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We consider a non-coercive Sturm–Liouville boundary value problem in a bounded domain D of the
complex space Cn for the perturbed Laplace operator. More precisely, the boundary conditions are of
Robin type on ∂D while the first order term of the boundary operator is the complex normal derivative.
We prove that the problem is Fredholm one in proper spaces for which an Embedding Theorem is obtained;
the theorem gives a correlation with the Sobolev-Slobodetskii spaces. Then, applying the method of weak
perturbations of compact self-adjoint operators, we show the completeness of the root functions related to
the boundary value problem in the Lebesgue space. For the ball, we present the corresponding eigenvectors
as the product of the Bessel functions and the spherical harmonics.

Keywords: Sturm-Liouville problem, non-coercive problems, the multidimensional Cauchy-Riemann op-
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Introduction

Non-coercive boundary value problems for elliptic differential operators attract attention of
mathematicians since the middle of XX-th century (see, for instance, [1, 2]). One of the typical
problems of this type is the famous ∂-Neumann problem for the Dolbeault complex (see [3]). The
investigation of the problem resulted in the discovery of the subellipticity phenomenon which
greatly influenced to the development of the Theory of Partial Differential Equations (cf. [4]).

As it it known (under reasonable assumptions) the Spectral Theory gives both the solvability
conditions and the formulae for the exact and the approximate solutions to boundary value
problems via expansions over (generalized) eigenfunctions related to the corresponding linear
operators (see, for instance, [5] and elsewhere). This is well understood for the coercive boundary
value problems in smooth domains for both self-adjoint and non-selfadjoint cases (see [6–8]). For
the Spectral Theory related to the elliptic problems in Lipschitz domains we refer to the survey [9]
and its bibliography (see also [10, 11] for the domains with the conic and edge singularities).
Recently Agranovich [12] noted that the use of the negative Sobolev spaces gives an additional
advantage proving the completeness of the root functions related to the coercive boundary value
problems in non-smooth domains.
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The aim of the present paper is to extend the results to the non-coercive boundary value
problem for the weakly perturbed Laplace operator in the complex space Cn (∼= R2n). First,
using the standard methods of the Functional Analysis (see [13,14] and elsewhere) we prove that
the problem is a Fredholm one in the proper Sobolev type spaces. Then, applying the method of
weak perturbations of compact self-adjoint operators (see [6]), we prove the completeness of the
generalized eigenvectors related to the boundary value problem in the Lebesgue space. Examples
of the eigenfunctions related to the problem in the ball are constructed.

1. The mixed problem

Let D be a bounded domain in the complex space Cn ∼= R2n with a Lipschitz boundary,
i.e., the surface ∂D is locally the graph of a Lipschitz function. In particular, the boundary ∂D
possesses a tangent hyperplane almost everywhere.

Let the complex structure in Cn be given by zj = xj+
√
−1xn+j with j = 1, . . . , n and ∂̄ stand

for the Cauchy-Riemann operator corresponding to this structure, i.e., the column of n complex

derivatives
∂

∂z̄j
=

1
2

( ∂

∂xj
+
√
−1

∂

∂xn+j

)
. The formal adjoint ∂̄∗ of ∂̄ with respect to the usual

Hermitian structure in the space L2(Cn) is the line of n operators −1
2

( ∂

∂xj
−
√
−1

∂

∂xn+j

)
=:

− ∂

∂zj
. Then an easy computation shows that ∂̄∗∂̄ just amounts to the −1/4 multiple of the

Laplace operator ∆2n =
∑2n

j=1

(
∂

∂xj

)2

in R2n.

We consider complex-valued functions defined in the domain D and its closure D. We write
Lq(D) for the Lebesgue space, i.e. the set of all measurable functions u in D, such that the
integral of |u|q over D is finite. We also write Hs(D), s ∈ N, for the corresponding Sobolev space
of functions with all the weak derivatives up to order s belonging to L2(D). For non-negative
non-integer s we denote by Hs(D) the Sobolev-Slobodetskii space, see, for instance, [14].

Consider the second order linear partial differential operator A in the domain D associated
with the Cauchy-Riemann operator:

Au = −∆2n +
n∑
j=1

aj(z)
∂u

∂z̄j
+ a0(z)u,

the coefficients aj and a0 being of class L∞(D). Consider also a first order boundary operator

B = b1(z)∂ν + b0(z)

where ∂ν =
∑n

j=1

(
νj(z)−

√
−1νj+n(z)

) ∂

∂z̄j
is the complex normal derivative and ν(z) =

(ν1(z), . . . ν2n(z)) is the unit normal vector to ∂D at the point z (cf. with the usual normal

derivative
∂

∂ν
=
∑2n

j=1
νj(z)

∂

∂xj
). The coefficients b0(z) and b1(z) are assumed to be bounded

measurable functions on ∂D satisfying |b0|2 + |b1|2 6= 0. We allow the function b1(z) to vanish
on an open connected subset S of ∂D with piecewise smooth boundary ∂S.

Consider the following boundary value problem with the Robin-type condition on the surface
∂D. Given a distribution f in D, find a distribution u in D which satisfies in a proper sense{

Au = f in D,

Bu = 0 on ∂D.
(1)
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Note that in general the Shapiro-Lopatinskii condition is violated on the smooth part of ∂D \ S
for the pair (A,B) because if S = ∅, aj ≡ 0 for all j = 0, . . . , n and b0 ≡ 0 problem (1) is a
version of the famous ∂-Neumann problem (cf. [3]).

Denote by H1(D,S) the subspace of H1(D) consisting of those functions whose restriction to
the boundary vanishes on S. This space is Hilbert under the induced norm. It is easily seen that
smooth functions on D vanishing in a neighborhood of S are dense in H1(D,S); then the space
H1(D, ∂D) is usually denoted H1

0 (D). Since on S the boundary operator reduces to B = b0 and
b0(z) 6= 0 for z ∈ S, the functions of H1(D) satisfying Bu = 0 on ∂D belong to H1(D,S).

As we want to study perturbations of self-adjoint operators we split both a0 and b0 into two
parts a0 = a0,0 + δa0, b0 = b0,0 + δb0, where a0,0 is a non-negative bounded function in D and
b0,0 a bounded function on ∂D satisfying b0,0/b1 ≥ 0. Consider now the Hermitian form

(u, v)+ = 4
n∑
j=1

(
∂u

∂z̄j
,
∂v

∂z̄j

)
L2(D)

+ (a0,0u, v)L2(D) + 4(b0,0b−1
1 u, v)L2(∂D\S).

on the space H1(D,S). It follows from the Uniqueness Theorem for holomorphic functions that
the form defines a scalar product on H1(D,S) if one of the following conditions holds true:

1) the open set S ⊂ ∂D is not empty;
2) a0,0 ≥ c0 in U with some constant c0 > 0 on an open non-empty set U ⊂ D;
3) b0,0 ≥ c1 in V with some constant c0 > 1 on an open non-empty set V ⊂ ∂D \ S.
Then we denote by H+(D) the completion of H1(D,S) with respect to the norm ‖ · ‖+

coherent with the scalar product (·, ·)+ .
From now on we assume that the space H+(D) is continuously embedded into the Lebesgue

space L2(D), i.e.,
‖u‖L2(D) ≤ c ‖u‖+ for all u ∈ H+(D), (2)

where c is a constant independent of u. It is true under rather weak assumptions (see Theorem
1 below). Now we need the continuous inclusion

ι : H+(D) ↪→ L2(D), (3)

to specify the dual space of H+(D) via the pairing in L2(D). More precisely, let H−(D) be the
completion of H1(D,S) with respect to the negative norm (cf. [15])

‖u‖− = sup
v∈H1(D,S)

v 6=0

|(v, u)L2(D)|
‖v‖+

.

Lemma 1. The space L2(D) is continuously embedded into H−(D). If inclusion (3) is compact
then the space L2(D) is compactly embedded into H−(D).

Proof. By definition and estimate (2) we get

‖u‖− ≤ sup
v∈H1(D,S)

v 6=0

‖u‖L2(D)‖v‖L2(D)

‖v‖+
≤ c ‖u‖L2(D)

for all u ∈ L2(D), i.e., the space L2(D) is continuously embedded into H−(D) indeed.
Suppose (3) is compact. Then the Hilbert space adjoint ι∗ : L2(D) ↪→ H+(D) is compact,

too. As H1(D,S) is dense in H+(D) and the norm ‖ · ‖+ majorizes ‖ · ‖L2(D) we conclude that

‖u‖− = sup
v∈H1(D,S)

v 6=0

|(ι(v), u)L2(D)|
‖v‖+

= sup
v∈H+(D)
v 6=0

|(v, ι∗(u))+|
‖v‖+

= ‖ι∗(u)‖+ (4)
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for all u ∈ L2(D). Therefore, any weakly convergent sequence in L2(D) converges in H−(D),
which shows the second part of the lemma.

Since C∞comp(D) is dense in L2(D) and the norm ‖ · ‖L2(D) majorizes the norm ‖ · ‖−, we
conclude that C∞comp(D) is dense in H−(D), too.

Lemma 2. The Banach space H−(D) is topologically isomorphic to the dual space H+(D)′ and
the isomorphism is defined by the sesquilinear pairing

〈v, u〉 = lim
ν→∞

(v, uν)L2(D) (5)

for u ∈ H−(D) and v ∈ H+(D) where {uν} is any sequence in H1(D,S) converging to u.

Proof. See, for instance, [16, Theorem 1.4.28].

Note that H+(D) is reflexive, since it is a Hilbert space. Hence it follows that (H−(D))′ =
H+(D), i.e., the spaces H+(D) and H−(D) are dual to each other with respect to (5).

From now on the Sobolev space H−s(D), s > 0, stands for the dual to Hs(D) via the pairing
induced by the scalar product (·, ·)L2(D) as in Lemma 2 above. Similarly, let H̃−s(D), s > 0,
stands for the dual to Hs

0(D). Obviously H−s(D) ⊂ H̃−s(D). We also denote by hs(D) the
space of all the harmonic functions in the domain D belonging to the Sobolev space Hs(D).

Theorem 1. Let ∂D be a Lipschitz surface. Then
1) the space H1(D,S) is is continuously embedded into H+(D) if b0,0b−1

1 ∈ L∞(∂D \ S);
2) the elements of H+(D) belong to H1

loc(D ∪ S, S); in particular, if S = ∂D then the space
H+(D) is continuously embedded into H1

0 (D);
3) the space H+(D) is continuously embedded into L2(D) if

a0,0 ≥ c0 in D with some constant c0 > 0; (6)

4) the space H+(D) is continuously embedded into h1/2−ε(D)⊕H1
0 (D) with any ε > 0 if

b0,0b
−1
1 ≥ c1 in ∂D \ S with some constant c1 > 0. (7)

Moreover, if ∂D ∈ C2 then, under (7), the space H+(D) is continuously embedded into the space
h1/2(D)⊕H1

0 (D). In particular, estimate (7) implies that ι is compact.

Proof. If b0,0b−1
1 ∈ L∞(∂D \ S) then, according to the Trace Theorem for the Sobolev spaces,

we obtain

‖u‖2+ ≤ ‖
√
a0,0‖L∞(D)‖u‖2L2(D) + ‖

√
b0,0b

−1
1 ‖L∞(∂D\S)‖u‖2L2(∂D) + ‖u‖2H1(D) ≤ c ‖u‖

2
H1(D)

for all u ∈ H1(D,S) with some positive constant c independent on u. This proves 1).
The statement 2) follows from the fact that the Dirichlet problem for the Helmholtz operator

(a0,0 −∆2n) is coercive.
Now using the definition of the norm ‖ · ‖+ we see that

‖u‖+ ≥ ‖
√
a0,0u‖L2(D) ≥

√
c0 ‖u‖2L2(D)

i.e. estimate (2) holds true and the embedding ι is continuous under estimate (6).
Further, let (7) holds. Then the norm ‖ · ‖+ is not weaker than the norm ‖ · ‖h on H1(D,S)

defined by

‖u‖h =
(

4
n∑
j=1

∥∥∥∥ ∂u∂z̄j
∥∥∥∥2

L2(D)

+ 4‖u‖2L2(∂D\S)

)1/2

, u ∈ H1(D,S).
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Fix a number ε > 0. Let us show that the norm ‖ · ‖h is not weaker than the norm ‖ · ‖H1/2−ε(D)

on H1(D,S). Indeed, let φ2n denote the two-sided fundamental solution of the convolution type
for the Laplace operator ∆2n in R2n. Then the volume potential

Φv(x) =
∫
D

φ2n(x− y)v(y)dx, v ∈ L2(D), (8)

induces the bounded linear operator Φ : L2(D)→ H2(X) for any bounded domain X containing
D. It is clear that any element u ∈ H−s(D) extends up to an element U ∈ H−s(R2n) via

〈U, v〉R2n = 〈u, v〉D for all v ∈ Hs(R2n);

here 〈·, ·〉D is the pairing on H×H ′ for a space H of distributions over D. It is natural to denote
it by χDu. Thus, the defined in this way linear operator χD : H−s(D) → H−s(R2n), s ∈ R+,
is obviously bounded. The distribution χDu is supported in D, so we actually may reduce our
consideration to a smooth closed manifold. This allows us to conclude that the volume potential
(8) induces the bounded linear operator

Φ ◦ χD : Hε−1/2(D)→ Hε+3/2(X), 0 < ε ≤ 1/2,

for any bounded domain X containing D (see, [17]). Hence, the operators

∂

∂z̄j
◦ Φ ◦ χD : Hε−1/2(D)→ Hε+1/2(X) and ∂ν ◦ Φ ◦ χD : Hε−1/2(D)→ Hε(∂D)

are bounded, too, if 0 < ε ≤ 1/2 (the last one is bounded because of the Trace Theorem for the
Sobolev spaces). For ε = 0 the arguments fail because the elements of the space H1/2(X) may
have no traces on ∂D ⊂ X.

Now the integration by parts with u ∈ H1(D,S) and v ∈ L2(D) yields

(v, u)L2(D) = (∆2nΦv, u)L2(D) = 4
n∑
j=1

(
∂Φv
∂z̄j

,
∂u

∂z̄j

)
L2(D)

+ 4(∂νΦv, u)L2(∂D\S). (9)

Take a sequence {vk} ⊂ C∞(D) converging to v in the space Hε−1/2(D), 0 < ε < 1/2. As the

space Hs(D) is reflexive for each s, using (9) and the continuity of the operators
∂

∂z̄j
◦G ◦ χD,

∂ν ◦G ◦ χD above, we obtain for u ∈ H1(D,S):

‖u‖H1/2−ε(D) = sup
v∈Hε−1/2(D)

v 6=0

|〈v, u〉|
‖v‖Hε−1/2(D)

= sup
v∈Hε−1/2(D)

v 6=0

limk→+∞ |(vk, u)L2(D)|
‖v‖Hε−1/2(D)

=

= 4 sup
v∈Hε−1/2(D)

v 6=0

|
∑n
j=1( ∂

∂z̄j
◦ Φ ◦ χDv, ∂u∂z̄j

)L2(D) + (∂ν ◦ Φ ◦ χDv, u)L2(∂D\S)|
‖v‖Hε−1/2(D)

≤

≤ c

 n∑
j=1

∥∥∥∥ ∂

∂z̄j
◦ Φ ◦ χD

∥∥∥∥∥∥∥∥ ∂u∂z̄j
∥∥∥∥
L2(D)

+
∥∥∂ν ◦ Φ ◦ χD

∥∥ ‖u‖L2(∂D\S)

 .

with a constant c > 0 being independent on u. Thus, there are constant C1 > 0, C2 > 0 such
that

‖u‖H1/2−ε(D) ≤ C1 ‖u‖h ≤ C2 ‖u‖+ for all u ∈ H1(D,S).
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This proves the continuous embedding H+(D) ↪→ H1/2−ε(D) with any ε > 0.
Further, let G and P stand for the Green function and the Poisson integral of the Dirichlet

Problem for the Laplace operator ∆2n inD respectively. Then they induce the bounded operators
(cf. [13, 15])

G1 : H̃−1(D)→ H1
0 (D), P1 : H1/2(D)→ h1(D).

As the operator ∆2n extends to the continuous linear operator ∆2n : H1(D)→ H̃−1(D) via

〈∆2nu, v〉 = 4(∂u, ∂v)L2(D), u ∈ H1(D), v ∈ H1
0 (D),

we see that u = P1u+G1∆2nu for each u ∈ H1(D). Hence, for u, v ∈ H1(D,S), we obtain:

(u, v)h = (Pu, Pv)L2(∂D\S) + (∂G∆2nu, (∂G∆2nv)L2(D). (10)

In particular,

‖u‖2+ ≥ ‖u‖2h = ‖P1u‖2L2(∂D\S) + ‖∂G1∆2nu‖2L2(D) for all u ∈ H1(D,S).

On the other hand, the G̊arding inequality yields

‖v‖H1(D) ≤ ‖∂v‖L2(D) for all u ∈ H1
0 (D). (11)

Therefore, using (10) and (11) we conclude that any sequence {uk} ⊂ H1(D,S) converging to
u ∈ H+(D) in the space H+(D) can be presented as

uν = P1uk +G1∆2nuk

where the sequence {G1∆2nuk} converges in H1
0 (D) ⊂ H1(D,S) to an element w1. Now the

already proved part of the theorem yields that {P1uk} converges to an element w2 in H1/2−ε(D).
According to the Stiltjes–Vitali Theorem the element w2 is harmonic in D. Hence

u = w1 + w2, ∆2nu = ∆2nw, u = Pu+G1∆2nu; (12)

here Pu is the Poisson integral of the trace u|∂D ∈ L2(∂D) related to u ∈ H+(D). This proves
the continuous embedding H+(D) ↪→ h1/2−ε(D)⊕H1

0 (D).
Finally, if ∂D ∈ C2 then we may use the regularity of the solutions to the Dirichlet Problem

for the Laplace operator in D. More precisely, in this case we have the bounded linear operators

G2 : L2(D)→ H2(D), ∂ν ◦G2 : L2(D)→ H1/2(∂D), P2 : H3/2(∂D)→ H2(D);

for a Lipschitz boundary these may be not true in general.
To finish the proof we will show that the Poisson integral P induces the bounded linear

operator P1/2 : L2(∂D) → H1/2(D). With this aim, for u0 ∈ H−1/2(∂D) take a sequence
{u0k
} ⊂ H1/2(∂D) converging to u0 in H−1/2(∂D). Then, integrating by parts we obtain:

‖P1u0k
‖L2(D) = sup

v∈L2(D)
v 6=0

|(v, P1u0k
)L2(D)|

‖v‖L2(D)
= sup
v∈L2(D)
v 6=0

|(∆2nG2v, P1u0k
)L2(D)|

‖v‖L2(D)
≤

≤ sup
v∈L2(D)
v 6=0

|(∂νG2v, u0k
)L2(∂D)|

‖v‖L2(D)
≤ sup
v∈L2(D)
v 6=0

‖∂νG2v‖H1/2(∂D)‖u0k
‖H−1/2(∂D)

‖v‖L2(D)
≤

≤ ‖∂νG2‖‖u0k
‖H−1/2(∂D).
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Hence the sequence {P1u0k
} converges in L2(D) and the Poisson integral P induces the bounded

linear operator P0 : H−1/2(∂D) → L2(D). Now we may use the interpolations arguments
(see [14], [18]). Indeed, by the interpolation, the Poisson integral P induces the bounded linear
operators

Pθ : [H−1/2(∂D), H1/2(∂D)]θ → [L2(D), H1(D)]θ, 0 < θ < 1,

where [H0, H1]θ means the interpolation between the pair H0 and H1 of Hilbert spaces. But

[L2(D), H1(D)]θ = Hθ(D), [H−1/2(∂D), H1/2(∂D)]θ = H1/2−θ(∂D),

see, for instance, [14, Ch. I, Theorems 9.6 and 12.5]. Therefore, choosing θ = 1/2 we conclude
that the Poisson integral P induces the bounded linear operator P1/2 : L2(∂D) → H1/2(D).
Hence (12) implies the continuous embedding H+(D) ↪→ h1/2(D)⊕H1

0 (D) if ∂D ∈ C2.

We emphasize that the space H+(D) is not continuously embedded into H1(D) unless S =
∂D, because the Shapiro-Lopatinskii condition is violated on the smooth part of ∂D\S. Actually
the embeddings described in Theorem 1 are sharp at least for the ball (see Examples 1 and 2
below).

Further, on integrating by parts we see that

(Au, v)L2(D) = 4
n∑
j=1

(
∂u

∂z̄j
,
∂v

∂z̄j

)
L2(D)

+ 4
(
b−1
1 b0u, v

)
L2(∂D\S)

+
( n∑
j=1

aj
∂u

∂z̄j
+ a0u, v

)
L2(D)

for all u ∈ H2(D) and v ∈ H1(D) satisfying the boundary condition of (1). Suppose that

|δb0| ≤ ĉ1| b0,0| on ∂D \ S with a positive constant ĉ1. (13)

Then, if
|δa0| ≤ ĉ2| a0,0| on D with a positive constant ĉ2. (14)

or (7) is fulfilled, we have∣∣∣ (b−1
1 δb0u, v

)
L2(∂D\S)

+
( n∑
j=1

aj
∂u

∂z̄j
+ δa0 u, v

)
L2(D)

∣∣∣ ≤ c ‖u‖+‖v‖+ (15)

for all u, v ∈ H1(D,S), where c is a positive constant independent of u and v. Therefore, in
these cases for each fixed u ∈ H+(D), the sesquilinear form

Q(u, v) = 4
(
∂u

∂z̄j
,
∂v

∂z̄j

)
L2(D)

+ 4
(
b−1
1 b0u, v

)
L2(∂D\S)

+
( n∑
j=1

aj
∂u

∂z̄j
+ a0u, v

)
L2(D)

determines a continuous linear functional f on H+(D) by f(v) := Q(u, v) for v ∈ H+(D). By
Lemma 2, there is a unique element in H−(D), which we denote by Lu, such that

f(v) = 〈v, Lu〉

for all v ∈ H+(D). We have thus defined a linear operator L : H+(D)→ H−(D). From (15) it
follows that L is bounded. The bounded linear operator L0 : H+(D) → H−(D) defined in the
same way via the sesquilinear form (·, ·)+, i.e.,

(v, u)+ = 〈v, L0u〉 (16)
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for all u, v ∈ H+(D), corresponds to the case aj ≡ 0 for all j = 1, . . . , n, a0 = a0,0, and b0 = b0,0.
We are thus lead to a weak formulation of problem (1). Given f ∈ H−(D), find u ∈ H+(D),

such that
Q(u, v) = 〈v, f〉 for all v ∈ H+(D). (17)

Now one can handle problem (17) by standard techniques of functional analysis, see for
instance [13, Ch. 3, §§ 4–6]) for the coercive case. As the properties of the Dirichlet problem are
well known, we will be concentrated on the study of the mixed problem under condition (6) or
condition (7) of Theorem 1 in the case S 6= ∂D.

Lemma 3. Assume that aj ≡ 0 for all j = 1, . . . , n, δa0 = 0, and δb0 = 0. If (6) or (7)
hold then for each f ∈ H−(D) there is a unique solution u ∈ H+(D) to problem (17), i.e., the
operator L0 : H+(D)→ H−(D) is continuously invertible. Moreover, the norms of both L0 and
its inverse L−1

0 are equal to 1.

Proof. Under the hypotheses of the lemma, (17) is just a weak formulation of problem (1) with
A and B replaced by A0 = −∆2n + a0,0, B0 = b1∂ν + b0,0, respectively. The corresponding
bounded operator in Hilbert spaces just amounts to L0 : H+(D)→ H−(D) defined by (16). Its
norm equals 1, for, by Lemma 2, we get

‖L0u‖− = sup
v∈H+(D)
v 6=0

|(〈v, L0u〉|
‖v‖+

= sup
v∈H+(D)
v 6=0

|(v, u)+|
‖v‖+

= ‖u‖+ (18)

whenever u ∈ H+(D).
The existence and uniqueness of solutions to problem (17) follows immediately from the Riesz

theorem on the general form of continuous linear functionals on Hilbert spaces. From (18) we
conclude that L0 is actually an isometry of H−(D) onto H+(D), as desired.

Corollary 1. Let estimates (7), (13) be fulfilled and the constant ĉ in (13) satisfy 0 < ĉ1 < 1.
Then problem (17) is Fredholm.

Proof. If aj = 0 for all 1 ≤ j ≤ n and δa0 = 0 then, under the hypothesis of the corollary, estimate
(15) holds with 0 < c < 1. In this case the operator L1 : H+(D) → H−(D) corresponding to
problem (17) is easily seen to differ from L0 by a bounded operator δL1 : H+(D) → H−(D)
whose norm does not exceed 0 < c < 1. As L0 is invertible according to Lemma 3 and the inverse
operator L−1

0 has norm 1, a familiar argument shows that L1 is invertible, too.

On the other hand, as δa0 and aj , 1 ≤ j ≤ n belong to L∞(D), the term δa0 +
∑n
j=1 aj(z)

∂u

∂z̄j
induces the bounded linear operator δL2 : H+(D) → L2(D). Then Theorem 1 and Lemma 1
imply that the operator δL2 : H+(D) → H−(D) is compact. This means that the operator
L2 : H+(D)→ H−(D) corresponding to problem (17) differs from the invertible operator L1 by
the compact operator δL2 : H+(D)→ H−(D), i.e. L2 is a Fredholm operator.

2. Spectral properties of the problem

As estimate (6) does not provide the compactness of the embedding ι, we are to study the
spectral properties of problem (17) under condition (7) of Theorem 1 in the case S 6= ∂D. With
this aim we consider the sesquilinear form on H−(D) given by

(u, v)H−(D) := 〈L−1
0 u, v〉 for u, v ∈ H−(D).

– 8 –
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Since
〈L−1

0 u, v〉 = 〈L−1
0 u, L0L

−1
0 v〉 = (L−1

0 u, L−1
0 v)+ for all u, v ∈ H−(D), (19)

the last equality being due to (16), this form is Hermitian. Combining (18) and (19) yields√
(u, u)− = ‖u‖− for all u ∈ H−(D).

From now on we endow the space H−(D) with the scalar product (·, ·)−.
We recall that a compact self-adjoint operator C is said to be of finite order if there is

0 < p < ∞, such that the series
∑
ν |λν |p converges where {λν} is the system of eigenvalues of

the operator C (its existence is provided by Hilbert-Schmidt Theorem, see, for instance, [5] and
elsewhere).

Lemma 4. Suppose that (6) or (7) is fulfilled. Then the inverse L−1
0 of the operator given by

(16) induces positive self-adjoint operators

ι′ι L−1
0 : H−(D)→ H−(D), ι L−1

0 ι′ : L2(D)→ L2(D), L−1
0 ι′ι : H+(D)→ H+(D)

which have the same systems of eigenvalues and eigenvectors; besides, the eigenvalues are posi-
tive. Moreover, if (7) holds true then they are compact operators of finite orders and there are
orthonormal bases in H+(D), L2(D) and H−(D) consisting of the eigenvectors.

Proof. According to Theorem 1 the embedding ι is continuous. As ι′, L−1
0 are bounded, all the

operators (ι′ι L−1
0 ), (ι L−1

0 ι′), (L−1
0 ι′ι) are bounded, too. Then, by (19),

(ι′ι L−1
0 u, v)− = (v, ι′ι L−1

0 u)− = 〈L−1
0 v, ι′ι L−1

0 u〉 = (ιL−1
0 u, ιL−1

0 v)L2(D), (20)

(u, ι′ι L−1
0 v)− = (ι′ι L−1

0 v, u)− = (ιL−1
0 u, ιL−1

0 v)L2(D)

for all u, v ∈ H−(D), i.e., the operator (ι′ι L−1
0 ) is self-adjoint.

Using (16) we get

(ι L−1
0 ι′u, v)L2(D) = (ι(L−1

0 (ι′u)), v)L2(D) = 〈L−1
0 (ι′u), ι′v〉 = (L−1

0 (ι′u), L−1
0 (ι′v))+,

(u, ι L−1
0 ι′v)L2(D) = (ι L−1

0 ι′v, u)L2(D) = (L−1
0 (ι′u), L−1

0 (ι′v))+

for all u, v ∈ L2(D), i.e., the operator (ι L−1
0 ι′) is self-adjoint.

On applying (16) once again we obtain

(L−1
0 ι′ιu, v)+ = (L−1

0 (ι′ι u), v)+ = 〈ι′ι u, v〉 = (ιu, ιv)L2(D), (21)

(u, L−1
0 ι′ιv)+ = (v, u)+ = (ιu, ιv)L2(D)

for all u, v ∈ H+(D), which establishes the self-adjointness of (L−1
0 ι′ι).

Finally, as the operator L−1
0 is injective, so are the operators (ι′ι L−1

0 ), (ι L−1
0 ι′) and (L−1

0 ι′ι).
Hence, all their eigenvectors {uν} (if exist !) belong to the spaceH+(D), for L−1

0 uν lies inH+(D)
and all the eigenvalues are positive. From the injectivity of ι and ι′ we also conclude that the
systems of eigenvalues and eigenvectors of (ι′ι L−1

0 ), (ι L−1
0 ι′) and (L−1

0 ι′ι) coincide.
If (7) holds true then Theorem 1 implies that the embedding ι is compact. Then all the

operators (ι′ι L−1
0 ), (ι L−1

0 ι′), (L−1
0 ι′ι) are compact, too. Now we refer to [7] (see also Proposition

5.4.1 in [17]) that if there is δ > 0 such that a compact operator C maps Hs(D) continuously
to Hs+δ(D), then it has a finite order (actually, one may choose p = n/δ + τ for each τ > 0).
But, under estimate (7), Theorem 1 implies that the operator (ι L−1

0 ι′) actually maps L2(D) to
H1/2−ε(D) with any ε > 0. Hence it has a finite order. As the operators (ι′ι L−1

0 ) and (L−1
0 ι′ι)

have the same eigenvalues, their orders are finite, too.
The last part of the lemma follows from Hilbert–Schmidt Theorem.
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Our next goal is to apply Keldysh’s Theorem (see [6] or [5, Ch. 5, § 8]) for studying the
completeness of root functions of weak perturbations of the finite order compact self-adjoint
operators.

Theorem 2. Let estimate (7) be fulfilled and δb0 = 0. Then, for any invertible operator L :
H+(D) → H−(D) related to problem (17) the system of root functions of the compact operator
(ι′ι L−1) : H−(D)→ H−(D) is complete in the spaces H−(D), L2(D) and H+(D).

Proof. By assumption there is a bounded inverse L−1 : H−(D) → H+(D). Since I − L0L
−1 =

(L− L0)L−1, we conclude that

(ι′ι L−1
0 )− (ι′ι L−1) = (ι′ι L−1

0 )
(
(L− L0)L−1

)
. (22)

As δb0 = 0, the operator (L−L0) : H+(D)→ H−(D) is induced by the term δa0+
∑n
j=1 aj(z)

∂u
∂z̄j

.
Then, as we have seen in the proof of Corollary 1, this operator is compact. Since L−1 is bounded,
it follows that the operator (L− L0)L−1 : H−(D)→ H−(D) is compact, too.

Hence, (ι′ι L−1) is an injective weak perturbation of the compact self-adjoint operator
(ι′ι L−1

0 ) of finite order (see Lemma 4). Then Keldysh’s Theorem [6] or [5, Ch. 5, § 8]) implies
that the countable system {uν} of root functions related to the operator (ι′ι L−1) is complete in
the Hilbert space H−(D).

Pick a root function uν of the operator (ι′ι L−1) corresponding to an eigenvalue λν . Note
that λν 6= 0, for the operator L−1 is injective. By definition there is a natural number m, such
that ((ι′ι L−1)− λνI)muν = 0. Using the binomial formula yields

uν =
m∑
j=1

(
m
j

)
λ−jν (ι′ι L−1)juν .

Hence, uν ∈ H+(D) because the range of the operator L−1 lies in the space H+(D).
We have thus proved that {uν} ⊂ H+(D). Our next concern will be to show that the linear

span L({uν}) of the system {uν} is dense in H+(D) (cf. Proposition 6.1 of [9] and [12, p. 12]).
For this purpose, pick u ∈ H+(D). As L maps H+(D) continuously onto H−(D), we get
Lu ∈ H−(D). Hence, there is a sequence {fk} ⊂ L({uν}) converging to Lu in H−(D). On the
other hand, the inverse L−1 maps H−(D) continuously to H+(D), and so the sequence

L−1fk = L−1ι′ι fk

converges to u in H+(D).
If now uν0 ∈ L({uν}) corresponds to an eigenvalue λ0 of multiplicity m0 then the vector

vν0 = (ι′ι L−1)uν0 satisfies

((ι′ι L−1)− λ0I)m0vν0 = ((ι′ι L−1)− λ0I)m0+1uν0 + λ0((ι′ι L−1)− λ0I)m0uν0 = 0.

Thus, the operator (ι′ι L−1) maps L({uν}) to L({uν}) itself. Therefore, the sequence {ι′ι L−1fk}
still belongs to L({uν}) and we can think of {L−1fk} as sequence of linear combinations of root
functions of ι′ι L−1 converging to u. These arguments show that the subsystem L−1 L({uν}) ⊂
L({uν}) is dense in H+(D).

Finally, since the space C∞0 (D) of the functions with compact supports is included into
H+(D) and C∞0 (D) is dense in the Lebesgue space L2(D), the space H+(D) is dense in L2(D)
as well. This proves the completeness of the system of root functions in L2(D).

If δb0 6= 0 then the corresponding perturbation may be non-compact (see Example 2 below).
In this case one may use another methods to study the root functions (see, for instance, [9,11]).
However these methods are beyond the scope of this paper.
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3. Examples for the unit ball

Let S = ∅ and aj = 0 for all 1 ≤ j ≤ n, b1 = 1 and a0, b0 be constants. Then we obtain the
mixed problem for the Helmholtz equation. In the generalized setting the corresponding spectral
problem reads as

4
n∑
j=1

(
∂u

∂z̄j
,
∂v

∂z̄j

)
L2(D)

+ 4b0(u, v)L2(∂D) + (a0 − λ)(u, v)L2(D) = 0 for all v ∈ H+(D). (23)

In particular, applying the last identity with u = v we conclude that λ ≥ a0,0 if δa0 = δb0 = 0.
We are going to study the Sturm-Liouville problem on the unit ball D = B in Cn. Actually,

the matter is quite similar to the coercive mixed problem for the Laplace operator in the ball
(see [19, Suppl. II, P. 1, §2]).

To this end, we pass to spherical coordinates x = r S(ϕ) where ϕ are coordinates on the unit
sphere ∂D = S in Cn. The Laplace operator ∆ in the spherical coordinates takes the form

∆2n =
1
r2

((
r
∂

∂r

)2

+ (2n− 2)
(
r
∂

∂r

)
−∆S

)
, (24)

where ∆S is the Laplace-Beltrami operator on the unit sphere.
On the other hand, in the unit ball we have

∂

∂ν
= r

∂

∂r
, ∂ν =

n∑
j=1

z̄j
∂

∂z̄j
=

1
2

(
r
∂

∂r
+BS

)
where the operator BS depends on the coordinates on the sphere S only. If, for instance, n = 1

then, in polar coordinates, ∂ν =
1
2

(
r
∂

∂r
+
√
−1

∂

∂ϕ

)
.

To solve the homogeneous equation (−∆2n + a)u = 0 we make use of the Fourier method of
separation of variables. Writing u(r, ϕ) = g(r)h(ϕ) we get two separate equations for g and h,
namely (

−
(
r
∂

∂r

)2

+ (2− 2n)
(
r
∂

∂r

)
+ ar2

)
g = c g

∆Sh = c h,

c being an arbitrary constant.
The second equation has non-zero solutions if and only if c is an eigenvalue of ∆S. These are

well known to be c = k(2n + k − 2), for k = 0, 1, . . . (see for instance [19]). The corresponding
eigenfunctions of ∆S are spherical harmonics hk(ϕ) of degree k, i.e.,

∆Shk = k(2n+ k − 2)hk. (25)

The number of the linearly independent spherical harmonics of the degree k is finite and equals

to J(k) =
(2n+ 2k − 2)(2n+ k − 3)!

k!(2n− 2)!
. In the complex space Cn we may choose the harmonics

hk in accordance with the complex structure. Namely, it possible to find an orthonormal basis
{H(j)

p,q} in L2(S) of consisting on the polynomials of the form

H(j)
p,q(z, z) =

∑
|α|=p,|β|=q

c
(j)
α,βz

αzβ

with complex coefficients c(j)α,β (see, [20]). Let J(p, q) stands for the number of the polynomials
of the bi-degree (p, q) in the basis; of course J(p, q) ≤ J(p+ q). Clearly,

∂νH
(j)
p,q = qH(j)

p,q , BSH
(j)
p,q = (q − p)H(j)

p,q . (26)

– 11 –
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Consider now the following Sturm-Liouville Problem for ordinary differential equation with
respect to the variable 0 < r < 1 (see [19, Suppl. II, P. 1, §2])(

− 1
r2

(
r
∂

∂r

)2

+ (2− 2n)
(1
r

∂

∂r

)
+

(p+ q)(2n+ p+ q − 2)
r2

+ a0

)
g(r) = λ g(r), (27)

∂g

∂r
(1) +

(
2b0 + (q − p)

)
g(1) = 0 and g(r) is bounded at the point r = 0. (28)

Actually, if a0, λ ∈ R then (27) is a version of the Bessel equation, and its (real-valued) solution
g(r) is a Bessel function defined on (0,+∞) while the space of all the solutions is two-dimensional.
For example, if λ = a0 then g(r) = αrp+q + βr2−p−q−n with arbitrary constants α and β is a
general solution to (27). In the general case the space of solutions to (27) contains a one-
dimensional subspace of functions bounded at the point r = 0, cf. [19].

For a triple (p, q, j), fix a non-trivial solution g
(j,i)
p,q (r) to (27), (28) corresponding to an

eigenvalue λ(j,i)
p,q . Then the function u(j,i)

p,q = g
(j,i)
p,q (r)H(j)

p,q(ϕ) satisfies(
−∆2n + (a0 − λ(j)

p,q)
)
u(j,i)
p,q = 0 on Cn, (29)

(b0 + ∂ν)u(j,i)
p,q = 0 on ∂D. (30)

Indeed, by (24), (25), (27) and the discussion above we conclude that this equality holds in
Cn \ {0}. We now use the fact that u(j,i)

p,q is bounded at the origin to see that (29) holds. On the
other hand, (30) follows from (26) immediately.

Theorem 3. Let δa0 = δb0 = 0 and a2
0,0 + b20,0 6= 0. The system {u(j,i)

p,q }, i ∈ N, p, q ∈ Z+,
1 ≤ j ≤ J(p, q), coincides with system of all the eigenvectors of the Sturm-Liouville problem (17)
in the ball B. In particular, it is an orthogonal basis in H+(B), L2(B) and H−(B).

Proof. As a2
0,0 + b20,0 6= 0, Theorem 1 implies that H+(B) is continuously embedded to L2(B).

Now we note that the system {u(j,i)
p,q } consists of eigenvectors of the Sturm-Liouville problem

(17) in the ball B. Moreover, according to [21, Lemma 7.1], the system {u(j,i)
p,q } is orthogonal

with respect to the Hermitian forms (·, ·)L2(S) (·, ·)L2(B) and (∂·, ∂·)[L2(B)]n . In particular, it is
orthogonal in H+(B). The orthogonality of the system in H−(B) is fulfilled because (20) and
Lemma 4 imply

(u(j,i)
p,q , u

(j̃,̃i)
p̃,q̃ )− = (λ(j,i)

p,q )−1(ι′ιL−1
0 u(j,i)

p,q , u
(j̃,̃i)
p̃,q̃ )− = λ

(j̃,̃i)
p̃,q̃ (u(j,i)

p,q , u
(j̃,̃i)
p̃,q̃ )L2(B).

By the very construction, the system {H(j)
p,q}, p, q ∈ Z+, 1 ≤ j ≤ J(p, q), is an orthonormal

basis in L2(S). As it is known, if δa0 = 0 then λ(j,i)
p,q ≥ a0,0 and the countable system {g(j,i)

p,q (r)}i∈N
of eigenfunctions is an orthogonal basis in the weighted space L2

R([0, 1], r) of real valued functions
with the scalar product (

√
r·,
√
r·)L2([0,1]) (see [19, Suppl. II, P. 1, §2]) for each fixed triple (p, q, j)

with p, q ∈ Z+, 1 ≤ j ≤ J(p, q). Easily, it is also is an orthogonal basis in the weighted space
L2([0, 1], r) (consisting of complex-valued functions). Hence, by the familiar arguments, the
system {u(j,i)

p,q = g
(j,i)
p,q (r)H(j)

p,q(ϕ)}, p, q ∈ Z+, is an orthogonal basis in L2(B) = L2(S × [0, 1]),
see, for instance, [23, Ch. VII, §3.5, Theorem 1].

Now, as the system {u(j,i)
p,q } is an orthogonal basis in L2(B) there are no other eigenvalues of the

problem (17) besides the already mentioned λ(j,i)
p,q . Hence there are no eigenvectors corresponding

to a value λ0 besides the linear combinations of the already constructed eigenfunctions related
to this value.

– 12 –



Alexander N.Polkovnikov, Alexander A. Shlapunov On the Spectral Properties of a Non-coercive Mixed ...

As we already mentioned, the space L2(B) is dense in H−(B). Hence the system {u(j,i)
p,q } is

complete in H−(B), too. Finally, let a function u ∈ H+(D) is orthogonal to each vector u(j,i)
p,q

with respect to (·, ·)+. Then, using Lemma 4 and (21) we conclude that

(u, u(j,i)
p,q )L2(B) = (u, L−1

0 ι′ιu(j,i)
p,q )+ = λ(j,i)

p,q (u, u(j,i)
p,q )+ = 0

i.e. u is orthogonal to each vector u(j,i)
p,q in L2(B). Therefore u = 0 in L2(B) and, consequently

in the space H+(D). This exactly means that the system {u(j,i)
p,q } is complete in H+(B).

We note that, as opposed to the coercive case, in this way we can not provide that the
multiplicities of the eigenvalues of problem (17) are finite (cf. Example 1 below).

Example 1. Let a0 = a0,0 = 1, b0 = b0,0 = 0. Then the space H+(D) is continuously embedded
to L2(D) (see Theorem 1 above). It follows from (23) that the eigenvalues (if exists) are equal
or more than 1; moreover the eigenvalue λ = 1 corresponds to the space O2(D) of holomorphic
functions from the Lebesgue space L2(D). The dimension of the eigenspace O2(D) (i.e. the
multiplicity of the eigenvalue λ = 1) is not finite and hence the embedding ι is not compact.
However, Theorem 3 allows us to construct an orthogonal basis in H+(B), L2(B) and H−(B)
consisting of the eigenvectors of problem (17).

Let us see that the corresponding embedding in Theorem 1 is sharp for the ball B. Indeed,

if D = B and n = 1 then the series uε(z) =
∑∞
k=0

zk

(k + 1)ε/2
, ε > 0, converges in H+(D) and

‖uε‖2+ = ‖uε‖2L2(B) = π
∑∞
k=0

1
(k + 1)1+ε

. According to [22, Lemma 1.4],

∥∥∥uε∥∥∥2

Hs(B)
≥ π

∞∑
k=0

k2s

(k + 1)1+ε
, 0 < s ≤ 1,

i.e. for each s ∈ (0, 1) there is ε > 0 such that uε 6∈ Hs(B). Therefore H+(B) can not be
continuously embedded to Hs(B) for any s > 0. �

Actually, the embedding corresponding to (7) in Theorem 1 is sharp for the ball B, too.

Example 2. Let first a0,0 = 0 and b0,0 = b0 = 1. Then H+(B) is continuously embedded to
H1/2(B) and the corresponding operator L0 is of finite order (see Theorems 1 and Lemma 3). If
δa0 ∈ C then, according to Theorem 2, the system of the root functions related to problem (17)
is complete in H+(B), L2(B) and H−(B). On the other hand, problem (27), (28) may be treated
in a similar way as (17) with H0 = L2([0, 1], r), i.e. the term δa0 induces a weak perturbation
of the self-adjoint problem (27), (28) with a0 = a0,0 ≥ 0. Hence, by Keldysh’s Theorem the
corresponding system {g(j,i)

p,q } of its (complex-valued) root functions is complete in the weighted
space L2([0, 1], r). Thus we conclude that the system {u(j,i)

p,q } of the root functions related to
problem (17) is complete in the Lebesgue space L2(B) (and then in H−(B)) for every a0 ∈ C.

If n = 1 then the series uε(z) =
∑∞

k=0

zk

(k + 1)(1+ε)/2
, ε > 0, converges in H+(B) and

‖uε‖2+ = ‖uε‖2L2(S) = 2π
∑∞

k=0

1
(k + 1)1+ε

.

∥∥∥uε∥∥∥2

Hs(B)
≥ π

∞∑
k=0

k2s−1

(k + 1)1+ε
, 0 < s ≤ 1,

i.e. for each s ∈ (1/2, 1) there is ε > 0 such that uε 6∈ Hs(B). Therefore H+(B) can not be
continuously embedded to Hs(B) for any s > 1/2.
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Let now 0 6= |δb0| < b0,0 = 1. Then problem (17) is still a Fredholm one (see Corollary 1).
Take n = 1 and the sequence {zp}. It is bounded in H+(B) because ‖zp‖+ = ‖zp‖L2(S) =

√
2π.

As ‖zp − zk‖2+ = 4π for every k, p ∈ Z+ we conclude that the sequence contains no fundamental
subsequences. On the other hand, for the corresponding bounded operator δL0 we have

‖δL0(zp − zk)‖− = 4 sup
v∈H1(D)
v 6=0

|(v, δb0(zp − zk))L2(S)|
‖v‖+

≥ 4|δb0|‖zp − zk‖L2(S) = 8|δb0|
√
π,

i.e. the sequence {δL0z
p} contains no fundamental subsequences, too. Hence the operator δL0

can not be compact. �

The work was supported by RFBR grant 11-01-91330-NNIO_a.

References

[1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. P. 1, Comm. Pure Appl.
Math. 12 (1959), 623–727.

[2] J.J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl.
Math. 18 (1965), 443–492.

[3] J.J. Kohn, Subellipticity of the ∂ -Neumann problem on pseudoconvex domains: sufficient
conditions, Acta Math. 142 (1979), No. 1-2, 79–122.
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О спектральных свойствах одной некоэрцитивной смешан-
ной задачи ассоциированной ∂-оператором

Александр Н.Полковников
Александр А.Шлапунов

Мы рассматриваем некоэрцитивную задачу Штурма-Лиувилля в некоторой ограниченной обла-
сти D комплексного пространства Cn для возмущенного оператора Лапласа. Более точно, мы
ставим на границе условия Робиновского типа, в которых член первого порядка пропорциона-
лен комплексной нормальной производной. Доказывается фредгольмовость задачи в подходящих
пространствах, для которых получена теорема вложения, дающая соотношения со шкалой про-
странств Соболева-Слободецкого. Затем, используя метод слабого возмущения компактных са-
мосопряженных операторов мы доказываем полноту корневых функций ассоциированных с крае-
вой задачей в пространстве Лебега. Для шара соответствующие собственные вектора представ-
лены как произведение функций Бесселя и сферических гармоник.

Ключевые слова: задача Штурма-Лиувилля, некоэрцитивные задачи, многомерный оператор
Коши-Римана, корневые функции
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