).

It follows that π maps S∆(U) continuously into SA(U). Hence Corollary 3.20
holds for A.

4.3 Grothendieck duality

Suppose U is an open subset of
◦

X with C∞ boundary, such that ∂X ∩ U = ∅
or ∂X ∩ U = ∂X. Set

Σ1 =
S∆(U)

H(X)
,

Σ2 =
{u ∈ S∆(X \ U) : t(u) = 0 on ∂X}

H(X)

and
V = S(m)

∆ (X \ U, ∂X)	H(X),

“	” meaning the orthogonal complement with respect to the scalar product
hX\U(·, ·).

For each [u] ∈ Σ2, we set
i2[v] = p(v)

where v is a representative of the class [v] and p(v) the orthogonal projection

of v to V in S(m)
∆ (X \ U, ∂X). If v1, v2 ∈ [v] then v1 − v2 ∈ H(X) whence

p(v1 − v2) = 0. It follows that the mapping i2 : Σ2 → V is well defined and
continuous, as is easy to check.

Further, for u ∈ V we set

i1u =
[
EX\U(u)

]
,

i.e., the equivalence class in Σ1 corresponding to the restriction of EX\U(u) to
U .

We are now in a position to extend the sesquilinear pairing hX\U(·, ·) from
V × V to Σ1 × Σ2. Namely, if [v] ∈ Σ2 then there exists a domain O ⊂⊂ U
with smooth boundary ∂O, such that v ∈ S∆(X \O) for all v ∈ [v]. Given any
[u] ∈ Σ1 and [v] ∈ Σ2, we set

h̃X\U ([u], [v]) = −
∫

∂O

G∆ (∗Ev, u) (4.12)

where u ∈ [u] and v ∈ [v].
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Lemma 4.17 As defined by (4.12), the pairing h̃X\U(·, ·) does not depend
on the choice of O and u ∈ [u], v ∈ [v]. Moreover, it is separately continuous,
and

h̃X\U(i1u, [v]) = hX\U(u, i2[v])

for all u ∈ V and [v] ∈ Σ2.

Proof. By Stokes’ formula, we get∫
∂O

G∆ (∗Ev, u) =

∫
O

(∆u, v)x dx−
∫

O

(u, ∆v)x dx

= 0

for all v ∈ H(X). Similarly,

−
∫

∂O

G∆ (∗Ev, u) =

∫
X\O

(∆u, v)x dx−
∫

X\O
(u, ∆v)x dx

= 0

for all u ∈ H(X). This means that h̃X\U(·, ·) does not depend on the choice of
u ∈ [u] and v ∈ [v].

Let O′ ⊂⊂ U be another domain with smooth boundary, such that ∆v = 0
near X \ O′ for all v ∈ [v]. Without loss of generality we can assume that
O ⊂⊂ O′. Then by Stokes‘ formula we get∫

∂O′
G∆ (∗Ev, u)−

∫
∂O

G∆ (∗Ev, u) =

∫
∂(O′\O)

G∆ (∗Ev, u)

= 0, (4.13)

for both u and v belong to S∆(O
′ \O). Thus, h̃X\U(·, ·) is independent of the

particular choice of O.
Obviously, h̃X\U(·, ·) is separately continuous if the spaces Σ1 and Σ2 are

endowed with canonical quotient topology.
Since any solution u ∈ V has finite order of growth near ∂U it follows from

(4.13) that

h̃X\U (i1u, [v]) = −
∫

∂O

G∆

(
∗Ev, EX\Uu

)
= −

∫
∂U

G∆

(
∗Ev, EX\Uu

)
= −

∫
∂U

(
(t(EX\Uu), n(Av))x − (n(AEX\Uu), t(v))x

)
ds

=

∫
∂U

(
(n(AEX\Uu), t(EX\Uv))x − (t(u), n(Av))x

)
ds

= hX\U(u, v)−
∫

X

(HEX\Uu, HEX\Uv)xdx

= hX\U(u, v),



70 A. Shlapunov and N. Tarkhanov

the last equality being a consequence of the fact that u⊥H(X) with respect
to hX\U(·, ·).

Finally, we obtain

hX\U(u, v) = hX\U(p(u), v)

= hX\U(u, p(v))

= hX\U (u, i2[v]) ,

showing the lemma.
�

We thus conclude that there is a mapping J : Σ2 → Σ′
1 induced by the

pairing h̃X\U(·, ·).

Theorem 4.18 The mapping

J :
{u ∈ S∆(X \ U) : t(u) = 0 on ∂X }

H(X)
→
(
S∆(U)

H(X)

)′
induced by (4.12) is a topological isomorphism of these spaces.

Proof. As p(u) = 0 implies u ∈ H(X) we see that i2 is one-to-one. Then
J is one-to-one, too (see Lemma 2.2).

Let us prove the surjectivity of J . To this end we pick a continuous linear
functional F on Σ1. Then F can be thought of as a functional on S∆(U)
vanishing on H(X).

Since S∆(U) is a subspace of Cloc(U,E), the space of continuous sections
of E over U , this functional can be extended, by the Hahn-Banach Theorem,
to an E∗ -valued measure m with compact support in U orthogonal to H(X).

Take a domain O′ ⊂⊂ U containing the support of m. Then for every
u ∈ S∆(U) and x ∈ O′ we have

u(x) = −
∫

∂O′
G∆(KG(x, ·), u) + H (χO′u) (x)

where G is the Hodge parametrix for the Dirichlet problem in X, cf. Section
2.4.

Hence

〈F , [u]〉 = −
∫

∂O′
G∆(∗Ev, u) (4.14)

with an element u ∈ [u], and

v(y) = ∗−1
E 〈dm, KG(·, y)〉

= G
(
∗−1

E dm
)
(y)
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for y away from the support of m.
Since G is a Hodge parametrix we see that t(v) = 0 on ∂X. Moreover, we

get

∆v = ∗−1
E dm−H

(
∗−1

E F
)

= ∗−1
E dm,

for F vanishes on H(X). It follows that ∆v = 0 in a neighbourhood of X \O′,
i.e., v determines an equivalence class [v] in Σ2. Obviously, we have J [v] = F ,
which proves the surjectivity of J .

Finally, the topological arguments are actually the same as those in Theo-
rem 4.4.

�

4.4 Duality in Sobolev spaces

¿From now on we will assume that the manifold X, the bundles E, F and the
coefficients of the operator A are real analytic.

Let U ⊂⊂ X be a domain with real analytic boundary. We introduce the
spaces of solutions

Σ1 =
S∆(U)

H(X)
,

Σ2 =
S∆(U)

H(X)

and
V = S(m)

∆ (U)	H(X),

‘	’ meaning the orthogonal complement in S(m)
∆ (U) with respect to the scalar

product hU(·, ·). We endow V with the scalar product hU(·, ·), thus making it
a Hilbert space.

For [u] ∈ Σ2, we set
EU [v] = [EU(u)]

with u a representative of [u]. Let us check that this definition does not depend
on the particular choice of u ∈ [u]. Indeed, it was proved in [NST98] (see the
proof of Corollary 4.1) that the mapping

EU : S∆(U)→ {u ∈ S∆(X \ U) : t(u) = 0 on ∂X }

is a topological isomorphism of the spaces. Therefore, we conclude that EU(u)
belongs to S∆(X \ U) and satisfies t(EU(u)) = 0 on ∂X. In particular, if
u ∈ H(X) then EU(u) = u and this gives us the independence on the choice of
u ∈ [u], as desired.
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As the space H(X) is finite dimensional we immediately obtain the follow-
ing lemma.

Lemma 4.19 The mapping

EU :
S∆(U)

H(X)
→ {u ∈ S∆(X \ U) : t(u) = 0 on ∂X }

H(X)

is a topological isomorphism of the spaces.

Of course, Lemma 4.19 and Theorem 4.18 already imply that the spaces Σ2

and Σ′
1 are topologically isomorphic. However, we want to derive an explicit

construction of this duality.
To this end, we set

i1 : V → Σ1,
i2 : Σ2 → V

to be the natural inclusions. They are obviously one-to-one and continuous.
We define an extension h̃U(·, ·) of hU(·, ·) as follows:

h̃U([u], [v]) = h̃X\U ([u], EU [v]) , (4.15)

cf. (3.11).

Lemma 4.20 As defined by (4.15), the pairing h̃U(·, ·) does not depend on
the choice of u ∈ [u] and v ∈ [v]. Moreover, it is separately continuous and
satisfies

h̃U (i1u, [v]) = hU (u, i2[v])

for all u ∈ V and [v] ∈ Σ2.

Proof. The pairing is independent of the choice of u ∈ [u] and v ∈ [v]
because so are the pairing h̃X\U and the mapping EU .

Moreover, from the definition of EU it follows that EX\UEU = 1 on S(m)
∆ (U).

Hence, by Lemma 4.17 we get

h̃U (i1u, [v]) = h̃X\U

(
i1EX\UEU(u), EU([v])

)
= hX\U

(
EX\UEU(u), i2EU([v])

)
= hU (u, i2[v]) ,

as desired. �
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Theorem 4.21 The mapping

J :
S∆(U)

H(X)
→
(S∆(U)

H(X)

)′
induced by (4.15) is a topological isomorphism of these spaces.

Proof. This follows from Lemma 4.19 and Theorem 4.18.
�

As we have a commutative diagram

S∆(U)

H(X)

i2
↪→ S(m)

∆ (U)	H(X)
i1
↪→ S∆(U)

H(X)
∪ ∪ ∪

SA(U)

H(X)

i2
↪→ S(m)

A (U)	H(X)
i1
↪→ SA(U)

H(X)

the pairing h̃U(·, ·) induces a continuous mapping

J :
SA(U)

H(X)
→
(
SA(U)

H(X)

)′
(4.16)

which is the restriction of J .
Denote by π the orthogonal projection

π : S(m)
∆ (U)	H(X)→ S(m)

A (U)	H(X).

Corollary 4.22 The mapping J is a topological isomorphism of the spaces
(4.16) if and only if

1) SA(U) is dense in SA(U);

2) π maps S∆(U) continuously into SA(U).

Proof. According to the general scheme we have

S1 =
SA(U)

H(X)
,

S2 =
SA(U)

H(X)
,

V = S(m)
A (U)	H(X),

hence the statement follows from Corollary 2.7.
�
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Example 4.23 Assume that A is a homogeneous determined elliptic op-
erator with constant coefficients of order m in X = Rn, with n > 2m, cf.
Example 3.12. As we have already seen in the latter example, the projection
π is given by

(Mu)(x) = −
∫

∂U

GA (KΦ(x− ·), u)

for any u ∈ Hm(U,E), where Φ is a fundamental solution of convolution type
for A.

If u ∈ S∆(Uε) ∩ Cm(U ε, E) with ε > 0 small enough, then by the Cauchy-
Kovalevskaya Theorem there exist a neighbourhood O of ∂U and a section
v ∈ Cm(O,E), such that {

Av = 0 in O,
t(v) = t(u) on ∂U.

By the definition of M , we get Mu = Mv in U . Then Stokes’ formula
yields

Mu (x) = v(x)−
∫

(∂O)∩U

GA (KΦ(x− ·), v)

for all x ∈ O ∩ U . The right-hand side of the latter equality uniquely extends
to a solution of Au = 0 in O. Hence we deduce that Mu ∈ SA(U ∪O).

Arguing as in the proof of Lemma 4.2 we see that O is actually independent
of u, but it depends on ε and ∂U . Moreover, for every u ∈ S∆(Uε)∩Cm(U ε, E)
we have

‖v‖Cm(O,E) ≤ C ‖u‖Cm(Uε,E)

with C > 0 a constant independent of u. Hence M maps S∆(U) continuously
into SA(U).

Example 4.24 Let A be a determined elliptic operator, as in Example
3.22. Then the condition 1) of Corollary 4.22 is fulfilled. Assume for simplicity
that H(X) = 0.

As we have seen in Example 3.22, π = I−TU (ATU)−1 A where the operator
(ATU)−1 is given by (3.14).

It is well known that the kernel of ΦA∗ is real analytic outside of the diagonal
{x = y}. Recall that ΦA∗ stands for a two-sided fundamental solution to the
operator A∗ near U . Hence it follows that the boundary integral in (3.14) is
real analytic in a neighbourhood O of U .

We thus conclude that (ATU)−1f is real analytic in O if f has the same
property.

If u ∈ S∆(U)∩C2m(U ε, E) with sufficiently small ε > 0, such that Uε ⊂⊂ O,
then (ATU)−1Au is real analytic in a neighbourhood of Uε.
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Let us see that TUf is real analytic in a neighbourhood of U if f is real
analytic in Uε.

By the Cauchy-Kovalevskaya Theorem there exist a neighbourhood O′ of
∂U and a section v ∈ Cm(O

′
, E), such that{
Av = f in O′,

t(v) = 0 on ∂U.

Then Stokes’ formula yields

TUf (x) = TU\O′f (x) + v(x)−
∫

(∂O′)∩U

GA (KGA∗(x, ·), v)

for all x ∈ O′ ∩ U .
By the definition of v, the right-hand side of the last equality uniquely

extends to O′ as a real analytic section. Therefore, the same conclusion is
valid for TUf .

Finally, arguing as in the proof of Lemma 4.2 one obtains that the neigh-
bourhood O′ does not depend on f but does on ε and ∂U . Moreover, for every
f ∈ Cm(U ε, E) real analytic in Uε, we get

‖v‖Cm(O
′
,E) ≤ C ‖f‖Cm(Uε,F )

with C > 0 a constant independent of f . Hence, the continuity of π follows
from the continuity of the operators A, TU , H, ΦA∗ and formula (3.14).

Example 4.25 Let X = Rn, n ≥ 3, U be a ball in Rn, and A a Dirac
operator in Rn (cf. Example 3.5). In [Shl96] it is proved that there are systems
{bν} and {cµ} of homogeneous harmonic polynomials with values in Ck, such
that

a) {bν} is an orthogonal basis in all spaces S(1)
A (Uε), where ε ∈ R, simulta-

neously;

b) {bν} ∪ {cµ} is an orthogonal basis in all spaces S(1)
∆ (Uε), ε ∈ R, simulta-

neously.

Property a) implies that condition 1) of Corollary 4.22 is satisfied. Moreover,

the projection π restricted to S(1)
∆ (Uε), ε > 0, coincides with the orthogonal

projection
S(1)

∆ (Uε)→ S(1)
A (Uε).

It follows that π maps S∆(U) continuously into SA(U). Hence Corollary 4.22
is valid for A.
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