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Abstract

We consider a Sturm-Liouville boundary value problem in a bounded domain D of Rn. By this
is meant that the differential equation is given by a second order elliptic operator of divergent
form in D and the boundary conditions are of Robin type on ∂D. The first order term of the
boundary operator is the oblique derivative whose coefficients bear discontinuities of the first
kind. Applying the method of weak perturbation of compact selfadjoint operators and the method
of rays of minimal growth, we prove the completeness of root functions related to the boundary
value problem in Lebesgue and Sobolev spaces of various types.
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Introduction

The Hilbert space methods take considerable part in the modern theory of partial differential
equations. In particular, the spectral theorem for compact selfadjoint operators attributed to
Hilbert and Schmidt allows one to look for solutions of boundary value problems for formally
selfadjoint operators in the form of expansions over eigenfunctions of the operator.

Non-selfadjoint compact operators fail to have eigenvectors in general. Keldysh [Kel51] (see
also [Kel71] and [GK69, Ch. 5, §8] for more details) elaborated expansions over root functions
for weak perturbations of compact selfadjoint operators. In particular, he applied successfully the
theorem on the completeness of root functions to the Dirichlet problem for second order elliptic
operators in divergent form.
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The problem of completeness of the system of eigen- and associated functions of boundary
value problems for elliptic operators in domains with smooth boundary was studied in many ar-
ticles (see for instance [Bro53], [Bro59a], [Bro59b], [Agm62], [Kon99]). In a series of papers
[Agr94a], [Agr94b], [Agr08], [Agr11b], [Agr11c], including two surveys [Agr02] and [Agr11a],
Agranovich proved the completeness of root functions for a wide class of boundary value prob-
lems for second order elliptic equations with boundary conditions of the Dirichlet, Neumann
and Zaremba type in standard Sobolev spaces over domains with Lipschitz boundary. Note that
the class of Lipschitz surfaces does not include surfaces with general conical points, as they are
introduced in analysis on singular spaces.

Root functions of general elliptic boundary value problems in weighted Sobolev spaces over
domains with conic and edge type singularities on the boundary were studied in [EKS01] and
[Tar06]. These papers used estimates of the resolvent of compact operators and the so-called
rays of minimal growth. In order to realize fully to what extent the completeness criteria of
[EKS01] and [Tar06] are efficient, we dwell on the concept of ellipticity on a compact manifold
with smooth edges on the boundary. Such a singular space X has three smooth strata, more
precisely, the interior part X0 of X, the smooth part X1 of the boundary and the edge X2 which
is assumed to be a compact closed manifold. Pseudodifferential operators on X are (3 × 3) -
matrices A whose entries Ai, j are operators mapping functions on X j to functions on Xi. To
each operator A one assigns a principal symbol σ(A) := (σ0(A), σ1(A), σ2(A)) in such a way
that σ(A) = 0 if and only if A is compact, and σ(BA) = σ(B)σ(A) for all operators A
and B whose composition is well defined. The components σi(A) of the principal symbol are
functions on the cotangent bundles of Xi with values in operator spaces. They are smooth away
from zero sections of the bundles and bear certain twisted homogeneity as operator families. An
operator A is called elliptic if its principal symbol is invertible away from the zero sections of
cotangent bundles. The invertibility of σ0(A) just amounts to the ellipticity of A in the interior
of X. The invertibility of σ1(A) is equivalent to the Shapiro-Lopatinskii condition on the smooth
part of ∂X. The invertibility of σ2(A) constitutes the most difficult problem, for this operator
family is considered in weighted Sobolev spaces on an infinite cone. An operatorA proves to be
Fredholm if and only if it is elliptic. However, from what has been said it follows that there is no
efficient criteria of ellipticity on compact manifolds with edges on the boundary. In general these
techniques allow one to derive at most the following result. Consider a classical boundary value
problem on X satisfying the Shapiro-Lopatinskii condition away from the edge X2. It is actually
given by a column of operators Ai,0 with i = 0, 1, where A0,0 is an elliptic differential operator in
X0 and A1,0 a differential operator nearX1 followed by restriction toX1. We complete the column
to a (2×2) -matrix A by setting A0,1 = 0 and A1,1 = 0. The Shapiro-Lopatinskii condition implies
that σ2(A)(y, η) is a family of Fredholm operators on the unit sphere in T ∗X2. Hence we can set
σ2(A)(y, η) in the frame of a (3× 3) -matrix a(y, η) on the unit sphere of T ∗X2 which is moreover
invertible. A distinct quantisation procedure leads then immediately to a Fredholm operator of
the type  A0,0 A0,2

A1,0 A1,2
A2,0 A2,2

 :
C∞(X)
⊕

C∞(X2,Cl1 )
→

C∞(X)
⊕

C∞(∂X,Cm)
⊕

C∞(X2,Cl2 )

, (0.1)

where l1 and l2 are non-negative integers. However, the Fredholm property of (0.1) elucidates by
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no means the original problem {
A0,0u = f in X0,
A1,0u = u0 on X1,

unless X2 is of dimension 0. Thus, operator-valued symbols make the condition of ellipticity
ineffective.

In the present paper we study the completeness of root functions for the Sturm-Liouville
boundary value problems for second order elliptic operators in divergent form with Robin type
boundary conditions containing oblique derivative with discontinuous coefficients. The discon-
tinuities are of first kind along a smooth hypersurface on the boundary of D. This hypersurface
can be thought of as edge on the boundary, hence we are within the framework of analysis on
compact manifolds with edges of codimension 1 on the boundary. The theory of [Tar06] applies
in this situation provided that one is able to establish the invertibility of the edge symbol, and
this is not an easy task.

Precisely, our contribution consists in considering non-coercive forms. Indeed, a Hermitian
form associated with a second order elliptic formally selfadjoint operator A is usually constructed
through a factorization A = C∗C with an overdetermined elliptic first order operator C and its
formal adjoint C∗. According to [SKK73], microlocally any first order operator C with complex-
valued coefficients can be presented via the Lewy operator or the gradient operator or the mul-
tidimensional Cauchy-Riemann operator. The Lewy-type operators go beyond elliptic theory,
the holonomic operators like the gradient lead to coercive mixed problems related to A, and
the Cauchy-Riemann type operators generate non-coercive boundary conditions. Thus, it is not
fortuitous that non-coercive boundary value problems for elliptic differential operators attract
attention of mathematicians since the middle of the 20 th century (see for instance [ADN59],
[KN65]). One of the typical problems of this type is the famous ∂-Neumann problem for the
Dolbeault complex, and its boundary conditions involve exactly the multidimensional Cauchy-
Riemann operator (see [Koh79]). The investigation of the problem resulted in the discovery of
the subellipticity phenomenon which greatly influenced the development of the theory of partial
differential equations (cf. [Hör66]). To the best of our knowledge, there are no advanced re-
sults on the completeness of root functions related to non-coercive problems. However, the use
of non-coercive forms enlarges essentially the class of those boundary conditions for which the
root functions of corresponding mixed problems are dense in L2. The enlargement allows one
to perturb the boundary conditions by diverse tangential vector fields. In general, we lose on
regularity of solutions, however, this gap is well motivated by the nature of problems.

1. Weak perturbations of compact selfadjoint operators

Let H be a separable (complex) Hilbert space and A : H → H a linear operator. As usual,
λ ∈ C is said to be an eigenvalue of A if there is a non-zero element u ∈ H, such that (A−λI)u = 0,
where I is the identity operator in H. The element u is called an eigenvector of A corresponding
to the eigenvalue λ. When supplemented with the zero element, all eigenvectors corresponding to
an eigenvalue λ form a vector subspace E(λ) in H. It is called an eigenspace of A corresponding
to λ, and the dimension of E(λ) is called the (geometric) multiplicity of λ. The famous spectral
theorem of Hilbert and Schmidt asserts that the system of eigenvectors of a compact selfadjoint
operator in H is complete.
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Theorem 1.1. Let A : H → H be compact and selfadjoint. Then all eigenvalues of A are real,
each non-zero eigenvalue has finite multiplicity, and the system of all eigenvalues counted with
their multiplicities is countable and has the only accumulation point λ = 0. Moreover, there is
an orthonormal basis in H consisting of eigenvectors of A.

As already mentioned, a non-selfadjoint compact operator might have no eigenvalues. How-
ever, each non-zero eigenvalue (if exists) is of finite multiplicity, see for instance [DS63]. Simi-
larly to the Jordan normal form of a linear operator on a finite-dimensional vector space one uses
the more general concept of root functions of operators.

More precisely, an element u ∈ H is called a root vector of A corresponding to an eigenvalue
λ ∈ C if (A−λI)mu = 0 for some natural number m. The set of all root vectors corresponding to an
eigenvalue λ form a vector subspace in H whose dimension is called the (algebraic) multiplicity
of λ.

If the linear span of the set of all root elements is dense in H one says that the root elements of
A are complete in H. Aside from selfadjoint operators, the question arises under what conditions
on a compact operator A the system of its root elements is complete.

If the dimension of H is finite then the completeness is equivalent to the possibility of reduc-
ing the matrix A to the Jordan normal form. Of course, this is always the case for linear operators
in complex vector spaces, see for instance [VdW67, § 88].

In order to formulate the simplest completeness result for Hilbert spaces we need the defini-
tion of the order of a compact operator A. Since A : H → H is compact, the operator A∗A is com-
pact, selfadjoint and non-negative. Hence it follows that A∗A possesses a unique non-negative
selfadjoint compact square root (A∗A)1/2 often denoted by |A|. By Theorem 1.1 the operator |A|
has countable system of non-negative eigenvalues sν(A) which are called the s -numbers of A. It
is clear that if A is selfadjoint then sν = |λν|, where {λν} is the system of eigenvalues of A.

Definition 1.2. The operator A is said to belong to the Schatten class Sp, with 0 < p < ∞, if∑
ν

|sν(A)|p < ∞.

Note that S2 is the set of all Hilbert-Schmidt operators while S1 is the ideal of all trace class
operators.

The following lemma will be very useful in the sequel; it is taken from [DS63] (see also
[GK69, Ch. 2, § 2]).

Lemma 1.3. Let A be a compact operator of class Sp, with 0 < p < ∞, in a Hilbert space H,
and B be a bounded operator in H. Then the compositions BA and AB belong to Sp.

After M.V. Keldysh a compact operator A is said to be of finite order if it belongs to a Schatten
class Sp. The infinum of such numbers p is called the order of A. The following result is usually
referred to as theorem on weak perturbations of compact selfadjoint operators. It was first proved
in [Kel51], see also [Kel71]. Here we present its formulation from [GK69, Ch. 5, § 8].

Theorem 1.4. Let A0 be a compact selfadjoint operator of finite order in H. If δA is a compact
operator and the operator A0(I + δA) is injective, then the system of root elements of A0(I + δA)
is complete in H and, for any ε > 0, all eigenvalues of A0(I + δA) (except for a finite number)
belong to the angles | arg λ| < ε and | arg λ − π| < ε. Moreover,

1) If A0 has only a finite number of negative eigenvalues, then A0(I + δA) has at most a finite
number of eigenvalues in the angle | arg λ − π| < ε.
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2) If A0 has only a finite number of positive eigenvalues, then A0(I + δA) has at most a finite
number of eigenvalues in the angle | arg λ| < ε.

As is easy to see, both operators A0(I + δA) and A0 are in fact injective under the hypothesis
of Theorem 1.4.

2. The Sturm-Liouville problem

By a Sturm-Liouville problem in a domain in Rn we mean any boundary value problem for
solutions of second order elliptic partial differential equation with Robin-type boundary condi-
tion. The coefficients of the Robin boundary condition are allowed to have discontinuities of the
first kind, and so mixed boundary conditions are included as well.

Let D be a bounded domain in Rn with Lipschitz boundary, i.e., the surface ∂D is locally
the graph of a Lipschitz function. In particular, the boundary ∂D possesses a tangent hyperplane
almost everywhere.

We consider complex-valued functions defined in the domain D and its closure D. For
1 ≤ q ≤ ∞, we write Lq(D) for the space of all measurable functions u in D, such that the
integral of |u|q overD is finite. Assume s is a non-negative integer. For functions u ∈ C∞(D) we
introduce the norm

‖u‖Hs(D) =

( ∫
D

∑
|α|≤s

|∂αu|2 dx
)1/2

,

where ∂α = ∂α1
1 · · · ∂

αn
n for a multi-index α = (α1, . . . αn), and ∂ j = ∂/∂x j. The completion of

the space C∞(D) with respect to this norm is the Banach space Hs(D). It is convenient to set
H0(D) := L2(D). Then Hs(D) is a Hilbert space with scalar product

(u, v)Hs(D) =

∫
D

∑
|α|≤s

∂αu∂αv dx,

u, v ∈ Hs(D).
For a positive non-integer s, we introduce the Sobolev-Slobodetskii space Hs(D) in the same

way as the completion of C∞(D) with respect to the norm

‖u‖Hs(D) =

(
‖u‖2H[s](D) +

∫∫
D×D

∑
|α|=[s]

|∂αu(x) − ∂αu(y)|2

|x − y|n+2(s−[s]) dxdy
)1/2

,

where [s] is the integer part of s.
We consider a second order partial differential operator A in the domain D of divergence

form

A(x, ∂)u = −

n∑
i, j=1

∂i(ai, j(x)∂ ju) +

n∑
j=1

a j(x)∂ ju + a0(x)u,

the coefficients ai, j, a j and a0 being bounded functions inD. We emphasize that the coefficients
are allowed to take on complex values, too.

Let ϑ(x) = (ϑ1(x), . . . , ϑn(x)) be a vector field on the surface ∂D taking on its values in Cn.
Denote by ∂ϑ the oblique derivative

∂ϑ =

n∑
j=1

ϑ j(x)∂ j (2.1)
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and introduce a first order boundary operator B(x, ∂)=∂ϑ+b0(x). The coefficients ϑ1(x),. . . ,ϑn(x)
and b0(x) are assumed to be bounded measurable functions on ∂D. We allow the vector ϑ(x) to
vanish on an open connected subset S of ∂D with piecewise smooth boundary ∂S . In this case
we assume that b0(x) does not vanish on S .

Consider the following boundary value problem with Robin-type condition on the surface
∂D. Given a distribution f inD, find a distribution u inD which satisfies{

Au = f in D,
Bu = 0 on ∂D.

(2.2)

In order to get asymptotic results, it is necessary to put some restrictions on the operators A and
B. Suppose that, for each x ∈ D, the matrix(

ai, j(x)
)

i=1,...,n
j=1,...,n

is non-negative semi-definite, i.e. it is Hermitian and

n∑
i, j=1

ai, j(x)wiw j ≥ 0 (2.3)

for every choice of complex numbers w1, . . . ,wn. Such operators A are elliptic although in gen-
eral elliptic operators may not be non-negative. We make a stronger condition on the ellipticity,
namely, there is a constant m > 0 such that

n∑
i, j=1

ai, j(x)ξiξ j ≥ m |ξ|2 (2.4)

for all (x, ξ) ∈ D × (Rn \ {0}). Estimate (2.4) is nothing but the statement that the operator
A is strongly elliptic. Note that conditions (2.3), (2.4) are weaker than the coercivity, i.e., the
existence of a constant m such that

n∑
i, j=1

ai, j(x) ∂iu∂ ju ≥ m
n∑

j=1

|∂ ju|2 (2.5)

for all u ∈ C∞(D), because u may take on complex values. In §5 we indicate a typical example
where both (2.3) and (2.4) are fulfilled while (2.5) fails to be true.

If the coefficients ai, j are continuous up to the boundary ofD, we consider the complex vector
field c(x) on ∂D with components

c j(x) =

n∑
i=1

ai, j(x)νi(x),

where ν(x) = (ν1(x), . . . , νn(x)) is the unit outward normal vector of ∂D at x ∈ ∂D. From con-
dition (2.4) it follows that there are a complex-valued function b1(x) ∈ L∞(∂D) and a tangential
vector field t(x) on ∂D whose components belong to L∞(∂D), such that

B(x, ∂) = b1(x)∂c + ∂t + b0(x), (2.6)
6



where ∂c is the oblique derivative related to the field c (see (2.1)). By assumption, both b1 and
t vanish on S . Concerning the behavior of b1 in the complement of S we require that b1(x) , 0
for almost all x ∈ ∂D \ S and 1/b1 ∈ L1(∂D \ S ). Note that in this way the Shapiro-Lopatinskii
condition may be violated on the smooth part of ∂D\S unless the coefficients ai, j are real-valued
functions.

However we need not assume the continuity of the coefficients ai, j up to the boundary of D
in the course of the paper, because for our purposes it is more natural to understand the boundary
conditions in a weak sense. Let us be more precise.

Denote by H1(D, S ) the subspace of H1(D) consisting of those functions whose restriction
to the boundary vanishes on S . This space is Hilbert under the induced norm. Furthermore, let
C1

comp(D \ S ) stand for the set of all smooth functions on D vanishing in a neighborhood of S . It
is easily seen that C1

comp(D \ S ) is dense in H1(D, S ). Since on S the boundary operator reduces
to B = b0 and b0(x) , 0 for x ∈ S , the functions of H1(D) satisfying Bu = 0 on ∂D belong to
H1(D, S ).

As we want to study perturbation of selfadjoint operators we split both a0 and b0 into two
parts

a0 = a0,0 + δa0,
b0 = b0,0 + δb0,

where a0,0 is a non-negative bounded function inD and b0,0 a bounded function on ∂D satisfying
b0,0/b1 ≥ 0. If the functional

‖u‖SL =

( ∫
D

n∑
i, j=1

ai, j∂iu∂ ju dx + ‖
√

a0,0u‖2L2(D) + ‖

√
b0,0b−1

1 u‖2L2(∂D\S )

)1/2

defines a norm on H1(D, S ), we denote by HSL(D) the completion of H1(D, S ) with respect to
this norm. Then HSL(D) is actually a Hilbert space with scalar product

(u, v)SL =

∫
D

n∑
i, j=1

ai, j∂ ju∂iv dx + (a0,0u, v)L2(D) + (b0,0b−1
1 u, v)L2(∂D\S ).

From now on we assume that the space HSL(D) is continuously embedded into the Lebesgue
space L2(D), i.e.,

‖u‖L2(D) ≤ c ‖u‖SL (2.7)

for all u ∈ HSL(D), where c is a constant independent of u. This condition is not particularly
restrictive. Of course, it is true if there is a positive constant c1, such that

a0,0 ≥ c1 (2.8)

inD.
In any case, if the coefficients ai, j are continuous inD∪S then the functions of HSL(D) belong

actually to H1
loc(D∪S ) because of the classical Gårding inequality for strongly elliptic equations.

In particular, if S = ∂D then HSL(D) is continuously embedded into H1(D, ∂D) = H1
0(D). As

this situation corresponds to the well-studied Dirichlet problem, we will be mostly focus upon
the case S , ∂D.

Let us describe two typical embeddings for the space HSL(D), either of them implying an
estimate (2.7). To this end, denote by ι the inclusion

HSL(D) ↪→ L2(D), (2.9)
7



which is continuous by (2.7).
We use inclusion (2.9) to specify the dual space of HSL(D) via the pairing in L2(D). More

precisely, let H−SL(D) be the completion of H1(D, S ) with respect to the norm

‖u‖H−SL(D) = sup
v∈H1(D,S )

v,0

|(v, u)L2(D)|

‖v‖SL
,

cf. [Sch60].

Remark 2.1. As H1(D, S ) is dense in HSL(D) and the norm ‖ ·‖SL majorizes ‖ ·‖L2(D) we conclude
that

‖u‖H−SL(D) = sup
v∈HSL (D)

v,0

|(v, u)L2(D)|

‖v‖SL
.

The following two lemmas are well known (see for instance [Sch60, § 3]).

Lemma 2.2. The space L2(D) is continuously embedded into H−SL(D). If inclusion (2.9) is com-
pact then the space L2(D) is compactly embedded into H−SL(D).

Since C∞comp(D) is dense in L2(D) and the norm ‖ · ‖L2(D) majorizes the norm ‖ · ‖H−SL(D), we
conclude that, under (2.7), the space C∞comp(D) is dense in H−SL(D), too.

Lemma 2.3. The Banach space H−SL(D) is topologically isomorphic to the dual space HSL(D)′

and the isomorphism is defined by the sesquilinear form

(v, u) = lim
ν→∞

(v, uν)L2(D) (2.10)

for u ∈ H−SL(D) and v ∈ HSL(D) where {uν} is any sequence in H1(D, S ) converging to u.

That is, for every fixed u ∈ H−SL(D), pairing (2.10) defines a continuous linear functional fu
on HSL(D) and, for each f ∈ HSL(D)′, there is a unique u ∈ H−SL(D) with f (v) = fu(v) for all
v ∈ HSL(D). Moreover, the conjugate linear map u 7→ fu is an isometry.

Note that HSL(D) is reflexive, since it is a Hilbert space. Hence it follows immediately that
(H−SL(D))′ = HSL(D), i.e., the spaces HSL(D) and H−SL(D) are dual to each other with respect to
(2.10).

Now, for s < 0, the space Hs(D) is defined to be the dual space of H−s(D) with respect to
the L2(D) -pairing, as discussed above.

As it is to be expected, the strongest embeddings of HSL(D) are reachable in the coercive
case.

Lemma 2.4. Suppose estimate (2.5) is fulfilled. Then there are continuous embeddings

HSL(D) ↪→ H1(D, S ),
H−1(D) ↪→ H−SL(D)

if at least one of the following conditions holds:

1) S is not empty; 2)
∫
D

a0,0(x)dx > 0; 3)
∫
∂D\S

b0,0(x)
b1(x)

ds > 0.

In particular, in either of the cases inclusion (2.9) is compact, which is due to the Rellich-
Kondrashov theorem.
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Proof. The proof is standard, cf. for instance [Mik76, Ch. 3, § 5.6].

The study of non-coercive boundary conditions includes essentially weaker embeddings of
the space HSL(D).

Theorem 2.5. Let the coefficients ai, j be C∞ in a neighborhood of the closure ofD and

b0,0

b1
≥ c2 (2.11)

at ∂D \ S , with some constant c2 > 0. Then the space HSL(D) is continuously embedded into
H1/2−ε(D) for any ε > 0 if (2.8) is fulfilled or the operator A is strongly elliptic in a neighbour-
hood X ofD and ∫

X

n∑
i, j=1

ai, j∂ ju∂iu dx ≥ m ‖u‖2L2(X) (2.12)

for all u ∈ C∞comp(X), with m > 0 a constant independent of u.

In particular, under the hypotheses of Theorem 2.5, the inclusion ι is compact.

Proof. Without loss of generality we may assume that X is a domain with smooth boundary and
the coefficients ai, j are smooth in X. As the operator

A0 = −

n∑
i, j=1

∂i(ai, j∂ j)

is strongly elliptic onX, the classical Gårding inequality yields the existence of a Hodge parametr-
ix G for the Dirichlet problem related to A0 in X (see for instance [LU73] or [Sch60]). To for-
mulate this more precisely, we define H̃−1(X) to be the dual space of H1

0(X) with respect to the
L2(X) -pairing, as discussed above. Clearly, H−1(X) is continuously embedded into H̃−1(X). As
usual, the operator A0 is given the domain H1

0(X) to map it to H̃−1(X). Then there are bounded
linear operators

G : H̃−1(X) → H1
0(X),

H : H̃−1(X) → H(X)

satisfying
GA0 = I −H ,
A0G = I −H

on H1
0(X) and H̃−1(X), respectively, where H(X) ⊂ H1

0(X) ∩ C∞(X) stands for the null-space
of the Dirichlet problem in X. The dimension of H(X) is finite and H is actually the L2(X) -
orthogonal projection onto H(X). Moreover, H maps H̃−1(X) continuously to C∞(X) for all
s ≥ −1.

Denote by e+ the operator of extension by zero from D to X, and by r+ the restriction from
X to the domain D. Obviously, e+ is a bounded linear operator from L2(D) to L2(X) and r+

a bounded linear operator from Hs(X) to Hs(D), for any s ∈ R. As the coefficients ai, j are
smooth in the closure of X, we deduce that any solution u ∈ H1

0(X) of the Dirichlet problem with
A0u ∈ L2(X) belongs actually to H2(X). Hence, on setting GD = r+Ge+ and HD = r+He+ we
get bounded operators

GD : L2(D) → H2(D),
HD : L2(D) → C∞(D).
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For s ≥ 0, any element u ∈ H−s(D) extends to an element U ∈ H−s(X) via

〈U, v〉X = 〈u, r+v〉D

for all v ∈ Hs(X). Here, we use 〈·, ·〉X to designate the pairing of dual spaces of distributions
in X. It will cause no confusion if we write e+u for this extension U, for the support of U is
still contained in D. Obviously, the extension operator e+ defined in this way maps H−s(D)
continuously to H−s(X) for all real s ≥ 0. Using now the continuity properties of pseudodifferen-
tial operators on compact closed manifolds we deduce that both GD and HD extend to bounded
linear operators

GD : H−1/2+ε(D) → H3/2+ε(D),
HD : H−1/2+ε(D) → C∞(D)

for any 0 < ε ≤ 1/2. Hence, the operators

∂ j GD : H−1/2+ε(D) → H1/2+ε(D),
∂c GD : H−1/2+ε(D) → Hε(∂D)

are bounded, too, if 0 < ε ≤ 1/2, the continuity of the latter operator is a consequence of the trace
theorem for Sobolev-Slobodetskii spaces. For ε = 0 the arguments fail because the elements of
H1/2(D) need not have any traces on ∂D.

Clearly, H ≡ 0 if (2.12) is fulfilled. On the other hand, if condition (2.8) holds true then
HSL(D) is continuously embedded into L2(D). Hence the norm ‖ · ‖SL is not weaker than the
norm ‖ · ‖a on H1(D, S ) defined by

‖u‖a =

( ∫
D

n∑
i, j=1

ai, j∂ ju∂iu dx + ‖u‖2L2(∂D\S ) + ‖He+u‖2L2(X)

)1/2
.

Pick a real number ε > 0. Let us show that the norm ‖ · ‖a is not weaker than the norm ‖ · ‖H1/2−ε(D)
on H1(D, S ).

As the coefficients ai, j(x) are smooth up to the boundary ofD, the Stokes formula yields∫
∂D

v∂cu ds =

∫
D

n∑
i, j=1

(
ai, j∂iv∂ ju + v∂i(ai, j∂ ju

)
dx. (2.13)

Hence it follows that

(v, u)L2(D) = (HDv + A0GDv, u)L2(D)

= (HDv, u)L2(D) +

∫
D

n∑
i, j=1

ai, j∂ j(GDv)∂iu dx + (∂c(GDv), u)L2(∂D\S )

for all u ∈ H1(D, S ) and v ∈ L2(D).
Let now v ∈ Hε−1/2(D), where 0 < ε < 1/2. Take a sequence {vk} in C∞(D) converging to v

in the space Hε−1/2(D). Using the above formula and the continuity of operatorsHD, ∂ jGD and
∂cGD, we get

(v, u) = lim
k→+∞

(vk, u)L2(D) = (HDv, u)L2(D) +

∫
D

n∑
i, j=1

ai, j∂ j(GDv)∂iu dx + (∂c(GDv), u)L2(∂D\S )
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for all u ∈ H1(D, S ). As the space Hs(D) is reflexive for each s, it follows that

‖u‖H1/2−ε(D) = sup
v∈H−1/2+ε (D)

v,0

|(v, u)|
‖v‖H−1/2+ε(D)

= sup
v∈H−1/2+ε (D)

v,0

∣∣∣∣(HDv, u)L2(D) +

∫
D

n∑
i, j=1

ai, j∂ j(GDv)∂iu dx + (∂c(GDv), u)L2(∂D\S )

∣∣∣∣
‖v‖H−1/2+ε(D)

(2.14)

for all u ∈ H1(D, S ). AsH is an L2(X) -orthogonal projection, we obtain

|(HDv, u)L2(D) = |(He+v, e+u)L2(X)|

= |(H2e+v, e+u)L2(X)|

≤ c1 ‖v‖H−1/2+ε(D)‖He+u‖L2(X)

(2.15)

and
|(∂c(GDv), u)L2(∂D\S )| ≤ c2 ‖v‖H−1/2+ε(D)‖u‖L2(∂D\S ) (2.16)

for all v ∈ H−1/2+ε(D) and u ∈ H1(D, S ), with c1 and c2 positive constants independent of u and
v. Finally, using the generalized Cauchy inequality we see that∣∣∣∣ ∫

D

n∑
i, j=1

ai, j∂ j(GDv)∂iu dx
∣∣∣∣ ≤ c

( ∫
D

n∑
i, j=1

ai, j∂ ju∂iu dx
)1/2
‖v‖H−1/2+ε(D) (2.17)

with constant c =

( n∑
i, j=1

sup
x∈D
|ai, j(x)| ‖∂iGD‖ ‖∂ jGD‖

)1/2
.

On combining the estimates (2.14), (2.15), (2.16) and (2.17) we deduce readily that there are
constants C1 > 0 and C2 > 0, such that

‖u‖H1/2−ε(D) ≤ C1 ‖u‖a ≤ C2 ‖u‖SL

for all u ∈ H1(D, S ). This proves the continuous embedding HSL(D) ↪→ H1/2−ε(D) with any
ε > 0, as desired.

Actually condition (2.12) of Theorem 2.5 is much weaker than the coercive estimate of (2.5).
It is fulfilled if, for instance, the diameter of the domain D is sufficiently small or if the coeffi-
cients ai, j are real analytic in X. We also note that for non-coercive boundary value problems the
embedding described in Theorem 2.5 is rather sharp, see Remark 5.1 below.

We now proceed to study the Sturm-Liouville problem. If the coefficients ai, j are continuous
up to the boundary ofD then, integrating by parts with the use of (2.13), we see that

(Au, v)L2(D) =

∫
D

n∑
i, j=1

ai, j∂iv∂ ju dx +
(
b−1

1 (∂t + b0)u, v
)

L2(∂D\S )
+

( n∑
j=1

a j∂ ju + a0u, v
)

L2(D)
(2.18)
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for all u ∈ H2(D) and v ∈ H1(D) satisfying the boundary condition of (2.2). This identity
suggests to generalize the setting for the case of bounded coefficients ai, j ∈ L∞(D). Namely,
from now on we assume that∣∣∣∣ (b−1

1 (∂t + δb0)u, v
)

L2(∂D\S )
+

( n∑
j=1

a j∂ ju + δa0 u, v
)

L2(D)

∣∣∣∣ ≤ c ‖u‖SL‖v‖SL (2.19)

for all u, v ∈ H1(D, S ), where c is a positive constant independent of u and v. In Sections 5 and
6 we provide explicit conditions for estimate (2.19) to hold.

Then, for each fixed u ∈ HSL(D), the sesquilinear form

Q(u, v) :=
∫
D

n∑
i, j=1

ai, j∂iv∂ ju dx +
(
b−1

1 (∂t + b0)u, v
)

L2(∂D\S )
+

( n∑
j=1

a j∂ ju + a0u, v
)

L2(D)

determines a continuous linear functional f on HSL(D) by f (v) := Q(u, v) for v ∈ HSL(D). By
Lemma 2.3, there is a unique element in H−SL(D), which we denote by Lu, such that

f (v) = (v, Lu)

for all v ∈ HSL(D). We have thus defined a linear operator L : HSL(D) → H−SL(D). From (2.19)
it follows that L is bounded.

The bounded linear operator L0 : HSL(D) → H−SL(D) defined in the same way via the
sesquilinear form (·, ·)SL, i.e.,

(v, u)SL = (v, L0u) (2.20)

for all u, v ∈ HSL(D), corresponds to the case a j ≡ 0 for all j = 1, . . . , n, a0 = a0,0, and t ≡ 0,
b0 = b0,0.

We are thus lead to a weak formulation of problem (2.2). Given f ∈ H−SL(D), find u ∈ HSL(D),
such that

Q(u, v) = (v, f ) (2.21)

for all v ∈ HSL(D).
Thus, under conditions (2.7) and (2.19), there is no need to assume the continuity of the

coefficients ai, j up to the boundary ofD in order to introduce the operator L and weak formulation
of problem (2.2). Now one can handle problem (2.21) by standard techniques of functional
analysis, see for instance [LU73, Ch. 3, §§ 4-6]) for the coercive case.

Lemma 2.6. Let estimate (2.7) hold true. Assume that a j ≡ 0 for all j = 1, . . . , n, δa0 = 0, and
t ≡ 0, δb0 = 0. Then for each f ∈ H−SL(D) there is a unique solution u ∈ HSL(D) to problem
(2.21), i.e., the operator L0 : HSL(D)→ H−SL(D) is continuously invertible. Moreover,

‖L0u‖H−SL(D) = ‖u‖SL (2.22)

for all u ∈ HSL(D), i.e. the norms of both L0 and its inverse L−1
0 just amount to 1.

Proof. The lemma follows readily from the Riesz theorem on the general form of continuous
linear functionals on a Hilbert space.
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We emphasize that the space H−SL(D) could be first introduced as the dual to HSL(D) without
specifying explicit pairing. However, the duality of Lemma 2.3 provides the direct connection
between the weak formulation (2.21) of the mixed problem and the integration by parts formula
(2.18).

Consider the sesquilinear form on H−SL(D) given by

(u, v)H−SL(D) := (L−1
0 u, v)

for u, v ∈ H−SL(D). Since

(L−1
0 u, v) = (L−1

0 u, L0L−1
0 v) = (L−1

0 u, L−1
0 v)SL (2.23)

for all u, v ∈ H−SL(D), the last equality being due to (2.20), this form is Hermitian. Combining
(2.22) and (2.23) yields √

(u, u)H−SL(D) = ‖u‖H−SL(D)

for all u ∈ H−SL(D). From now on we endow the space H−SL(D) with the scalar product (·, ·)H−SL(D).

Lemma 2.7. Let estimates (2.7) and (2.19) be fulfilled. If moreover the constant c of (2.19)
satisfies c < 1 then, for each f ∈ H−SL(D), there exists a unique solution u ∈ HSL(D) to problem
(2.21), i.e., the operator L : HSL(D)→ H−SL(D) is continuously invertible.

In Sections 5 and 6 we will obtain estimates for the constant c of (2.19) under reasonable
assumptions. The estimates will depend upon the data S and ai, j, a j, b j of the problem.

Since C∞comp(D) ↪→ HSL(D) ↪→ L2(D), the elements of H−SL(D) are distributions inD and any
solution to problem (2.2) satisfies Au = f inD in the sense of distributions. Though the boundary
conditions are interpreted in a weak sense, they agree with those in terms of restrictions to ∂D
if the solution is sufficiently smooth up to the boundary, e.g. belongs to C1(D). Suppose for
instance that the coefficients ai, j are smooth in D and f ∈ L2(D). Since A is elliptic, we deduce
readily that u ∈ H2

loc(D) and the equality Au = f is actually satisfied almost everywhere inD. If,
in addition, u ∈ H2(D) then (

(∂c + b−1
1 (∂t + b0))u, v

)
L2(∂D\S )

= 0

for all v ∈ HSL(D). As any smooth function v in D whose support does not meet S belongs to
HSL(D), we conclude that (b1∂c + ∂t + b0)u = 0 on ∂D \ S . Hence, in this case Bu = 0 on ∂D,
for u = 0 and b1 = 0 on S .

3. Completeness of root functions for weak perturbations

We are now in a position to study the completeness of root functions related to problem
(2.21). We begin with the selfadjoint operator L0. To this end we write ι′ for the continuous
embedding of L2(D) into H−SL(D), as it is described by Lemma 2.2.

Lemma 3.1. Suppose that estimate (2.7) is fulfilled and inclusion (2.9) is compact. Then the
inverse L−1

0 of the operator given by (2.20) induces compact positive selfadjoint operators

Q1 = ι′ι L−1
0 : H−SL(D) → H−SL(D),

Q2 = ι L−1
0 ι′ : L2(D) → L2(D),

Q3 = L−1
0 ι′ι : HSL(D) → HSL(D)
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which have the same systems of eigenvalues and eigenvectors. Moreover, all eigenvalues are
positive and there are orthonormal bases in HSL(D), L2(D) and H−SL(D) consisting of the eigen-
vectors.

Proof. The proof is rather standard and it is based on the injectivity of ι, formulas (2.20), (2.23)
and Theorem 1.1.

Our next goal is to apply Theorem 1.4 for studying the completeness of root functions of weak
perturbations of Q j. Lemma 2.4 and Theorem 2.5 show sufficient conditions for the inclusion
(2.9) to be compact. However, we should also describe typical situations where the operators
Q1, Q2, Q3 have finite order. With this purpose, we present a broad class of finite order compact
operators acting in spaces of integrable functions. The following result goes back at least as far
as [Agm62].

Theorem 3.2. Let s ∈ R and A : Hs(D)→ Hs(D) be a compact operator. If there is δs > 0 such
that A maps Hs(D) continuously to Hs+δs(D), then it belongs to Schatten class Sn/δs+ε for each
ε > 0.

Proof. For the case s ∈ Z≥0 see [Agm62]. For the case s ∈ R and Sobolev spaces on a compact
closed manifoldD see Proposition 5.4.1 in [Agr90]. To the best of our knowledge, no proof has
been appeared for the general case. So we indicate crucial steps of the proof.

Let Q be the cube
Q = {x ∈ Rn : |x j| < π, j = 1, . . . , n}

in Rn. Given a function u ∈ L2(Q), we consider the Fourier series expansion

u(x) ∼
∑
k∈Zn

ck(u) eı〈k,x〉

and introduce the norm
‖u‖2H(s) = |a0(u)|2 +

∑
k∈Zn\{0}

|k|2s |ck(u)|2,

where s is a non-negative real number. The subspace of functions for which this norm is finite
is denoted by H(s). Obviously, H(s) is a Hilbert space which, for non-negative integral s, can be
regarded as a closed subspace of the Sobolev space Hs(Q). We see readily that Hs

comp(Q) 7→ H(s).
For s < 0, we write H(s) for the dual of H(−s) with respect to the sesquilinear pairing (·, ·) induced
by the inner product (·, ·)H(0) . The norm in H(s) is still given by the same formula, as is easy to
check.

Without loss of the generality we can assume that the closure ofD is situated in the cube Q.
For s ≥ 0, we denote by rs,D the restriction operator from Hs(Q) to Hs(D). By the above, rs,D

acts to the elements of H(s), too, mapping these continuously to Hs(D). As the boundary of D
is Lipschitz, for each s ∈ Z≥0 there is a bounded extension operator es,D : Hs(D) → Hs

comp(Q)
(see for instance [Bur98, Ch. 6]). We will think of es,D as bounded linear operator from Hs(D)
to H(s), provided that s ∈ Z≥0.

Given any integer s ≥ 0, an interpolation procedure applies to the pair (Hs(D),Hs+1(D)),
thus giving a family of function spaces inD of fractional smoothness (1− ϑ)s + ϑ(s + 1) = s + ϑ
with 0 < ϑ < 1. The Banach spaces obtained in this way coincide with Hs+ϑ(D) up to equivalent
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norms. Thus, we can apply interpolation arguments to conclude that there is a bounded linear
extension operator es,D : Hs(D)→ H(s) for all real s ≥ 0. By construction,

rs,D es,Du = u (3.1)

holds for each u ∈ Hs(D) with s ≥ 0.
For s < 0 we introduce the mappings

rs,D : H(s) → Hs(D),
es,D : Hs(D) → H(s),

using the duality between the spaces H(s) and H(−s). Namely, if s < 0 we set

(rs,Du, v) := (u, e−s,Dv),
(es,Du, v) := (u, r−s,Dv) (3.2)

for all u ∈ H(s), v ∈ H−s(D) and for all u ∈ Hs(D), v ∈ H(−s), respectively. As

|(u, e−s,Dv)| ≤ ‖u‖H(s) ‖e−s,D‖ ‖v‖H−s(D)

for all u ∈ H(s) and v ∈ H−s(D), which is a consequence of duality between the spaces H(s) and
H(−s), the first identity of (3.2) defines a bounded linear operator rs,D : H(s) → Hs(D) indeed.
Similarly, by the duality between Hs(D) and H−s(D) (cf. Lemma 2.3), the second identity of
(3.2) defines a bounded linear operator es,D : Hs(D)→ H(s).

On applying equality (3.1) we get (rs,D es,Du, v) = (u, v) for all u ∈ Hs(D) and v ∈ H−s(D)
with real s < 0. In other words, the operators rs,D and rs,D satisfy (3.1) for all s ∈ R, i.e.,

rs,D es,D = IHs(D). (3.3)

For t > s we denote by

ιt,s,D : Ht(D) → Hs(D),
ιt,s : H(t) → H(s)

the natural inclusion mappings. If t < 0, by this is meant

(ιt,s,Du, v) = (u, ι−s,−t,Dv),
(ιt,su, v) = (u, ι−s,−t,Dv) (3.4)

for all u ∈ Ht(D), v ∈ H−s(D) and u ∈ H(t), v ∈ H(−s), respectively. It is clear that

rs,D ιt,s = ιt,s,D rt,D,
ιt,s et,D = es,D ιt,s,D,

rs,D ιt,s et,D = ιt,s,D

(3.5)

provided t ≥ 0. If t < 0 then combining (3.2), (3.4) and (3.5) yields

(rs,D ιt,su, v) = (u, ι−s,−t e−s,Dv)
= (u, e−t,D ι−s,−t,Dv〉

= (ιt,s,D rt,Du, v)
15



for all u ∈ H(t) and v ∈ H−s(D), and

(ιt,s et,Du, v) = (u, r−t,D ι−s,−tv)
= (u, ι−s,−t r−s,Dv)
= (es,D ιt,s,Du, v)

for all u ∈ Ht(D) and v ∈ H(−s), whence rs,D ιt,s et,D = ιt,s,D. Therefore, equalities (3.5) are valid
not only for real t ≥ 0 but also for all t ∈ R.

Lemma 3.3. Let s ∈ R and K : H(s) → H(s) be a compact operator. If there is δs > 0 such that
K maps H(s) continuously to H(s+δs), then K is of Schatten class Sn/δs+ε for each ε > 0.

Proof. Put
Λru (x) =

∑
k∈Zn

(1 + |k|2)r/2 ck(u) eı〈k,x〉.

Obviously, Λr maps H(s) continuously to H(s−r) for all s ∈ R. Für each fixed s, the operator
Λ−r ιs+r,s is selfadjoint and compact in H(s+r). Its eigenvalues are (1 + |k|2)−r/2 and the corre-
sponding eigenfunctions are eı〈k,x〉. The series∑

k∈Zn

(1 + |k|2)−pr/2

(counting the eigenvalues with their multiplicities) converges for all p > n/r, and so Λ−r ιs+r,s is
of Schatten class Sn/r+ε for any ε > 0.

Obviously, Λ−rΛr = I holds for all r > 0. By assumption, the operator K factors through the
embedding ιs+δs,s : H(s+δs) → H(s), i.e., there is a bounded linear operator K0 : H(s) → H(s+δs)

such that K = ιs+δs,sK0. Then

K = Λ−δs ΛδsK

= Λ−δs Λδs ιs+δs,sK0

= Λ−δs ιs+δs,s ΛδsK0.

Since the operator Λδs K0 : H(s) → H(s) is bounded, Lemma 1.3 implies that K belongs to the
Schatten class Sn/δs+ε for any ε > 0.

We are now in a position to complete the proof of Theorem 3.2. Suppose that A0 : Hs(D)→
Hs+δs(D) is a bounded linear operator, such that A = ιs+δs,sA0. Set

K0 = es+δs,D A0 rs,D,

then K0 maps H(s) continuously to H(s+δs). By Lemma 3.3, the composition K = ιs+δs,sK0 is of
Schatten class Sn/δs+ε for any ε > 0. Besides, we get

rs+δs,D K0 = A0 rs,D (3.6)

because of (3.3).
Let λ be a non-zero eigenvalue of A and u ∈ Hs(D) a root function corresponding to λ, i.e.,

(A − λI)mu = 0 for some natural number m. Then, using (3.5) and (3.6), we conclude that

(K − λI)m es,Du = es,D (A − λI)mu

= 0,
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that is each non-zero eigenvalue of A is actually an eigenvalue for K of the same multiplicity.
Therefore, A belongs to the Schatten class Sn/δs+ε for any ε > 0, too.

Corollary 3.4. If for some s > 0 there is a continuous embedding

ιs : HSL(D) ↪→ Hs(D) (3.7)

then any compact operator R : H−SL(D) → H−SL(D) which maps H−SL(D) continuously to HSL(D)
is of Schatten class Sn/2s+ε for any ε > 0. In particular, its order is finite.

Proof. It follows from Theorem 3.2 in a standard way (cf. [Agm62]). Namely, let R0 be the
operator R which is thought of as a bounded map of H−SL(D) to HSL(D). If i : Hs(D) ↪→ L2(D)
is the natural inclusion and i′ : L2(D) ↪→ H−s(D) is the transposed map then it is easily seen that
the operator i′i ιsR0ι

′
s : H−s(D) → H−s(D) belongs to the Schatten class Sn/2s+ε for any ε > 0

and it has the same eigenvectors and eigenvalues (with the same multiplicities!) as the operator
R.

Corollary 3.5. Suppose there is a continuous embedding (3.7) with some s > 0. Then the
operators Q1, Q2 and Q3 are of Schatten class Sn/2s+ε for any ε > 0 (and so they are of finite
order).

Lemma 2.4 and Theorem 2.5 provide sufficient conditions for a continuous embedding (3.7)
to be true with s = 1 and 0 < s < 1/2, respectively.

Theorem 3.6. If the operator Q1 : H−SL(D) → H−SL(D) is of finite order then, for any invertible
operator of the type L0 + δL : HSL(D) → H−SL(D) with a compact operator δL : HSL(D) →
H−SL(D), the system of root functions of the compact operator

P1 = ι′ι (L0 + δL)−1 : H−SL(D)→ H−SL(D)

is complete in the spaces H−SL(D), L2(D) and HSL(D).

Proof. The proof is based on Theorem 1.4 and the equality

L−1
0 − (L0 + δL)−1 = L−1

0

(
δL (L0 + δL)−1

)
, (3.8)

where the operator
δL (L0 + δL)−1 : H−SL(D)→ H−SL(D)

is compact (cf. Proposition 6.1 of [Agr11a] and [Agr11c, p. 12]).

Similar assertions are also true for the weak perturbations of the operators Q2 and Q3.
The operator L0 + δL : HSL(D) → H−SL(D) with a compact operator δL fails to be injective

in general, and so Theorem 3.6 does not apply. However, as L0 is continuously invertible, we
conclude that L = L0 + δL is Fredholm. In particular, there is a constant c, such that

‖u‖SL ≤ c
(
‖Lu‖H−SL(D) + ‖u‖H−SL(D)

)
(3.9)

for all u ∈ HSL(D).
We next extend Theorem 3.6 to Fredholm operators. To this end denote by T the unbounded

linear operator H−SL(D) → H−SL(D) with domain DT = HSL(D) which maps an element u ∈ DT
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to Lu. The operator T is clearly closed because of inequality (3.9). It is densely defined as
H1(D, S ) ⊂ HSL(D) is dense in H−SL(D). It is well known that the null space of T is finite
dimensional in HSL(D) and its range is closed in H−SL(D).

When speaking on eigen- and root functions u of the operator T we always assume that
u ∈ DT and (T − λI) ju ∈ DT for all j = 1, . . . ,m − 1.

Let T0 : H−SL(D) → H−SL(D) correspond to the selfadjoint operator L0. The operator T0 is
obviously continuously invertible and the inverse operator coincides with ι′ι L−1

0 = Q1.

Lemma 3.7. The spectrum of the operator T0 consists of the points µν = λ−1
ν in R>0, where λν

are the eigenvalues of Q1.

If the spectrum of the operator T fails to be the whole complex plane, i.e., if the resolvent
R(λ; T ) = (T − λI)−1 exists for some λ = λ0, then it follows from the resolvent equation (since
R(λ0; T ) is compact) that R(λ; T ) exists for all λ ∈ C except for a discrete sequence of points
{λν} which are the eigenvalues of T (see [Kel71, p. 17]. In the general case, however, one cannot
exclude the situation where the spectrum of T is the whole complex plane.

Theorem 3.8. Suppose that δL : HSL(D) → H−SL(D) is a compact operator and that the op-
erator Q1 : H−SL(D) → H−SL(D) is of finite order. Then the spectrum of the closed operator
T : H−SL(D) → H−SL(D) corresponding to L = L0 + δL, is different from C and the system of root
functions of T is complete in the spaces H−SL(D), L2(D) and HSL(D). Moreover, for any ε > 0,
all eigenvalues of T (except for a finite number) belong to the corner | arg λ| < ε.

Proof. First we note that
T − λI = L − λ ι′ι (3.10)

on HSL(D) for all λ ∈ C. Let us prove that there is N ∈ N, such that λ0 = −N is a resolvent point
of T . For this purpose, using (3.10) and Lemma 3.7, we get

T + kI = (I + δL(L0 + k ι′ι)−1)(T0 + kI) (3.11)

for all k ∈ N.
We will show that the operator I + δL(L0 + k ι′ι)−1 is injective for some k ∈ N. Indeed, we

argue by contradiction. Suppose for any k ∈ N there is fk ∈ H−SL(D), such that ‖ fk‖H−SL(D) = 1 and

(I + δL(L0 + k ι′ι)−1) fk = 0. (3.12)

Given any u ∈ HSL(D) and k ∈ N, an easy computation shows that

‖(L0 + k ι′ι)u‖2H−SL(D) = ‖u + k L−1
0 u‖2SL

= ‖u‖2SL + 2k ‖u‖2L2(D) + k2 ‖L−1
0 u‖2SL

≥ ‖u‖2SL.

Hence, the sequence uk := (L0 + k ι′ι)−1 fk is bounded in HSL(D). Now the weak compactness
principle for Hilbert spaces yields that there is a subsequence { fk j } with the property that both
{ fk j } and {uk j } converge weakly in the spaces H−SL(D) and HSL(D) to limits f and u, respectively.
Since δL is compact, it follows that the sequence {δLuk j } converges to δLu in H−SL(D), and so
{ fk j } converges to f because of (3.12). Obviously,

‖ f ‖H−SL(D) = 1.
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In particular, we conclude that the sequence {δL(L0 + k j ι
′ι)−1 fk j } converges to − f whence

f = −δL u. (3.13)

Further, on passing to the weak limit in the equality fk j = (L0 + k j ι
′ ◦ ι)uk j we obtain

f = L0u − lim
k j→∞

k j ι
′ι uk j ,

for the continuous operator L0 : HSL(D) → H−SL(D) maps weakly convergent sequences to
weakly convergent sequences. As the operator ι′ι is compact, the sequence {ι′ι uk j } converges to
ι′ι u in the space H−SL(D) and ι′ι u , 0 which is a consequence of (3.13) and the injectivity of ι′ι.
This shows readily that the weak limit

lim
k j→∞

k j ι
′ι uk j = L0u − f

does not exist, a contradiction.
We have proved more, namely that the operator I + δL(L0 + k ι′ι)−1 is injective for all but a

finitely many natural numbers k. Since this is a Fredholm operator of index zero, it is continu-
ously invertible. Hence, (3.11) and Lemma 3.7 imply that (T − λ0I)−1 exists for some λ0 = −N
with N ∈ N.

As λ0 is a resolvent point of T ,

(T − λ0I)−1 = (L − λ0 ι
′ι)−1

on H−SL(D). Since L : HSL(D) → H−SL(D) is Fredholm and the inclusion ι compact, the operator
L − λ0 ι

′ι : HSL(D) → H−SL(D) is Fredholm. So (L − λ0 ι
′ι)−1 maps H−SL(D) continuously to

HSL(D). Similarly to (3.8) we get

L−1
0 − (L − λ0 ι

′ι)−1 = L−1
0

(
(δL − λ0 ι

′ι)(L − λ0 ι
′ι)−1

)
.

Then, Theorem 3.6 yields that the root functions {uν} of the operator (L − λ0 ι
′ι)−1 are complete

in the spaces HSL(D), L2(D) and H−SL(D).
From (3.10) it follows that the systems of root functions related to the operators (L− λ0 ι

′ι)−1

and T − λ0 I coincide.
Finally, as the operators T −λ0I and T have the same root functions, we conclude thatL({uν})

is dense in the spaces HSL(D), L2(D) and H−SL(D).

The equality (T − λI)u = 0 for a function u ∈ HSL(D) may be equivalently reformulated by
saying that u is a solution in a weak sense to the boundary value problem{

Au = λu in D,
Bu = 0 on ∂D,

(3.14)

where the pair (A, B) corresponds to the perturbation L0 +δL. For n = 1 such problems are known
as Sturm-Liouville boundary problems for second order ordinary differential equations (see for
instance [Har64, Ch. XI, § 4]). Thus, we may still refer to (3.14) as the Sturm-Liouville problem
in many dimensions.

Now we want to study the completeness of root functions of “small” perturbations of compact
selfadjoint operators instead of the weak ones. To this end we apply the so-called method of rays
of minimal growth of resolvent which leads to more general results than Theorem 1.4. This idea
seems to go back at least as far as [Agm62].
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4. Rays of minimal growth

We first describe briefly the method of minimal growth rays following [DS63] and Theorem
6.1 of [GK69, p. 302].

Let L : HSL(D) → H−SL(D) be the bounded linear operator constructed in Section 2. We
still assume that estimates (2.7) and (2.19) hold and that the operator L is Fredholm. In the
sequel we confine ourselves to those Sturm-Liouville problems for which the spectrum of the
corresponding unbounded closed operator T : H−SL(D) → H−SL(D) is discrete, cf. [Agm62]. We
denote by R(λ; T ) the resolvent of the operator T .

Definition 4.1. A ray arg λ = ϑ in the complex plane C is called a ray of minimal growth of
the resolvent R(λ; T ) : H−SL(D) → H−SL(D) if the resolvent exists for all λ of sufficiently large
modulus on this ray, and if, moreover, for all such λ an estimate

‖R(λ; T )‖L(H−SL(D)) ≤ c |λ|−1 (4.1)

holds with a constant C > 0.

Theorem 4.2. Let the space HSL(D) be continuously embedded into Hs(D) for some s > 0.
Suppose there are rays of minimal growth of the resolvent arg λ = ϑ j, where j = 1, . . . , J, in
the complex plane, such that the angles between any two neighbouring rays are less than 2πs/n.
Then the spectrum of the operator T is discrete and the root functions form a complete system in
the spaces H−SL(D), L2(D) and HSL(D).

Proof. The proof actually follows by the same method as that in Theorem 3.2 of [Agm62], see
also Theorem 6.1 in [GK69, p. 302].

This theorem raises the question under what conditions neighbouring rays of minimal growth
are close enough. We now indicate some conditions for a ray arg λ = ϑ in the complex plane to
be a ray of minimal growth for the resolvent of T .

Lemma 4.3. Each ray arg λ = ϑ with ϑ , 0 is a ray of minimal growth for R(λ; T0) and

‖(T0 − λI)−1‖L(H−SL(D)) ≤

{
(|λ| | sin(arg λ)|)−1, if | arg λ| ∈ (0, π/2),
|λ|−1, if | arg λ| ∈ [π/2, π]. (4.2)

Moreover, the operator L0 − λ ι
′ι : HSL(D)→ H−SL(D) is continuously invertible and

‖(L0 − λ ι
′ι)−1‖L(H−SL(D),HSL(D)) ≤

{
| sin(arg λ)|, if | arg λ| ∈ (0, π/2),
1, if | arg λ| ∈ [π/2, π]. (4.3)

Proof. According to Lemma 3.7 the resolvent

(T0 − λI)−1 : H−SL(D)→ H−SL(D)

exists for all λ ∈ C away from the positive real axis. As the operator Q3 = L−1
0 ι′ι is selfadjoint,

the operator T0 is symmetric, i.e.,

(T0u, g)H−SL(D) = (L0u, g)H−SL(D)

= (u,Q−1
3 g)SL

= (Q−1
3 u, g)SL

= (u, L0g)H−SL(D)

= (u,T0g)H−SL(D)
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for all u, v ∈ HSL(D). If | arg (λ)| ∈ (0, π/2), then

‖(T0 − λI)u‖2H−SL(D) = ‖(T0 −<λ I)u‖2H−SL(D) + |=λ|2 ‖u‖2H−SL(D)

≥ |λ|2| sin(arg λ)|2 ‖u‖2H−SL(D)

for all u ∈ HSL(D), which establishes the first estimate of (4.2). If | arg λ| ∈ [π/2, π], then<λ ≤ 0
whence

‖(T0 − λI)u‖2H−SL(D) ≥ |λ|
2 ‖u‖2H−SL(D)

and so the second estimate of (4.2) holds.
Now it follows from (3.10) that the operator L0 − λ ι

′ι is injective for λ ∈ C away from the
positive real axis. As this operator is Fredholm and its index is zero, it is continuously invertible.
Finally, as the operator Q3 = L−1

0 ι′ι is positive, we deduce readily that

‖(L0 − λ ι
′ι)u‖H−SL(D) = ‖(I − λL−1

0 ι′ι)u‖SL

≥ |λ| |=λ−1| ‖u‖SL

= | sin(arg λ)| ‖u‖SL,

if | arg λ| ∈ (0, π/2), i.e., the second estimate of (4.3) is fulfilled. Similar arguments lead to the
second estimate of (4.3).

Theorem 4.4. Let the space HSL(D) be continuously embedded into Hs(D) for some s > 0 and
estimate (2.19) be fulfilled with a constant c < | sin(πs/n)|. Then all eigenvalues of the closed
operator T : H−SL(D) → H−SL(D) belong to the corner | arg λ| ≤ arcsin c, each ray arg λ = ϑ with
|ϑ| > arcsin c is a ray of minimal growth for R(λ; T ) and the system of root functions is complete
in the spaces H−SL(D), L2(D) and HSL(D).

Proof. First we note that, by Lemma 2.7, the operator L : HSL(D) → H−SL(D) is invertible.
Indeed, L = L0 + δL where δL : HSL(D) → H−SL(D) is a bounded operator with the norm
‖δL‖L(HSL(D),H−SL(D)) < 1 = ‖L−1

0 ‖
−1. In particular, by (3.10), the spectrum of the corresponding

operator T does not coincide with the whole complex plane.
Fix ϑ , 0 and set mϑ = | sinϑ|, if |ϑ| ∈ (0, π/2), and mϑ = 1, if |ϑ| ∈ [π/2, π]. If mϑ > c then

‖δL‖L(HSL(D),H−SL(D)) ≤ c < mϑ ≤ ‖(L0 − λ ι
′ι)−1‖−1

L(HSL(D),H−SL(D)).

Hence it follows that the operator L − λ ι′ι : HSL(D)→ H−SL(D) is continuously invertible and

‖(L − λ ι′ι)−1‖L(H−SL(D),HSL(D)) ≤ (mϑ − c)−1. (4.4)

In order to establish estimate (4.1) we have to show that there is a constant C > 0, such that

C |λ|−1 ‖(T − λI)u‖H−SL(D) ≥ ‖u‖H−SL(D)

for all u ∈ HSL(D).
If arg λ = ϑ with mϑ > c, then, by (3.10), we get

‖(T − λI)u‖H−SL(D) = ‖(L − λ ι′ι)u‖H−SL(D)

≥ (mϑ − c) ‖u‖SL

≥ (mϑ) − c) ‖u‖H−SL(D)
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for all u ∈ HSL(D). Therefore, given any λ on the ray arg λ = ϑ with mϑ > c, it follows that
1) The range of the operator T − λI : H−SL(D)→ H−SL(D) is a closed subspace of H−SL(D).
2) The null space of the operator T − λI : H−SL(D)→ H−SL(D) is trivial.
By (3.10) the range of T − λI coincides with the range of L − λ ι′ι which is the whole space

H−SL(D). Hence, the resolvent (T − λI)−1 exists for all λ away from the corner | arg λ| ≤ arcsin c
in the complex plane. On applying (3.10) and Lemma 4.3 we obtain

T − λI = L0 + δL − λ ι′ι = (I + δL(L0 − λ ι
′ι)−1)(T0 − λI) (4.5)

on HSL(D) and

‖(I + δL(L0 − λ ι
′ι)−1)u‖H−SL(D)

≥ ‖u‖H−SL(D) − ‖δL‖L(HSL(D),(H−SL(D))) ‖(L0 − λ ι
′ι)−1u‖HSL(D)

≥ (1 − c/mϑ) ‖u‖H−SL(D).

Therefore the operator I +δL(L0−λ ι
′ι)−1 is continuously invertible as Fredholm operator of zero

index and trivial null space. Moreover,

‖(I + δL(L0 − λ ι
′ι)−1)−1‖L(H−SL(D)) ≤ (1 − c/mϑ)−1.

Now (4.5) implies

‖(T − λI)−1‖L(H−SL(D))

≤ ‖(I + δL(L0 − λ ι
′ι)−1)−1‖L(H−SL(D))‖(T0 − λ I)−1‖L(H−SL(D))

≤ (1 − c/mϑ)−1m−1
ϑ |λ|

−1

(4.6)

for all λ satisfying arg λ = ϑ with mϑ > c.
Thus, all rays outside of the corner | arg λ| ≤ arcsin c are rays of minimal growth. By the

hypothesis of the theorem, the angles between the pairs of neighbouring rays arg λ = ϑ, are less
than 2πs/n, and so the completeness of root functions follows from Theorem 4.2.

We are now in a position to prove the main result of this section. When compared with
[Agr11c] our contribution consists in developing dual function spaces which fit the problem
including the non-coercive case.

Theorem 4.5. Let the space HSL(D) be continuously embedded into Hs(D) for some s > 0,
δL : HSL(D) → H−SL(D) be a bounded linear operator whose norm is less then | sin(πs/n), and
C : HSL(D)→ H−SL(D) be compact. Then the following is true:

1) The spectrum of the operator T in H−SL(D) corresponding to L0 + δL + C is discrete.
2) For any ε > 0, all eigenvalues of the operator T (except for a finite number) belong to the

corner | arg λ)| < arcsin ‖δL‖ + ε.
3) Each ray arg λ = ϑ with

|ϑ| > arcsin ‖δL‖ (4.7)

is a ray of minimal growth for R(λ; T ).
4) The system of root functions is complete in the spaces H−SL(D), L2(D) and HSL(D).
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Proof. First we note that the operator L0 + δL : HSL(D) → H−SL(D) is continuously invertible
and hence the operator L0 + δL + C : HSL(D)→ H−SL(D) is actually Fredholm.

Theorem 4.4 implies that all rays satisfying (4.7) are rays of minimal growth for R(λ; T0+δT )
with the closed operator T0 + δT in H−SL(D) corresponding to L0 + δL : HSL(D)→ H−SL(D).

Fix an arbitrary ε > 0. Then estimates (4.4) and (4.6) imply that there are constants c1 and c2
depending on ε, such that

‖(L0 + δL − λ ι′ι)−1‖L(H−SL(D),HSL(D)) ≤ c1, (4.8)

‖(T0 + δT − λI)−1‖L(H−SL(D)) ≤ c2 |λ|
−1 (4.9)

for all λ satisfying
| arg λ| ≥ arcsin ‖δL‖L(HSL(D),H−SL(D)) + ε. (4.10)

Then, using (3.10), (4.8) and Theorem 4.4 we obtain

T − λI =
(
I + C(L0 + δL − λ ι′ι)−1

)
(T0 + δT − λI) (4.11)

on HSL(D) for all rays satisfying (4.10).
We now prove that there is a constant Mε > 0 depending on ε, such that the operator I +

C(L0 + δL − λ ι′ι)−1 is injective for all λ satisfying both (4.10) and |λ| ≥ Mε. To do this, we
argue by contradiction in the same way as in the proof of Theorem 3.8. Suppose for each natural
number k there are fk ∈ H−SL(D), satisfying ‖ fk‖H−SL(D) = 1, and λk, satisfying (4.10) and |λk | ≥ k,
such that (

I + C(L0 + δL − λk ι
′ι)−1

)
fk = 0. (4.12)

It follows from (4.8) that the sequence uk = (L0 + δL − λkι
′ι)−1 fk is bounded in HSL(D). By the

weak compactness principle for Hilbert spaces one can assume without restriction of generality
that the sequences { fk} and {uk} converge weakly in the spaces H−SL(D) and HSL(D) to functions
f and u, respectively. Since C is compact, it follows that the sequence {Cuk} converges to Cu in
H−SL(D) and so { fk} converges to f , which is due to (4.12). Obviously, the H−SL(D) -norm of f just
amounts to 1. In particular, we conclude that {C(L0 + δL − λk ι

′ι)−1) fk} converges to − f whence

f = −Cu. (4.13)

Further, as fk = (L0 + δL − λk ι
′ι) uk, letting k → ∞ in this formula yields readily

f = (L0 + δL)u − lim
k→∞

λk ι
′ι uk.

As the operator ι′ι is compact, the sequence {ι′ι uk} converges to ι′ι u in the space H−SL(D), and
ι′ιu , 0 because of (4.13) and the injectivity of ι′ι. Therefore, the weak limit

lim
k→∞

λk ι
′ι uk = (L0 + δL)u − f

fails to exist, for {λk} is unbounded. A contradiction.
As the operator I + C(L0 + δL − λ ι′ι)−1 is Fredholm and it has index zero, this operator is

continuously invertible for all λ ∈ C satisfying both (4.10) and |λ| ≥ Mε. Set

Nε = inf ‖(I + C(L0 + δL − λ ι′ι)−1) f ‖H−SL(D) ≥ 0,
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the infimum being over all f ∈ H−SL(D) of norm 1 and all λ ∈ C satisfying (4.10) and |λ| ≥ Mε.
We claim that Nε > 0. To show this, we argue by contradiction. If Nε = 0 then there are
sequences { fk} in H−SL(D), each fk being of norm 1, and {λk} satisfying (4.10) and |λ| ≥ Mε, such
that

lim
k→∞
‖(I + C(L0 + δL − λk ι

′ι)−1) fk‖H−SL(D) = 0. (4.14)

Again, by (4.8), the sequence uk = (L0 + δL − λk ι
′ι)−1 fk is bounded in HSL(D). By the weak

compactness principle for Hilbert spaces we may assume that the sequences { fk} and {uk} are
weakly convergent in the spaces H−SL(D) and HSL(D) to functions f and u, respectively. Since C
is compact, the sequence {Cuk} converges to Cu in H−SL(D) and so { fk} converges to f because
of (4.14); obviously, ‖ f ‖H−SL(D) = 1. In particular, we deduce that the sequence C(L0 + δL −
λk, ι

′ι)−1) fk converges to − f whence
f = −Cu (4.15)

with u , 0.
If the sequence {λk} is bounded in C, then using the weak compactness principle and passing

to a subsequence, if necessary, we may assume that {λk} converges to λ0 ∈ C which satisfies
(4.10) and |λ| ≥ Mε. Since

(L0 + δL − λk ι
′ι)−1 fk − (L0 + δL − λ0 ι

′ι)−1 f

= (L0+δL−λ j ι
′ι)−1)( fk− f ) +

(
(L0+δL−λk ι

′ι)−1 − (L0+δL−λ0 ι
′ι)−1

)
f

and

‖
(
(L0 + δL − λk ι

′ι)−1 − (L0 + δL − λ0 ι
′ι)−1

)
f ‖H−SL(D)

≤ |λk−λ0| ‖(L0+δL−λk ι
′ι)−1‖ ‖(L0+δL−λ0 ι

′ι)−1‖ ‖ f ‖H−SL(D),

estimate (4.8) implies that in this case the sequence {(L0 + δL − λk ι
′ι)−1 fk} converges to (L0 +

δL − λ0 ι
′ι)−1 f , and so (

I + C(L0 + δL − λ0 ι
′ι)−1

)
f = 0

because of (4.14). But λ0 satisfies (4.10) and |λ| ≥ Mε, and hence the injectivity of the operator
I + C(L0 + δL − λ0 ι

′ι)−1 established above yields f = 0. This contradicts ‖ f ‖ = 1.
If {λk} is unbounded in C we can repeat the arguments above. Indeed, then fk = (L0 +δL−

λk ι
′ι)uk and on passing to the weak limit with respect to k → ∞ we get

f = (L0 + δL)u − lim
k→∞

λk ι
′ι uk.

As the operator ι′ι is compact, the sequence {ι′ι uk} converges to ι′ι u in the space H−SL(D). More-
over, ι′ι u , 0 because of (4.15) and the injectivity of ι′ι. This shows that the weak limit

lim
n→∞

λk ι
′ι uk = (L0 + δL)u − f

fails to exist if {λk} is unbounded in C, a contradiction. Therefore, Nε > 0 and for all λ ∈ C
satisfying (4.10) and |λ| ≥ Mε we obtain

‖
(
I + C(L0 + δL − λ ι′ι)−1

)−1
‖L(H−SL(D)) ≤ 1/Nε. (4.16)
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From estimates (4.8), (4.16) and formula (4.11) it follows that, given any λ ∈ C satisfying
(4.10) and |λ| ≥ Mε, the resolvent R(λ; T ) exists and

‖R(λ; T )‖L(H−SL(D)) ≤ const (ε) |λ|−1.

As C is compact, there are only finitely many λ ∈ C with |λ| < Nε, such that the operator
(I + C(L0 − λ ι

′ι)) is not injective. Therefore, it follows from formula (4.11) that all eigenvalues
of the operator T corresponding to L0 +δL+C (except for a finite number) belong to the corner
| arg λ| < arcsin ‖δL‖ + ε. Finally, since ε > 0 is arbitrary, all rays (4.7) are rays of minimal
growth. By the hypothesis of the theorem, the angles between the pairs of neighbouring rays
arg λ = ϑ satisfying (4.7) are less than 2πs/n, and so the statement of the theorem follows from
Theorem 4.2.

5. A non-coercive problem

To the best of our knowledge the completeness of root functions has been studied for elliptic
boundary value problems, i.e., for those satisfying the Shapiro-Lopatinskii conditions in domains
with smooth boundary or those satisfying coercive estimate (2.5) in domains with Lipschitz
boundary. In this section we consider an example where these conditions are violated.

Let the complex structure in Cn ≡ R2n be given by z j = x j +
√
−1xn+ j with j = 1, . . . , n and

∂̄ stand for the Cauchy-Riemann operator corresponding to this structure, i.e., the column of n
complex derivatives

∂

∂z̄ j
=

1
2

(
∂

∂x j
+
√
−1

∂

∂xn+ j

)
.

The formal adjoint ∂̄∗ of ∂̄ with respect to the usual Hermitian structure in the space L2(Cn)
is the line of n operators

−
1
2

(
∂

∂x j
−
√
−1

∂

∂xn+ j

)
=: −

∂

∂z j
.

An easy computation shows that ∂̄∗∂̄ just amounts to the −1/4 multiple of the Laplace operator

∆2n =

2n∑
j=1

(
∂

∂x j

)2

in R2n.
As A we take

A = −∆2n +

n∑
j=1

a j(z)
∂

∂z̄ j
+ a0(z),

where a1(z), . . . , an(z) and a0(z) are bounded functions in D, D being a bounded domain with
Lipschitz boundary in Cn. The Hermitian matrix(

ai, j

)
i=1,...,2n
j=1,...,2n

is chosen to be ( En
√
−1En

−
√
−1En En

)
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where En is the unity (n × n) -matrix. Obviously, ai, j = a j,i for all i, j = 1, . . . , 2n and the
corresponding conormal derivative is

∂c = 2
n∑

j=1

(ν j−
√
−1νn+ j)

∂

∂z̄ j
=

∂

∂ν
+
√
−1

n∑
j=1

(
ν j

∂

∂xn+ j
−νn+ j

∂

∂x j

)
,

which is known as complex normal derivative ∂̄ν at the boundary ofD.
Consider the following boundary value problem. Given a distribution f inD, find a distribu-

tion u inD satisfying
(
− ∆2n +

n∑
j=1

a j(z)
∂

∂z̄ j
+ a0(z)

)
u = f in D,

∂̄νu + b0(z)u = 0 on ∂D.

(5.1)

In this case S is empty, t = 0 and b1 = 1. Set a0,0(z) ≡ 1 in D and b0,0 to be any positive
constant function on the boundary. Then the corresponding Hermitian form (·, ·)SL is

(u, v)SL = (u, v)L2(D) + (2∂̄u, 2∂̄v)L2(D) + b0,0 (u, v)L2(∂D)

and the space HSL(D) is defined to be the completion of H1(D) with respect to the norm ‖u‖SL =
√

(u, u)SL.

Remark 5.1. By Theorem 2.5, the space HSL(D) is continuously embedded into H1/2−ε(D) with
any ε > 0. However, there is no continuous embedding HSL(D) ↪→ H1/2+ε(D) with ε > 0.
Indeed, ifD is the unit disc in C then a direct calculation using Lemma 1.4 of [Shl96] shows that
the series

uε(z) =

∞∑
k=0

zk

(k + 1)(1+ε)/2 ,

where ε > 0, converges in HSL(D) but diverges in H1/2+ε(D). This means that the coercive
estimate (2.5) does not hold for problem (5.1). Besides, as the monomials zk are L2 -orthogonal
on the circles |z| = r, we see that in this case the term induced by a perturbation δb0 ∈ C fails to
be a compact operator from HSL(D) to H−SL(D) (cf. [PS13]).

As t = 0 and b1 ≡ 1, we deduce that estimate (2.19) is valid, provided that the functions a j

and a0 are of class L∞(D) and b0 ∈ L∞(∂D). The operator L0 corresponds to{
−∆2nu + u = f in D,
∂̄νu + b0,0 u = 0 on ∂D.

(5.2)

Theorem 5.2. The inverse L−1
0 of the operator L0 related to (5.2) induces compact positive

selfadjoint operators

Q1 = ι′ι L−1
0 : H−SL(D) → H−SL(D),

Q2 = ι L−1
0 ι′ : L2(D) → L2(D),

Q3 = L−1
0 ι′ι : HSL(D) → HSL(D)

which have the same systems of eigenvalues and eigenvectors. Moreover, all eigenvalues are
positive and there are orthonormal bases in HSL(D), L2(D) and H−SL(D) consisting of the eigen-
vectors.
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Proof. For the proof it suffices to combine Lemma 3.1 and Theorem 2.5.

Corollary 3.5 actually shows that the operators Q1, Q2 and Q3 are of Schatten class Sn+ε for
any ε > 0, and so their orders are finite.

Theorem 5.3. Let t = 0 and δb0 = 0. Then operator L : HSL(D) → H−SL(D) related to problem
(5.1) is Fredholm. Moreover, the system of root functions of the corresponding closed operator
T is complete in the spaces H−SL(D), L2(D) and HSL(D). For any ε > 0, all eigenvalues of T
(except for a finite number) belong to the corner | arg λ| < ε.

Proof. Indeed, the operator

δL = L − L0 : HSL(D)→ H−SL(D)

maps HSL(D) continuously to L2(D), and hence it is compact. Thus, the statement follows from
Theorem 3.8.

Corollary 5.4. Let t = 0 and δb0 = 0. If ‖a j‖L∞(D) < 1, for 1 ≤ j ≤ n, and ‖a0−1‖L∞(D) < 1, then
the operator L : HSL(D) → H−SL(D) corresponding to problem (5.1) is continuously invertible.
Moreover, the system of root functions of the compact operator ι′ι L−1 in H−SL(D) is complete in
the spaces H−SL(D), L2(D) and HSL(D). For any ε > 0, all eigenvalues of ι′ι L−1 (except for a
finite number) belong to the corner | arg λ| < ε.

Proof. We just recall that estimate (2.19) in the particular case under consideration becomes
explicitly ∣∣∣∣( n∑

j=1

a j(z)
∂u
∂z̄ j

+ (a0 − 1) u, v
)

L2(D)

∣∣∣∣ ≤ c ‖u‖SL‖v‖SL

for all u, v ∈ H1(D), with c being the maximal of the numbers ‖a j‖L∞(D), where j = 1, . . . , n, and
‖a0 − 1‖L∞(D).

Corollary 5.5. If t = 0 and the norms ‖a j‖L∞(D), ‖a0 − 1‖L∞(D), ‖b−1
0,0 δb0‖L∞(∂D) are all majorized

by a constant c < sin(π/2n), then the closed operator T in H−SL(D) corresponding to problem
(5.1) is continuously invertible. Moreover, the system of root functions of T is complete in the
spaces H−SL(D), L2(D) and HSL(D), and all eigenvalues of T (except for a finite number) lie in
the corner | arg λ| < arcsin c.

6. The coercive case

We now turn to the coercive case, i.e., we assume that estimate (2.5) is fulfilled. This is obvi-
ously the case if all the coefficients ai, j(z) of A are real-valued, which is due to (2.4). According
to Lemma 2.4, the space HSL(D) is embedded continuously into H1(D, S ).

Theorem 6.1. Let estimate (2.5) and one of the three conditions of Lemma 2.4 be fulfilled. The
inverse L−1

0 of the operator L0 induces compact positive selfadjoint operators

Q1 = ι′ι L−1
0 : H−SL(D) → H−SL(D),

Q2 = ι L−1
0 ι′ : L2(D) → L2(D),

Q3 = L−1
0 ι′ι : HSL(D) → HSL(D)
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which have the same systems of eigenvalues and eigenvectors. Moreover, all eigenvalues are
positive and there are orthonormal bases in HSL(D), L2(D) and H−SL(D) consisting of the eigen-
vectors.

Proof. For the proof it suffices to combine Lemmas 3.1 and 2.4.

Corollary 3.5 actually shows that the operators Q1, Q2 and Q3 are of Schatten class Sn/2+ε

for any ε > 0, and so their orders are finite.

Lemma 6.2. Assume that estimate (2.5) is fulfilled. If one of the three conditions of Lemma 6.2
holds true and b0,0/b1 ∈ L∞(∂D \ S ), then the norms ‖ · ‖SL and ‖ · ‖H1(D) are equivalent and the
spaces HSL(D) and H1(D, S ) coincide as topological ones.

Proof. The proof is standard, cf. for instance Section 5.6 in [Mik76, Ch. 3].

It should be noted that the case b0,0/b1 < L∞(∂D \ S ) is of great interest, too. It can be
handled within the framework of mixed problems in weighted spaces with weights which control
the behaviour of solutions nearby the interface ∂S , see [Esk73], [Tar06], etc.

Our next task is to describe those perturbations a j, δb0/b1 and t which preserve the complete-
ness property of root functions of the operator L−1

0 . In particular, we will clarify the conditions
for (2.19) to hold in the coercive case, and find an estimate for the constant c in this inequal-
ity. Write ι1 for the continuous embedding HSL(D) ↪→ H1(D) whose norm depends on S , a0,0,
b0,0/b1 and the value m from estimate (2.5)).

Lemma 6.3. Let estimate (2.5) and one of the three conditions of Lemma 2.4 be fulfilled. Then
the differential operator

δA =

n∑
j=1

a j(x) ∂ j + δa0 (x)

induces a compact operator C1 : HSL(D) → H−SL(D), such that |(δAu, v)L2(D)| ≤ c ‖u‖SL‖v‖SL for
all u, v ∈ H1(D, S ).

As is seen from the proof, the constant c can be written explicitly through the norms ‖a j‖L∞(D),
‖δa0‖L∞(D) and ‖ι‖, ‖ι1‖.

Proof. Obviously, δA maps the space H1(D) continuously to L2(D). Lemma 2.4 implies readily
that δA maps also the space HSL(D) continuously to L2(D). We thus get

|(δAu, v)L2(D)| ≤ c′ ‖u‖H1(D)‖v‖L2(D)

for all u, v ∈ HSL(D), where c′ is any constant majorizing the norms ‖a j‖L∞(D) and ‖δa0‖L∞(D).
By Lemma 2.2, the embedding ι′ : L2(D) ↪→ H−SL(D) is compact, and so δA induces a compact
operator C1 : HSL(D) → H−SL(D). The desired estimate is now a consequence of the very
definitions of ι and ι1.

Lemma 6.4. Let estimate (2.5) and one of the three conditions of Lemma 2.4 be fulfilled. If
b−1

1 δb0 ∈ L∞(∂D \ S ) then

|((b−1
1 δb0)u, v)L2(∂D\S )| ≤ c ‖u‖SL ‖v‖SL

for all u, v ∈ H1(D, S ), where the constant c is independent of u, v. Moreover, the term
((b−1

1 δb0)u, v)L2(∂D\S ) in the weak formulation (2.21) of problem (2.2) induces a compact linear
operator C2 : HSL(D)→ H−SL(D).
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Proof. Since b−1
1 δb0 is a bounded function on ∂D \ S , it follows that

|((b−1
1 δb0)u, v)L2(∂D\S )| ≤ ‖b−1

1 δb0‖L∞(∂D\S ) ‖u‖L2(∂D)‖v‖L2(∂D) (6.1)

for all u, v ∈ H1(D, S ). Furthermore, by (6.1), Lemma 2.4 and the trace theorem, we obtain

|((b−1
1 δb0)u, v)L2(∂D\S )| ≤ c1 ‖u‖L2(∂D)‖v‖SL ≤ c ‖u‖SL‖v‖SL

for all u, v ∈ H1(D, S ), as desired. Hence, the summand ((b−1
1 δb0)u, v)L2(∂D\S ) in the weak

formulation (2.21) of problem (2.2) induces a bounded linear operator

C2 : HSL(D)→ H−SL(D)

satisfying
‖C2u‖H−SL(D) ≤ c ‖u‖L2(∂D). (6.2)

Now, if σ is a bounded set in HSL(D) then, by Lemma 2.4, it is also bounded in H1(D) and, by
the trace theorem, the set σ �∂D of restrictions of elements of σ to ∂D is bounded in H1/2(∂D),
too. The Rellich-Kondrashov theorem implies that σ �∂D is precompact in Hs(∂D), if s < 1/2.
Hence, for any sequence {uk} inσ there is a subsequence {uk j }whose restriction to ∂D is a Cauchy
sequence in L2(∂D). Using (6.2) we conclude that any sequence {uk} inσ has a subsequence {uk j },
such that {C2uk j } is a Cauchy sequence in H−SL(D). Thus, the operator C2 : HSL(D)→ H−SL(D) is
compact. This establishes the lemma.

Lemma 6.5. If b−1
0,0 δb0 ∈ L∞(∂D \ S ) then

|((b−1
1 δb0)u, v)L2(∂D\S )| ≤ ‖b

−1
0,0 δb0‖L∞(D) ‖u‖SL ‖v‖SL

for all u, v ∈ H1(D, S ), the constant c being independent of u and v.

Proof. Since b−1
0,0δb0 is a bounded function on ∂D \ S , it follows that

|((b−1
1 δb0)u, v)L2(∂D\S )| = |(b−1

1 b0,0 (b−1
0,0δb0))u, v)L2(∂D\S )|

≤ c ‖
√

b−1
1 b0,0u‖L2(∂D\S ) ‖

√
b−1

1 b0,0v‖L2(∂D\S )

≤ c ‖u‖SL‖v‖SL

for all u, v ∈ H1(D, S ), where c = ‖b−1
0,0δb0‖L∞(D), as desired.

Let t1(x), . . . , tn−1(x) be a basis of tangential vectors of the boundary surface at a point x ∈
∂D. Then we can write

∂t =

n−1∑
j=1

t j(x) ∂t j

where t1, . . . , tn−1 are bounded functions on the boundary vanishing on S .

Lemma 6.6. Let (2.5) be fulfilled and S be an open subset on ∂D. If t j/b1 ∈ C0,λ(∂D \ S ), for
1 ≤ j ≤ n − 1, with λ > 1/2, then there is a constant c > 0 such that∣∣∣∣ ∫

∂D\S
b−1

1 ∂tu v ds
∣∣∣∣ ≤ c ‖u‖SL‖v‖SL (6.3)

for all u, v ∈ H1(D, S ).
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Proof. We first note that ∂D is a closed compact manifold and ∂t j are first order differential
operators with bounded coefficients on ∂D. These operators map H1/2(∂D) continuously to
H−1/2(∂D) = (H1/2(∂D))′.

Recall that every Hölder continuous function f0 ∈ C0,λ(K) on a compact set K ⊂ Rn, with
0 < λ < 1, extends to a Hölder continuous function f ∈ C0,λ(Rn) on all of Rn, such that
‖ f ‖C0,λ(Rn) ≤ ‖ f0‖C0,λ(K).

As S is open on ∂D, the set ∂D \ S is a compact. Since t j/b1 ∈ C0,λ(∂D \ S ), where
1/2 < λ ≤ 1, we see that for each 1 ≤ j ≤ n − 1 there is an extension f j ∈ C0,λ(∂D) which
satisfies

‖ f j‖C0,λ(∂D) ≤ ‖t j/b1‖C0,λ(∂D\S ).

On the other hand, we have f jv = e+(t j/b1)v for each 1 ≤ j ≤ n − 1 and v ∈ C1(D, S ), where e+

is the extenson operator of functions on ∂D \ S by zero to S . Therefore, there exists a constant
c > 0 such that

‖(t j/b1)v‖H1/2(∂D) = ‖ f jv‖H1/2(∂D) ≤ c ‖v‖H1/2(∂D) (6.4)

for all v ∈ C1(D, S ), because the multiplication by functions f j of Hölder class C0,λ(∂D) with
1/2 < λ ≤ 1 is a bounded linear operator m f j in H1/2(∂D), see [Slo58, §3]. On applying (6.4) we
see that ∣∣∣∣ ∫

∂D\S
b−1

1 ∂tu v ds
∣∣∣∣ ≤ c

n−1∑
j=1

‖∂t j u‖H−1/2(∂D)‖v‖H1/2(∂D)

≤ c ‖u‖H1/2(∂D)‖v‖H1/2(∂D)

≤ c ‖u‖H1(D)‖v‖H1(D)

≤ c ‖u‖SL‖v‖SL

for all u, v ∈ C1(D, S ), where the constant c does not depend on u and v and may be diverse in
different applications. Finally, (6.3) is fulfilled because C1(D, S ) is dense in H1(D, S ).

Thus, Lemmas 6.3, 6.4, 6.5 and 6.6 and Remark describe the behavior of typical perturbations
δL in the coercive case. In particular, they give us rather sharp estimates for the constant c of
(2.19).

Theorem 6.7. Suppose that estimate (2.5) and one of the three conditions of Lemma 2.4 are
fulfilled. If t = 0 and b−1

1 δb0 ∈ L∞(∂D \ S ), then the operator L : HSL(D) → H−SL(D) related to
Problem (2.21) is Fredholm. Moreover, the system of root functions of the corresponding closed
operator T : H−SL(D)→ H−SL(D) is complete in the spaces H−SL(D), L2(D) and H1(D, S ), and, for
arbitrary ε > 0, all eigenvalues of T (except for a finite number) belong to the corner | arg λ| < ε
in C.

Proof. For the proof it suffices to apply Theorem 3.6 combined with Lemmas 2.4, 6.3 and 6.4,
for the linear operator L is Fredholm if (L − L0) is compact.

Set

C :=
( n−1∑

j=1

‖∂t j‖ ‖m f j‖

)
‖τ‖2‖ι1‖

2,

where τ : H1(D)→ H1/2(∂D) is the trace operator. This constant appears persistently in the last
two theorems.
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Theorem 6.8. Let estimate (2.5) and one of the three conditions of Lemma 2.4 be fulfilled.
Suppose that b−1

1 δb0 ∈ L∞(∂D \ S ), t j/b1 ∈ C0,λ(∂D \ S ), for 1 ≤ j ≤ n − 1, with λ > 1/2, and
the constant C does not exceed sin(π/n). Then the operator L : HSL(D) → H−SL(D) related to
problem (2.21) is Fredholm. Moreover, the system of root functions of the corresponding closed
operator T in H−SL(D) is complete in the spaces H−SL(D), L2(D) and H1(D, S ), and, for any ε > 0,
all eigenvalues of T (except for a finite number) lie in the corner | arg λ| < arcsin C + ε in the
complex plane.

Proof. This is an immediate consequence of Theorem 4.5 and Lemmas 2.4, 2.7, 6.3, 6.4 and
6.6.

Theorem 6.9. Let estimate (2.5) and one of the three conditions of Lemma 2.4 be fulfilled. If
b−1

0,0δb0 ∈ L∞(∂D \ S ), t j/b1 ∈ C0,λ(∂D \ S ), for 1 ≤ j ≤ n − 1, with λ > 1/2, and

‖b−1
0,0 δb0‖L∞(∂D\S ) + C ≤ sin(π/n),

then the operator L : HSL(D) → H−SL(D) related to problem (2.21) is Fredholm. Moreover, the
system of root functions of the corresponding closed operator T in H−SL(D) is complete in the
spaces H−SL(D), L2(D) and H1(D, S ), and, for any ε > 0, all but a finite number of eigenvalues
of T lie in the corner

| arg λ| < arcsin
(
‖b−1

0,0 δb0‖L∞(∂D\S ) + C
)

+ ε.

Proof. This assertion follows immediately from Theorem 4.5, Lemmas 2.4, 2.7, 6.3, 6.5 and 6.6
as well.

7. Zaremba type problems

As but one example of boundary value problems satisfying the coercive estimate (2.5) we
consider the mixed problem

−∆nu +

n∑
j=1

a j(x)∂ ju + a0(x)u = f in D,

u = 0 on S ,
∂ϑu = 0 on ∂D \ S

(7.1)

for a real-valued function u, where ∆n is the Laplace operator in Rn, the coefficients a1, . . . , an

and a0 are assumed to be bounded functions in D, and ∂ϑ := ∂ν + ε∂t with ε ∈ C and t a
tangential vector field on ∂D. By a theorem of Rademacher, t(x) is defined almost everywhere at
the boundary and its coefficients are bounded functions on ∂D. We assume that t vanishes on S
and is of Hölder class C0,λ with λ > 1/2 in ∂D \ S , cf. [Zar10].

In this case ai, j = δi, j, b0 = χS is the characteristic function of the boundary set S , and
b1 = χ∂D\S is that of ∂D \ S .

From results of the previous section it follows that the root functions related to problem (7.1)
in the space HSL(D) are complete in H−SL(D), L2(D) and H1(D, S ) for all ε of sufficiently small
modulus.

We finish the paper by showing a second order elliptic differential operator in R2 for which
no Zaremba-type problem is Fredholm. The idea is traced back to a familiar example of A.V.
Bitsadze (1948).
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Example 7.1. Let A = ∂̄2 be the square of the Cauchy-Riemann operator in the plane of complex
variable z. We choose D to be the upper half-disk of radius 1, i.e., the set of all z ∈ C satisfying
|z| < 1 and =z > 0. As S we take the upper half-circle, i.e., the part of ∂D lying in the upper
half-plane. Consider the function sequence

uk(z) = (|z|2 − 1)
sin(kz)

ks ,

for k = 1, 2, . . ., where s is a fixed positive number. Each function uk vanishes on S . Moreover,
for any differential operator B of order < s with bounded coefficients, the sequence {Buk} con-
verges to zero uniformly on ∂D \ S = [−1, 1]. Since |uk(z)| → ∞ for all z ∈ D, we deduce that
no reasonable setting of Zaremba-type problem is possible.
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[Mét77] Métivier, G., Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. Soc. Math. France,

Mem. 51-52 (1977), 125–219.
[Mik76] Mikhailov, V. P., Partial Differential Equations, Nauka, Moscow, 1976.

[PS13] Polkovnikov, A., and Shlapunov, A., On the spectral properties of a non-coercive mixed problem associ-
ated with ∂-operator, to appear in J. Siberian Fed. Uni. 6 (2013), No. 2.

[Sch60] Schechter, M., Negative norms and boundary problems, Ann. Math. 72 (1960), No. 3, 581–593.
[Shl96] Shlapunov, A. A., Spectral decomposition of Green’s integrals and existence of W s,2 -solutions of matrix

factorizations of the Laplace operator in a ball, Rend. Sem. Mat. Univ. Padova 96 (1996), 237–256.
[Slo58] Slobodetskii, L. N., Generalized spaces of S.L. Sobolev and their applications to boundary problems for

partial differential equations, Scient. Notes of Lenigr. Pedag. Inst. 197 (1958), 54–112.
[SKK73] Sato, M., Kawai, T., and Kashiwara, M., Microfunction and pseudo-differential equations, Springer Lec-

ture Notes in Math. 287 (1973), 265–529.
[Str84] Straube, E. J., Harmonic and analytic functions admitting a distribution boundary value, Ann. Sc. Norm.

Super. Pisa, Cl. Sci. 11 (1984), No. 4, 559–591.
[Tar06] Tarkhanov, N., On the root functions of general elliptic boundary value problems, Compl. Anal. Oper.

Theory 1 (2006), 115–141.
[VdW67] Van derWaerden, B. L., Algebra, Springer-Verlag, Berlin, 1967.
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