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Abstract. Convergence of iterations of special Green integrals for overdetermined elliptic linear

partial differential operators P of order p ≥ 1 is proved. Using this result we obtain necessary and

sufficient conditions for the solvability in Sobolev space W p,2(D) of the equation Pu = f and, as

a corollary, necessary and sufficient conditions for the vanishing of the first cohomology group of

elliptic differential complexes. Also a criterion for the solvability of a P -Neumann problem for elliptic

differential operators is proved.

1. Introduction

The validity of the Poincarè lemma, i.e. local acyclicity, for elliptic complexes of
linear partial differential operators with smooth coefficients is a long standing problem
of the theory of overdetermined systems.

Although we are still not able to settle this question, we succeed in this paper in
proving a representation formula for solutions of the equation

Pu = f(1.1)

for an operator P with injective symbol whenever they exist.
This representation involves the sum of a series whose terms are iterations of integro-

differential operators, while solvability of (1.1) is equivalent to the convergence of the
series together with the orthogonality to a harmonic space (the last one is a trivial
necessary condition).

For the Dolbeault complex, these integro-differential operators are related to the
Martinelli-Bochner integral. In this case, results similar to ours were obtained by
A.V. Romanov [11].
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Although this example shows that in general we should expect a loss of global
Sobolev regularity for the solutions of (1.1), the case where (1.1) can be solved
without losing global regularity has interesting applications to a variational non ellip-
tic boundary value problem, that we discuss and illustrate by the examples at the end
of the paper.

Let us describe in a more precise way the contents of this paper.
Let X be an open set in IRn (n ≥ 1) and P be an elliptic (l × k)-matrix of partial

differential operators of order p ≥ 1 with C∞ coefficients in X. We are interested
in the solvability of the equation (1.1) in a relatively compact domain D in X. Our
article is based on the following simple but useful observation.

Let H be a linear topological vector space of (vector-valued) functions defined in D
and let us assume that for every u ∈ H the following formula holds true:

u = Π1u+ Π2Pu(1.2)

where Π1,Π2P :H → H and Π1 is a projection from H to the subspace {u ∈ H : Pu =
0 in D} of H. Then one can hope that, under reasonable conditions, the element Π2f
defines a solution of the equation Pu = f in D.

For instance, such an approach was successfully tested on the Cauchy- Riemann
system ∂ in C n (n > 1) and formulae of the type (1.2) were obtained in [1], [4] (see
also [3]) by the method of integral representations. The construction of formula 1.2
by the method of integral representations demands the construction of the special
holomorphic kernels for the integral Π1, essentially depending on the domain D.

In the present paper we use another idea which was also first introduced in complex
analysis.

In 1978 two papers of A.V. Romanov devoted to the iterations of the Martinelli-
Bochner integral were published (see [10], [11]. In particular, in [11] the following
result was obtained.

Theorem 1.1. (A.V. Romanov.) Let D be a bounded domain in C n (n > 1)
with a connected boundary ∂D of class C1, and let M be the Martinelli-Bochner
integral (on ∂D) defined on the Sobolev space W 1,2(D). Then in the strong operator
topology in W 1,2(D)

lim
ν→∞

Mν = Π1

where Π1 is a projection from W 1,2(D) onto the closed subspace of holomorphic
W 1,2(D) -functions.

Using this theorem Romanov (see [11]) obtained a multi-dimensional analogue of
the Cauchy-Green formula in the plane (see, for example, [4]), i.e. a formula of the
type (1.2), and, as consequence, an explicit formula for a solution u ∈ W 1,2(D) of
the equation ∂u = f where D is a pseudo-convex domain with a smooth (infinitely
differentiable) boundary, and f is a ∂ -closed (0,1)-form with coefficients in W 1,2(D).

The Green integrals (see, for example, [16]) associated to systems of linear dif-
ferential equations with injective symbols are natural analogues of the Martinelli-
Bochner integral. Within this more general context in the present paper the possi-
bilities to prove a similar result to the theorem of Romanov and its applications are
discussed.
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The plan of the paper is the following.
Section 1 is devoted to Green operators, Green integrals, and integral repre-

sentations for solutions of systems with injective symbols.
The scheme of the proof of the theorem on iterations for the Green integrals is

described in Section 2. This scheme is a variation of the original proof by A.V.
Romanov [11]. Also some immediate consequences of this theorem are shown in this
section.

In Section 3 the theorem on iterations is established for the Green integrals (associ-
ated to differential operators with injective symbols) which are constructed by means
of special left fundamental solutions (Green functions).

Using results of Section 4, in Section 5 we obtain solvability conditions for equation
(1.1) in the case where the operator P is overdetermined.

In Section 6 we study the first Sobolev cohomology group of elliptic differential
complexes. In particular we obtain criterions for its vanishing.

In Section 7 we obtain necessary and sufficient conditions for the solvability in the
Sobolev spaces of a P -Neumann problem for elliptic differential operators.

After discussing in Section 8 some examples, we consider in Section 9 some applica-
tions of the Theorem on iterations to the Cauchy and Dirichlet problems.

Sections 7 and 9 were inspired by results of Kytmanov [7] for the multi-dimensional
Cauchy-Riemann system.

2. Green integrals and Green operators

Let X ⊂ IRn be an open set, E = X×C k and F = X×C l be (trivial) vector bundles
over X, and dop(E → F ) be the vector space of smooth linear partial differential
operators of order ≤ p between the vector bundles E and F . Throughout this article
we will mostly use the letters v, u for sections of E, and the letters f, g for sections
of F . Sections of E and F of a class C on an open set σ ⊂ X can be interpreted
as columns of complex valued functions from C(σ), that is, C(E|σ) ∼= [C(σ)]k , and
similarly for F . Then P ∈ dop(E → F ) is an (l × k) matrix of scalar linear partial
differential operators, i.e. we have

P (x,D) =
∑
|α|≤p

Pα(x)Dα

where Pα(x) are (l × k)-matrices of smooth functions on X.
Let E∗ be the dual bundle of E, and let (., .)x be a Hermitian metric on E. Then

∗E : E → E∗ is defined by < ∗Ev, u >x= (u, v)x (where u, v are sections of E and
< ., . >x is the natural pairing of E and E∗). Let Λq be the bundle of complex valued
exterior forms of degree q (q = 1, 2, . . .) over X, and dx the usual volume form on X.

We denote by tP ∈ dop(F ∗ → E∗) the transposed operator, and by P ∗ = ∗−1
E (tP )∗F

∈ dop(F → E) the (formal) adjoint operator of P ∈ dop(E → F ).
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Definition 2.1. A differential bilinear operator GP (·, · ∈ dop−1((F ∗, E) → Λn−1)
is said to be a Green operator for P ∈ dop(E → F ) if the following formula holds:

dGP (g, v) =< g, Pv >x dx− < tPg, v >x dx (g ∈ C∞(F ∗), v ∈ C∞(E)).

Green operators always exist for every differential operator P (see [16], p.82). For
instance, a Green operator GP can be written in the form

GP (g, v) =
∑

|β+γ+1j |≤p

′(−1)βDβ(gPβ+γ+1j )D
γv ∗ dxj(2.1)

where
∑′ indicate that an order has been selected with respect to the multi-indexes

β, γ, 1j , and ∗ is the Hodge operator (see [16], p.82).
For the purposes of this paper it is more convenient to write Green operators in

another form.
Let D be a relatively compact domain in X with smooth boundary, and let U be

a neighbourhood of ∂D in X, and Fj = U × Ck (0 ≤ j ≤ r < ∞) be (trivial) vector
bundles over U .

Definition 2.2. A system {Bj}rj=0 of differential operators Bj ∈ dobj (E|U → Fj)
is said to be a Dirichlet system of order r on ∂D if 1) 0 ≤ bj ≤ r; 2) bj 6= bi for
j 6= i; 3) rankC σ(Bj)(y, dρ) = k (0 ≤ j ≤ r), y ∈ U , where σ(Bj) is the principal
symbol of the operator Bj , and ρ belongs to the class of functions defining the domain
D (D = {x ∈ X : ρ(x) < 0, dρ 6= 0 in U}).

The following lemma was proved in [17] (p.280, Lemma 28.3).

Lemma 2.3. Suppose that the boundary ∂D of D is non characteristic for P ∈
dop(E → F ) (l ≥ k). Then, given a Dirichlet system {Bj}p−1

j=0 , one can find a
neighbourhood U of ∂D, and a Green operator GP such that

GP (g, v) =
p−1∑
j=0

< Cjg,Bjv >x ds +
dρ

|dρ|
∧Gν(g, v) (g ∈ C∞(F ∗|U ), v ∈ C∞(E|U ))

where {Cj}p−1
j=0 is a Dirichlet system of order (p − 1) on ∂D with Cj ∈

dop−bj−1(F ∗|U → F ∗j ) (0 ≤ j ≤ p− 1) and Gν ∈ dop−1((F ∗, E)|U → Λn−2).
Without loss of a generality we assume that bj = j. For example, we can set

Bj = Ik
∂j

∂nj , where ∂j

∂nj is the j-th normal derivative with respect to ∂D and Ik is the
unit (k × k)-matrix.

Using Green operators one obtains integral representations for solutions of the
system Pu = 0.

We say that the linear partial differential operator P ∈ dop(E → F ) is elliptic if its
principal symbol

σ(P )(x, ζ) =
∑
α=p

Pα(x)ζα : C k → C l

is injective for every x ∈ X and ζ ∈ IRn\{0}. In particular l ≥ k; we say that P is
determined elliptic if l = k and overdetermined elliptic if l > k. Every determined
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elliptic operator with smooth coefficients has locally a bilateral (i.e. left and right)
fundamental solution, and hence every overdetermined elliptic operator with smooth
coefficients has locally a left fundamental solution. If the coefficients of the operator
P are real analytic, there exist global fundamental solutions of the operator P on X
(cf., for example, [16], §8). From now on we will assume throughout the paper that
the operator P is elliptic.

We will denote by Wm,2(E|D) the Sobolev space of distribution sections of E over
D having weak derivatives in L2(E|D) up to order m and by Sm,2P (D) the closed linear
subspace of Wm,2(E|D) of weak solutions of the equation Pu = 0 in D.

Theorem 2.4. Let L is a (left) fundamental solution of the operator P on X. For
every u ∈W p,2(E|D) the following formula holds:

−
∫
∂D

GP (L(x, y), u(y)) +
∫
D

< L(x, y), Pu(y) >y dy =
{
u(x), x ∈ D,
0, x ∈ X \D(2.2)

Proof. If u ∈ Cp(E|D) (that is, u is p times continuously differentiable in a neigh-
bourhood of D) then (2.2) follows from the Stokes’ formula and Definition 1.1. Since
the boundary of D is smooth, there exists a sequence of functions {uN}∞N=1 ∈ Cp(E|D)
approximating u in W p,2(E|D). Then for every N ∈ IN

−
∫
∂D

GP (L(x, y), uN (y))+
∫
D

< L(x, y), PuN (y) >y dy =
{
uN (x), x ∈ D,
0, x ∈ X \D

(2.3)
Using the boundedness theorem for pseudo-differential operators (see [9], 1.2.3.5)

we conclude that the second integral in the left hand side of (2.2) is a bounded linear
operator from W p,2(E|D) to W p,2(E|D).

Thus, to obtain (2.2) it suffices to pass to the limit in (2.3) for N →∞ . 2

Remark 2.5. The boundary integral in the left hand side of (2.2) does not depend
on the choice of the Green operator GP .

Corollary 2.6. Let L be a bilateral fundamental solution of the operator P on X.
Then the boundary integral in (2.2) is a (bounded) projection from Wm,2(E|D) onto
Sm,2P (D); and for every f ∈ Wm−p,2(F|D) (m ≥ p) the integral

∫
D
< L(x, y), f(y) >y

dy is a Wm,2(E|D)-solution of equation (1.1) in D.

Proof. Since the derivatives Dαu (|α| ≤ p − 1) have natural boundary values
Dαu|∂D ∈ Wm−|α|−1/2,2(E|∂D), it is easy to see from [16] (Proposition 9.4) that
the boundary integral in (2.2) does not depend on the choice of the Green operator
GP . Therefore, choosing as GP the Green operator provided by Lemma 1.3, and
using boundedness theorem for potential (co-boundary) operators on a manifold with
boundary ([9], 2.3.2.5) one can conclude that the boundary integral in (2.2) defines a
bounded linear operator from Wm,2(E|D) to Wm,2(E|D). Hence the statement follows
from the properties of bilateral fundamental solutions of elliptic differential operators.
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Remark 2.7. All the discussion above can be repeated, with small technical
changes, under weaker smoothness assumptions on ∂D.

If the operator P is overdetermined, it may happen that there are no right (in
particular bilateral) fundamental solutions.

Example 2.8. If P is the Cauchy-Riemann system ∂ in C n (∼= IR2n), n > 1, then
there are no right fundamental solutions of P (due to the theorem on removability of
compact singularities of holomorphic functions in C n for n > 1). As a left fundamental
solution of the Cauchy - Riemann system we can take L(ζ, z) = tP ∗(ζ)Φ(ζ, z)
where Φ is the standard fundamental solution of the Laplace operator in IR2n and
ζ, z ∈ C n. In this case (2.2) is the Martinelli - Bochner formula (see [1]) and the
boundary integral in (2.2) is the Martinelli -Bochner integral. It is known that
the Martinelli -Bochner integral gives harmonic but, in general, not holomorphic
function everywhere outside of ∂D. Hence it is not a projection from Wm,2(E|D) onto
Sm,2
∂

(D). Moreover, the integral u(x) =
∫
D
< L(x, y), f(y) >y dy is not solution of

the equation ∂u = f in the domain D.
Romanov [11] proved that, if D is a bounded domain in C n, the limit limν→∞Mν

of iterations of the Martinelli-Bochner integral M in the Sobolev space W 1,2(D)
exists; and that this limit is a projection from W 1,2(D) onto the space of holomorphic
W 1,2(D) - functions (i.e. onto S1,2

∂
(D)). Using the iterations he also obtained a multi-

dimensional analogue of the Cauchy-Green formula in the plane, and, as a corollary,
an explicit formula for solving the equation ∂u = f in pseudo-convex domains in C n.

It turns out that the convergence of the iterations is not a property which holds only
for the Martinelli -Bochner integral. For example, in [14] the theorem on iterations
was proved for special Green integrals of matrix factorizations of the Laplace operator
in IRn. In the next two sections we will prove a theorem on iterations for special Green
integrals associated to general elliptic operators.

3. A theorem on iterations

Let P ∈ dop(E → F ) and let us denote by ∆ ∈ do2p(E → E) the differential operator
P ∗P . The operator ∆ is a determined elliptic operator of order 2p if and only if P
is elliptic of order p. We assume that ∆ is elliptic and has a bilateral fundamental
solution Φ on X. As we noted before, this is always the case if we allow X to be taken
sufficiently small or when we assume that the coefficients of P are real analytic. Then
L(x, y) = tP ∗(y,D)Φ(x, y) is a left fundamental solution of P (x,D) on X.

Let D be an (open) relatively compact domain in X, with smooth boundary ∂D
as in Section 2.. Having fixed a Dirichlet system {Bj}p−1

j=0 of order (p − 1) on ∂D
as in Definition 2.2, we denote by GP the corresponding Green operator given by
Lemma 2.3. Then we define the operators M and T by setting, for u ∈W p,2(E|D), f ∈
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L2(F|D),

(Mu)(x) = −
∫
∂D

GP (tP ∗(y,D)Φ(x, y), u(y)) (x ∈ X\∂D),

(Tf)(x) =
∫
D

< tP ∗(y,D)Φ(x, y), f(y) >y dy (x ∈ X).(3.1)

By Theorem 2.4, we have

(Mu)(x) + (TPu)(x) =
{
u(x), x ∈ D,
0, x ∈ X \D(3.2)

for every u ∈W p,2(E|D)
Analogous to the Martinelli- Bochner integral, for every u ∈ W p,2(E|D) the

integral Mu defines a W p,2(E|D)-section which is only ”harmonic”, i.e. ∆Mu = 0
everywhere outside of ∂D, while in general PMu 6= 0. By Corollary 2.6 we have

Proposition 3.1. The integrals M and TP given above define linear bounded op-
erators from Wm,2(E|D) to Wm,2(E|D) (m ≥ p).

In particular, it is possible to consider iterations of the integrals M and TP in the
Sobolev spaces Wm,2(E|D) (m ≥ p)

In order to prove his theorem on iterations for the Martinelli -Bochner integral
A.V. Romanov constructed in [11] a suitable scalar product in the space W 1,2(D).
We follow his approach in our more general case.

Let us assume that we can construct in the Hilbert space Wm,2(E|D) a scalar
product HP

m(., .) for which the following properties hold:
(I) For every u ∈Wm,2(E|D) : HP

m(Mu, u) ≥ 0, HP
m(TPu, u) ≥ 0.

(II) The topologies induced in Wm,2(E|D) by HP
m(., .) and by the standard scalar

product of Wm,2(E|D) are equivalent.
In Section 4, by choosing special fundamental solutions, we will construct such a

scalar product HP
p (., .) in the Hilbert space W p,2(E|D).

In the remaining part of this section we will show that existence of a scalar product
with properties (I) and (II) implies the convergence of iterations of the integrals M
and TP (cf. [14]).

The kernels kerM and kerTP of the operators M and TP are closed subspaces
of Wm,2(E|D), therefore they are Hilbert spaces (with the Hermitian structure
induced from Wm,2(E|D)). If S is a closed subspace of Wm,2(E|D), we denote by
Π(S) the orthogonal projection with respect to HP

m(., .) from Wm,2(E|D) to S.

Theorem 3.2. Assume that a scalar product HP
m(., .) is defined in the space

Wm,2(E|D), for which (I) and (II) hold. Then

lim
ν→∞

Mν = Π(kerTP ), lim
ν→∞

(TP )ν = Π(kerM)

in the strong operator topology in Wm,2(E|D).
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Proof. By (II) the space Wm,2(E|D), with the scalar product HP
m(., .), is a complex

Hilbert space. Then (I) and (3.2) imply that the operators M and TP are self-
adjoint in Wm,2(E|D) with respect to the scalar product HP

m(., .), and that 0 ≤M ≤
Id, 0 ≤ TP ≤ Id (where Id stands for the identity operator on Wm,2(E|D)).

The spectral theorem for bounded self -adjoint operators yields

Mν =

1∫
0

λνdEλ, (TP )ν =

1∫
0

(1− λ)νdEλ(3.3)

where {Eλ}0≤λ≤1 is a resolution of the identity in the Hilbert space Wm,2(E|D)
corresponding to the operator M and the scalar product HP

m(., .).
Passing to the limit in (3.3) one obtains

lim
ν→∞

Mν = Ẽ1, lim
ν→∞

(TP )ν = Ẽ0

where Ẽ0 = E+0 − E−0, Ẽ1 = E1+0 − E1−0 are the orthogonal projections from
Wm,2(E|D) onto the eigenspaces V (0),V (1) corresponding to the eigenvalues 0 and 1
of the operator M . Finally, (3.2) implies that V (0) = kerM,V (1) = kerTP . 2

Corollary 3.3. Under the hypotheses of Theorem 3.2, for every u ∈ Wm,2(E|D)
(m ≥ p) the following formulae hold:

u = lim
ν→∞

Mνu+
∞∑
µ=0

Mµ(TPu),(3.4)

u = lim
ν→∞

(TP )νu+
∞∑
µ=0

(TP )µ(Mu)(3.5)

where the limits and the series in the right hand sides converge in the Wm,2(E|D)-
norm.

Proof. Formula (3.2) implies that for every ν ∈ IN

u = Mνu+
ν−1∑
µ=0

Mµ(TPu) = (TP )νu+
ν−1∑
µ=0

(TP )µ(Mu).(3.6)

Using Theorem 3.2 we can pass to the limit for ν →∞ in (3.6), obtaining (3.4) and
(3.5). 2

4. Construction of the projection Π(Sp,2
P (D))

In this section we construct a scalar productHP
p (·, ·) onW p,2(E|D) satisfying (I), (II)

of Section 3. This will be obtained by the use of a fundamental solution of ∆ = P ∗P
enjoying special properties at the boundary of a subdomain Y of X.
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Throughout this section we will assume that D is a relatively compact connected
open subset of X, with a smooth boundary ∂D of class C∞.

Since the Green integrals do not depend on the choice of the Dirichlet system
{Bj} on ∂D, in this section we can as well set Bj = Ik

∂j

∂nj .

Proposition 4.1. Assume that the operator ∆ ∈ do2p(E → E) admits a bilateral
fundamental solution Φ on X. Then for every domain Y b X, with ∂Y ∈ C∞, there
exists a unique bilateral fundamental solution ΦY (x, y) of the operator ∆ in Y such
that

(1) ΦY extends to a smooth function on (Y × Y )\{(x, x)|x ∈ Y };

(2) ( ∂j

∂nj
x
Dα
yΦY (x, y))|x∈∂Y = 0 for every y ∈ Y , every multi-index α, and 0 ≤ j ≤

p− 1.

Moreover, the function γ = Φ−ΦY extends to a smooth function on (Y ×Y )∪(Y ×Y ).

Proof. The proof of Proposition 4.1 relies on the fact that the existence of a bilateral
fundamental solution Φ of ∆ in X implies existence and uniqueness of the Dirichlet
problem for ∆ on every subdomain D of X:

Lemma 4.2. For every ψj ∈ Wm−j−1/2,2(Fj|∂D) (0 ≤ j ≤ p − 1) there exists a
(unique) section ψ ∈ Sm,2∆ (D) such that (Bjψ)|∂D = ψj (0 ≤ j ≤ p− 1).

Proof. Let ψ ∈ Sm,2∆ (D) be such that Bjψ = 0 on ∂D (0 ≤ j ≤ p − 1). Then
there is a sequence {ψν} of smooth functions with compact support in D such that
limν→∞ ψν = ψ in the W p,2(E|D)-norm. Now using Stokes’ formula, one has:

0 =
∫
D

(ψ,∆ψ)xdx = lim
ν→∞

∫
D

(ψν ,∆ψ)xdx =

= lim
ν→∞

∫
D

(Pψν , Pψ)xdx =
∫
D

(Pψ, Pψ)xdx.

Hence ψ ∈ Sm,2P (D). By Theorem 2.4 we obtain that ψ = Mψ = 0 in the domain D.
This proves the uniqueness of the Dirichlet problem.

We denote by W p,2
o (E|D) the space

W p,2
o (E|D) = {u ∈W p,2(E|D) : Bju = 0 on ∂D for 0 ≤ j ≤ p− 1}.

Because ∆ is elliptic, we have the classical G̊arding inequality:

‖u‖2Wp,2(E|D) ≤ c0

∫
D

(Pu, Pu)xdx+ λ0‖u‖2L2(E|D) (u ∈W p,2
o (E|D))

for constants c0, λ0 > 0 which do not depend on u.
As we noted before, Theorem 2.4 implies that u = 0 if u ∈ W p,2

o (E|D) and Pu = 0
in D. Let us prove now that we can find a constant c > 0 such that for every
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u ∈W p,2
o (E|D) we have

‖u‖2Wp,2(E|D) ≤ c

∫
D

(Pu, Pu)xdx.

We argue by contradiction. If there is no such a constant then we can find a sequence
{uν} ⊂W p,2

o (E|D) such that

‖uν‖Wp,2(E|D) = 1, ‖Puν‖L2(F|D) < 2−ν .

Because the unit ball in a separable Hilbert space is weakly compact, we can assume
that the sequence {uν} weakly converges to a section u∞ ∈ W p,2

o (E|D). Clearly we
have Pu∞ = 0 in D and hence u∞ = 0 by the discussion above. But the G̊arding
inequality yields

1 ≤ 2−ν + λ0‖uν‖L2(E|D) for every ν

and hence, because the inclusion W p,2
o (E|D) → L2(E|D) is compact, and thus uν

strongly converges to u∞ in L2(E|D), we obtain

‖u∞‖L2(E|D) ≥ λ−1
0

contradicting u∞ = 0.
Thus we proved that the Hermitian form∫

D

(Pu, Pv)xdx

defines in the Hilbert space W p,2
o (E|D) a scalar product which is equivalent to the

original one. Therefore for every ϕ ∈W−p,2(E|D) there is a unique solution of{
u ∈W p,2

o (E|D)∫
D

(Pu, Pv)xdx = ϕ(v) for every v ∈W p,2
o (E|D)(4.1)

Moreover, by the regularity theorem for elliptic systems, if ϕ ∈ Wm,2(E|D), the
solution u of (4.1) belongs to W p,2

o (E|D) ∩W 2p+m,2(E|D).
Given w ∈Wm,2(E|D), with m ≥ p, the map

D(E|D) 3 v →
∫
D

(w,∆v)xdx

extends to a continuous anti-C -linear functional on W p,2
o (E|D) and defines an element

ϕ ∈ Wm−2p,2(E|D). If u is a solution of (4.1) for w, then ψ = w − u ∈ Wm,2(E|D),
∆ψ = 0 in D, and Bjψ = Bjw on ∂D.

The proof of Lemma 4.2 is complete. 2

Using the lemma, we obtain the fundamental solution ΦY in Y by subtracting from
Φ the solution γ of the Dirichlet problem{

∆(x)γ(x, y) = 0, x ∈ Y, y ∈ Y,
∂j

∂nj
x
γ(x, y) = ∂j

∂nj
x
Φ(x, y), x ∈ ∂Y, y ∈ Y, (0 ≤ j ≤ p− 1).
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The solution smoothly depends on y ∈ Y and one easily checks that ΦY = Φ − γ
satisfies the conditions set forth in the statement.

We turn now to the proof of the regularity of γ.
The fact that γ ∈ C∞(Y ×Y ) follows from the regularity up to the boundary of the

solution of a Dirichlet problem with smooth data. The regularity of γ in Y ×Y is a
consequence of the interior regularity of solutions of elliptic systems and the existence
and uniqueness results for the Dirichlet problem in Sobolev spaces of negative
order (cf. [8], ch. 2, §6).

Let ρ be a defining function for Y . For every nonnegative integer r, define the spaces

Ξr(E|Y ) = {u ∈ L2(E|Y ) : ρ|α|Dαu ∈ L2(E|Y ) for |α| ≤ r}.

They are Hilbert spaces with the norm

‖u‖Ξr(E|Y ) =
∑
|α|≤r

‖ρ|α|Dαu‖L2(E|Y ).

Then Ξ−r(E|Y ) is defined as the strong dual of Ξr(E|Y ): it can be identified to a
subspace of D′(E|Y ) because D(E|Y ) is dense in Ξr(E|Y ) for every integer r ≥ 0. The
definition of Ξr(E|Y ) for general r ∈ IR is obtained by interpolation.

Next we introduce the Hilbert spaces

D−r
∆ (Y ) = {u ∈W−r,2(E|Y ) : ∆u ∈ Ξ−r−2p(E|Y )},

endowed with the graph norm, for r ≥ 0.
By the trace theorem (Theorem 6.5, p. 187 in [8]) the map

C∞(E|Y ) 3 u→ ⊕p−1
j=0(Bju) ∈ ⊕p−1

j=0(C∞(E|∂Y ))

uniquely extends to a continuous linear map

D−r
∆ (Y ) 3 u→ ⊕p−1

j=0(Bju) ∈ ⊕p−1
j=0(W−r−j−1/2,2(E|∂Y ))

when r + 1/2 6∈ ZZ and in this case the Dirichlet problem
∆u = f in Y,
∂j

∂nj u = ψj on ∂Y, for 0 ≤ j ≤ p− 1,
u ∈ D−r

∆ (Y )

has a unique solution for f ∈ Ξ−r−2p(E|Y ) and ψj ∈ W−r−j−1/2,2(E|∂Y )) (this is
Theorem 6.6, p. 190 in [8]).

To apply the general result to our special situation, we note that for every fixed
ε > 0, and every multi-index α

Y 3 x→ Dα
yΦ(x, y)

defines an element of W 2p−n/2−|α|−ε,2(E|Y ) and ∆(x) = Dα
y δ(x− y)⊗ IdE belongs to

Ξn/2−|α|−ε(E|Y ), uniformly for y ∈ Y .
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Having fixed α, we choose rα ≥ 0 with rα < 2p− n/2− |α| and rα + 1/2 6∈ ZZ. Since
{Dα

yΦ(x, y)|y ∈ Y } is bounded in D−rα

∆ (Y ), also { ∂j

∂nj
x
Dα
yΦ(x, y)|y ∈ Y } is bounded

in ⊕W−rα−j−1/2,2(E|∂Y ) .
If γ̃α is a solution of the Dirichlet problem

∆(x)γ̃α(x, y) = 0, x ∈ Y, y ∈ Y,
∂j

∂nj
x
γ̃α(x, y) = ∂j

∂nj
x
Dα
yΦ(x, y), x ∈ ∂Y, y ∈ Y, (0 ≤ j ≤ p− 1).

γ̃α(., y) ∈ D−rα

∆ (Y ),

then Dβ
x γ̃α is a bounded function of y ∈ Y for every multi-index β while x belongs to

a compact subset of Y . Since γ̃α = Dα
y γ(x, y) for y ∈ Y , the last part of the statement

follows. 2

Remark 4.3. In fact, one could prove more precise regularity of γ outside of
diagonal of ∂Y × ∂Y , together with bounds for the growth of its derivatives when
(x, y) approaches the singularities (cf. [13], ch.VI, §4). However, the results obtained
above suffice for our purposes.

We fix a domain Y with a C∞-smooth boundary ∂Y such that D b Y b X. Let
S̃m,2∆ (Y \D) (m ≥ p) be the Hilbert space of functions v ∈ Sm,2∆ (Y \D) such that
∂jv
∂nj = 0 on ∂Y (0 ≤ j ≤ p− 1). We obtain a linear isomorphism

R+

S̃m,2∆ (Y \D) 3 v −→ ⊕p−1
j=0(Bjv)|∂D ∈ ⊕p−1

j=0(Wm−j−1/2,2(E|∂D)).

Composing (R+)−1 with the trace operator

R−

Wm,2(E|D) 3 u −→ ⊕p−1
j=0(Bju)|∂D ∈ ⊕p−1

j=0(Wm−j−1/2,2(E|∂D)).

we obtain a continuous linear map

Wm,2(E|D) 3 u→ S(u) ∈ S̃m,2∆ (Y \D).

For u ∈W p,2(E|D), f ∈ L2(F|D), and g ∈ L2(F|Y \D) we introduce now the following
notations:

MY u(x) = −
p−1∑
j=0

∫
∂D

< (CjtP
∗)(y)ΦY (x, y), Bju >y ds (x ∈ Y \∂D),

MY S(u)(x) = −
p−1∑
j=0

∫
∂D

< (CjtP
∗)(y)ΦY (x, y), BjS(u) >y ds (x ∈ Y \∂D),

TY f(x) =
∫
D

< tP ∗(y)ΦY (x, y), f(y) >y dy (x ∈ Y ),

TY g(x) =
∫
Y \D

< tP ∗(y)ΦY (x, y), g(y) >y dy (x ∈ Y ).
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Because (BjS(u))|∂D = (Bju)|∂D (0 ≤ j ≤ p− 1), we have MY u = MY S(u).
In order to prove the Theorem on the limit of iterations of the integrals MY and

TY P , we consider, for u, v ∈ Wm,2(E|D)(m ≥ p), the Hermitian form

HP
p (u, v) =

∫
D

(Pu, Pv)xdx+
∫
Y \D

(PS(u), PS(v))xdx.

Proposition 4.4. The Hermitian form HP
p (·, ·) defines a scalar product in

Wm,2(E|D).

Proof. The coefficients of P are C∞(Y ) - functions, therefore, PS(u) ∈ Wm−p,2

(E|Y \D). Then, since (·, ·)x is a Hermitian metric, to prove the statement it is
sufficient to prove that HP

p (u, u) = 0 implies u ≡ 0 in D.
Let HP

p (u, u) = 0 then u ∈ Sm,2P (D), S(u) ∈ Sm,2P (Y \D). Moreover, by definition
(Bju)|∂D = (BjS(u))|∂D (0 ≤ j ≤ p− 1). Then Theorem 3.2 of [17] implies that there
exists a section U ∈ SP (Y ) such that U|D = u,U|Y \D = S(u). Then U ∈ Sm,2P (Y ) and
∂jU
∂nj = 0 for 0 ≤ j ≤ p−1 on ∂Y . Therefore U ≡ 0 in Y (by the representation formula
proved in Theorem 2.4), and in particular u ≡ 0 in D. 2

Let {B̃j}2p−1
j=0 be a Dirichlet system of order (2p − 1) on ∂D (as above bj =

j), and let {C̃j}2p−1
j=0 be the Dirichlet system corresponding to {B̃j}2p−1

j=0 with re-
spect to the operator ∆ and the Green operator as in Lemma 2.3. For ψj ∈
Wm+j−2p+1/2,2(Fj |∂D) (0 ≤ j ≤ 2p − 1,m ≥ 0) denote by G(⊕ψj) the following
integral:

G(⊕ψj)(x) =
2p−1∑
j=0

∫
∂D

< C̃j(y)Φ(x, y), ψj >y ds (x ∈ X\∂D).

Let G(⊕ψj)− = G(⊕ψj)|D, G(⊕ψj)+ = G(⊕ψj)|X\D. Then (cf. Lemma 2.7 in [15])
G(⊕ψj)− ∈Wm,2(E|D), G(⊕ψj)+ ∈Wm,2(Y \D) and we have the jump formula

(B̃jG(⊕ψj)−)|∂D − (B̃jG(⊕ψj)+)|∂D = ψ2p−j−1.(4.2)

Lemma 4.5. Let (Tf)− = (Tf)|D, (Tf)+ = (Tf)|X\D. Then for every f ∈
W p,2(F|D) we have

(Bj(Tf)−)|∂D − (Bj(Tf)+)|∂D = 0,

(tC∗j P (Tf)−)|∂D − (tC∗j P (Tf)+)|∂D = (tC∗j f)|∂D.

Proof. Using Stokes’ formula we obtain for x 6∈ ∂D and f ∈W p,2(E|D) :

Tf(x) =
∫
D

< Φ(x, y), P ∗f(y) >y dy −
∫
∂D

p−1∑
j=0

< tB∗j (y)Φ(x, y), tCj
∗(y)f(y)).(4.3)

Because P ∗f ∈ L2(E|D), the first integral in the right hand side defines a section
in W 2p,2(E|Y ). Indeed the fundamental solution Φ is a pseudo-differential operator of
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order (−2p) on X. Thus it does not contribute to the jumps of the derivatives of Tf
on ∂D up to order (2p− 1). The statement of the lemma is then a consequence of the
jump formula (4.2), after nothing that {−CjtP ∗, tB∗j }

p−1
j=0 is the Dirichlet system

corresponding to the Dirichlet system {Bj , tC∗j P}
p−1
j=0 with respect to ∆ in Lemma

2.3 (cf. [15], Theorem 4.4). 2

Remark 4.6. In particular, if f ∈ W p,2(F|D) has compact support in D, then
Tf ∈W 2p,2(E|Y ).

Let (TY g)+ = (TY g)|Y \D, (TY g)− = (TY g)|D, and introduce similar notations for
TY f (f ∈ L2(F|D), g ∈ L2(F|Y \D)) .

Lemma 4.7. For every r ≥ 0 there exist a positive number c(r) such that for every
f ∈W r,2(F|D) and g ∈W r,2(F|Y \D)

‖(TY f)−‖2Wp+r,2(E|D) ≤ c(r)‖f‖2W r,2(F|D),

‖(TY f)+‖2Wp+r,2(E|Y \D) ≤ c(r)‖f‖2W r,2(F|D),

‖(TY g)−‖2Wp+r,2(E|D) ≤ c(r)‖g‖2W r,2(F|Y \D).

Proof. By Proposition 4.1, γ = Φ− ΦY is smooth in (Y × Y ) ∪ (Y × Y ). Then

L2(F|D) 3 f →
∫
D

< tP ∗(y)γ(x, y), f(y) >y dy ∈ C∞(E|Y )

and

L2(F|Y \D) 3 g →
∫
Y \D

< tP ∗(y)γ(x, y), g(y) >y dy ∈ C∞(E|D)

are linear and continuous maps. Therefore the proof of the estimates is reduced to the
proof of the analogous estimates for T substituting TY .

When 0 ≤ r < 1/2, the estimates hold true because tP ∗Φ(x, y) is a pseudo-
differential operator of order (−p) on X and for general r > 0 by nothing that it
has moreover the transmission property relative to every relatively compact open sub-
set of X with a smooth boundary (cf. [9], 2.2.2 and 2.3.2). 2

Remark 4.8. The lemma, together with the preceding remark, implies that TY f ∈
W p,2(E|Y ) for every f ∈ L2(F|D). Indeed we can approximate f ∈ L2(F|D) by smooth
sections with compact support in D in the L2-norm. By the jump Lemma 4.5, (TY f)−

and (TY f)+ agree with their derivatives up to order (p− 1) on ∂D when f is smooth
with compact support inD and hence by continuity the same is true when f ∈ L2(F|D).

Proposition 4.9. For every u, v ∈W p,2(E|D), f ∈ L2(F|D)

HP
p (TY f, v) =

∫
D

(f, Pv)xdx,
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HP
p (MY u, v) =

∫
Y \D

(PS(u), PS(v))xdx.

Proof. By integration by parts we obtain (cf. Lemma 2.3)∫
D

(f, Pv)xdx−
∫
D

(P ∗f, v)xdx =

=
p−1∑
j=0

∫
∂D

< ∗Fj
Bjv,

tC∗j f >x ds for every f ∈W p,2(F|D), v ∈W p,2(E|D)(4.4)

and analogously∫
Y \D

(PS(u), PS(v))xdx = −
p−1∑
j=0

∫
∂D

< (∗Fj
Bj)S(v), tC∗j PS(u) >y ds =(4.5)

= −
p−1∑
j=0

∫
∂D

< (∗FjBj)v,
tC∗j PS(u) >y ds for every u, v ∈W p,2(E|D).

Let u ∈ W 2p,2(E|D), v ∈ W p,2(E|D), and apply formula (4.4) for f = Pu. Then we
obtain, using (4.4) and (4.5)

HP
p (u, v) =

p−1∑
j=0

∫
∂D

< (∗Fj
Bj)v, tC∗j Pu− tC∗j PS(u) >y ds+

∫
D

(P ∗Pu, v)ydy.

Let f ∈ D(F|D). Then we can substitute TY f for u in the formula above, to obtain

HP
p (TY f, v) =

∫
D

(P ∗PTY f, v)ydy+

+
p−1∑
j=0

∫
∂D

< ∗Fj
Bjv,

tC∗j P (TY f)− − tCj
∗
P (TY f)+ >y ds.

By Remark 4.6, TY f ∈ W 2p,2(E|D) and thus the second summand in the right hand
side of the last equality equals zero. Because

P ∗PTY f(x) = P ∗f(x) (x ∈ D),

we get

HP
p (TY f, v) =

∫
D

(P ∗f, v)ydy =
∫
D

(f, Pv)ydy.

Since D(F|D) is dense in L2(F|D), this formula holds for every v ∈ W p,2(E|D) and
every f ∈ L2(F|D). Finally, (3.2) implies that HP

p (MY u, v) = HP
p (u − TY Pu, v) =∫

Y \D(PS(u), PS(v))ydy. 2

Lemma 4.10. For every u ∈Wm,2(E|D) (m ≥ p)

(TY Pu)(x) + (TY PS(u))(x) =
{
u(x), x ∈ D,
S(u)(x), x ∈ Y \D.
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Proof. Since Y ⊂ X, Theorem 2.4 implies that

−
∫
∂(Y \D)

GP (tP ∗(y)Φ(x, y), S(u)(y)) +
∫
Y \D

< tP ∗(y)Φ(x, y), PS(u)(y) >y dy =

=
{
S(u)(x), x ∈ Y \D,
0, x ∈ X\(Y \D).

On the other hand, if γ = Φ− ΦY then for every fixed point x ∈ Y the integrals∫
∂(Y \D)

GP (tP ∗(y)γ(x, y), S(u)(y)) and
∫
Y \D

< tP ∗(y)γ(x, y), PS(u)(y) >y dy

are well defined. Then, since t∆(y)γ(x, y) = 0 for (x, y) ∈ Y × Y , Stokes’ formula
yields for x ∈ Y

−
∫
∂(Y \D)

GP (tP ∗(y)γ(x, y), S(u)(y)) +
∫
Y \D

< tP ∗(y)γ(x, y), PS(u)(y) >y dy = 0

Therefore, since ∂jS(f)
∂nj = 0 on ∂Y

(TY PS(u))(x)− (MY S(u))(x) =
{

0, x ∈ D,
S(u)(x), x ∈ Y \D.(4.6)

Finally, (Bju)|∂D = (BjS(u))|∂D by definition, hence MY u = MY S(u). Now adding
(3.2) and (4.6) we obtain the statement. 2

Lemma 4.11. The Hilbert spaces S̃m,2∆ (Y \D), ⊕p−1
j=0W

m−j−1/2,2(Fj |∂D) and

Sm,2∆ (D) are topologically isomorphic.

Proof. Lemma 4.2 implies that for every ⊕uj ∈ ⊕Wm−j−1/2,2(Fj |∂D) there exist

(unique) solutions u ∈ Sm,2∆ (D) and S(u) ∈ S̃m,2∆ (Y \D) of the interior and exterior
Dirichlet problems. Therefore, in order to prove the statement of the lemma it
is sufficient to prove existence of constants ci > 0 (1 ≤ i ≤ 4) such that for every
⊕uj ∈ ⊕Wm−j−1/2,2(Fj∂D)

c1‖u‖2Wm,2(E|D) ≤
p−1∑
j=0

‖uj‖2Wm−j−1/2,2(Fj |∂D) ≤ c2‖u‖2Wm,2(E|D)

c3‖S(u)‖2Wm,2(E|Y \D) ≤
p−1∑
j=0

‖uj‖2Wm−j−1/2,2(Fj |∂D) ≤ c4‖S(u)‖2Wm,2(E|Y \D).(4.7)

The existence of the constants c2, c4 follows from the continuity of the restriction
maps

R− : Sm,2∆ (D) → ⊕Wm−j−1/2,2(Fj |∂D)

R+ : S̃m,2∆ (Y \D) → ⊕Wm−j−1/2,2(Fj |∂D)
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where R−u = ⊕(Bju)|∂D,R+S(u) = ⊕(BjS(u))|∂D. Since R−,R+ are one-to-one
and onto (see Lemma 4.2), the existence of constants c1, c3 follows from the open
mapping theorem. 2

Proposition 4.12. The topologies induced in W p,2(E|D) by HP
p (·, ·) and by the

standard scalar product are equivalent.

Proof. Since the coefficients of P are C∞(Y )- functions then there are constants
c5, c6 > 0 such that for every u ∈W p,2(E|D)

(Pu, Pu)x ≤ c5
∑
|α|≤p

(Dαu,Dαu)x, (PS(u), PS(u))x ≤ c6
∑
|α|≤p

(DαS(u), DαS(u))x.

On the other hand, Lemma 4.11 (see (4.7)) implies that

‖S(u)‖2Wp,2(EY \D) ≤ c2(c3)−1‖u‖2Wp,2(E|D).

Hence
HP
p (u, u) ≤ (c5 + c6c2(c3)−1)‖u‖2Wp,2(E|D).

Conversely, Lemmata 4.7 and 4.10 imply that

(1/2)‖u‖2Wp,2(E|D) ≤ ‖TY Pu‖2Wp,2(E|D) + ‖TY PS(u)‖2Wp,2(E|D) ≤

≤ c(0)‖Pu‖2L2(F|D) + c(0)‖PS(u)‖2L2(F|Y \D) = c(0)HP
p (u, u),

which had to be proved. 2

In the following theorem S̃p,2P (Y \D) stands for the subspace of W p,2(E|D) which
consists of functions u ∈W p,2(E|D) such that PS(u) = 0 in (Y \D).

Theorem 4.13. In the strong operator topology in W p,2(E|D)

lim
ν→∞

Mν
Y = Π(Sp,2P (D)),

lim
ν→∞

(TY P )ν = Π(S̃p,2P (Y \D)).

Proof. First, Propositions 4.9 and 4.12 imply that (I) and (II) hold for HP
p (·, ·)

and MY , TY P . Second, Proposition 4.9 implies that kerTY P = Sp,2P (D). Third,
Proposition 4.9, (3.2) and Lemma 4.10 imply that MY u = 0 if and only if S(u) ∈
Sp,2P (Y \D). Hence the theorem follows from Theorem 3.2. 2

Remark 4.14. Let the operator P satisfy the so-called Uniqueness Condition in
the small on X, i.e. Pu = 0 in a domain D ⊂ X and u = 0 in an open subset of
D imply u ≡ 0 in D. Then, if ∂D is connected, the Uniqueness Theorem for the
Cauchy problem for systems with injective symbols (see [15], Theorem 2.8), implies
that S̃p,2P (Y \D) = W p,2

0 (E|D). For instance, the Uniqueness Condition holds if the
coefficients of the operator P are real analytic.
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5. Solvability conditions for the equation Pu = f

In this section we will use Theorem 4.13 to investigate solvability of equation (1.1).
In particular, when (1.1) is solvable we will obtain an expression of the solution by
means of a series that can be computed from the data.

Let P ∈ dop(E → F ) be an elliptic operator of order p, as in Section 2.. We assume
that P is included into some elliptic complex of differential operators on X:

P
C∞(E) −→

P 1

C∞(F ) −→ C∞(G)(5.1)

for a trivial vector bundle G = X × C t and P 1 ∈ dop1(F → G). The assumptions
mean that

P 1 ◦ P = 0

and that

Ex
σp(P )(x,ζ)−→ Fx

σp1 (P 1)(x,ζ)
−→ Gx

is an exact sequence for every x ∈ X and ζ ∈ IRn\{0}. According to [12] (cf. also [2])
this is possible under rather general assumptions on P .

Note that the condition P 1f = 0 is necessary in order that (1.1) be solvable. We
formulate now

Problem 5.1. Let r ≥ 0, 0 ≤ m ≤ p+ r, and f ∈W r,2(F|D) be a given section. It
is required to find a section u ∈Wm,2(E|D) such that Pu = f in D.

Let, as before, {Bj}p−1
j=0 be a Dirichlet system of order (p − 1) on ∂D, {Cj}p−1

j=0 be
the Dirichlet system associated to {Bj}p−1

j=0 as in Lemma 2.3, and let, for r ≥ 0,

Hr,2(D) = {g ∈W r,2(F|D) such that P ∗g = 0P 1g = 0 in D, weakly satisfying

the boundary conditions (tC∗j g)|∂D = 0, 0 ≤ j ≤ p− 1}.

We call the Hr,2(D) harmonic spaces (for complex (5.1)). By the ellipticity assump-
tions, Hr,2(D) ⊂ C∞(F|D). It is not difficult to show that for the Dolbeault complex
this definition of the harmonic space H0,2(D) is equivalent to the one given in [5].

We denote by RY the series

RY =
∞∑
µ=0

Mµ
Y TY .

For every r ≥ 0 we set

domRp,rY = {g ∈ L2(F|D) : RY g converges in the W p,2(E|D)-norm,

and P (RY g) ∈W r,2(F|D)}.

Then RY defines a linear operator Rp,rY : domRp,rY →W p,2(E|D). This series will play
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an essential role in our investigation of equation (1.1).

Proposition 5.2. Let (Sp,2P (D))⊥ be the orthogonal complement of Sp,2P (D) in
W p,2(E|D) with respect to HP

p (·, ·). Then Im(R(p,0)
Y ) = (Sp,2P (D))⊥.

Proof. If f ∈ domR(p,0)
Y then RY f ∈ W p,2(E|D), and, since MY is continuous (see

Proposition 3.1),

MYRY f = MY lim
ν→∞

ν∑
µ=0

Mµ
Y TY f = lim

ν→∞

ν∑
µ=0

Mµ+1
Y TY f = RY f − TY f.(5.2)

Therefore

Mν
YRY f = RY f −

ν−1∑
µ=0

Mµ
Y TY f.(5.3)

Passing to the limit for ν → ∞ in (5.3) we obtain that limν→∞Mν
YRY f = RY f −

RY f = 0, i.e. Π(Sp,2P (D))RY f = 0 and therefore RY f ∈ (Sp,2P (D))⊥.
Conversely, if u ∈ (Sp,2P (D))⊥ then (3.4) and Theorem 4.13 imply that u = RY Pu.

By Proposition 3.1 and Corollary 3.3 we have Pu ∈ domR(p,0)
Y . Therefore we conclude

that (Sp,2P (D))⊥ ⊂ Im(R(p,0)
Y ). 2

In particular Proposition 5.2 implies that Im(R(p,r)
Y ) ⊂ (Sp,2P (D))⊥.

By formula (3.4) the series RY defines the left inverse of P on (Sp,2P (D))⊥. In the
following proposition we find a condition for RY to be also a right inverse operator of
P .

Proposition 5.3. kerR(p,r)
Y = 0 if and only if PR(p,r)

Y = Id|domR(p,r)
Y

.

Proof. If f ∈ domR
(p,r)
Y then RY f ∈ W p,2(E|D) and PRY f ∈ domR

(p,r)
Y by

(3.4). Because R(p,r)
Y is a left inverse of P on (Sp,2P (D))⊥ and, due to Proposition

5.2, ImR(p,r)
Y ⊂ (Sp,2P (D))⊥, we obtain R

(p,r)
Y PR

(p,r)
Y = R

(p,r)
Y . From this identity we

deduce that PR(p,r)
Y = Id|domR(p,r)

Y

if R(p,r)
Y is injective, while the converse statement

is obvious. 2

Proposition 5.4. kerR(p,r)
Y = kerTY ∩ domR(p,r)

Y (r ≥ 0).

Proof. Clearly kerTY ⊂ kerR(p,r)
Y . The opposite inclusion follows from (5.2). 2

Let us denote by Nr,2
m (D) the set of all f ∈ W r,2(F|D) for which Problem 5.1 is

solvable:

Nr,2
m (D) = {f ∈W r,2(F|D) : there exists a section u ∈Wm,2(E|D)

such that Pu = f in D}.

We obtain:
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Proposition 5.5. We have

(1) Nr,2
m (D) ⊂ Sr,2P 1 (D) (m ≥ 0);

(2)
∫
D

(g, f)xdx = 0 for every f ∈ Nr,2
m (D) and every g ∈ Hr,2(D) (m ≥ p);

(3) Nr,2
m (D) ⊂ domRp,rY (m ≥ p);

(4) kerTY ∩Nr,2
m (D) = 0 (m ≥ p).

Proof. (1) is trivial, because (5.1) is a complex. Corollary 3.3 and Theorem reft.3.13
imply that Pu = PRY Pu for u ∈ W p,2(E|D), i.e, (3) holds. To prove (2), we fix
f ∈ Nr,2

m (D) and a section u ∈Wm,2(E|D) such that Pu = f in D.
For ε > 0 we set Dε = {x ∈ D : dist(x, ∂D) > ε}. Since the differential complex

(5.1) is elliptic, Hr,2(D) ⊂ C∞(F|D). Hence, for every g ∈ Hr,2(D), we have:∫
D

(g, f)xdx =
∫
D

(g, Pu)xdx = lim
ε→0

∫
Dε

(g, Pu)xdx =

= lim
ε→0

(
∫
Dε

(P ∗g, u)xdx−
∫
∂Dε

GP∗(∗Eu, g)xdx) =

= lim
ε→0

p−1∑
j=0

∫
∂Dε

< (∗Fj
Bju), tC∗j g >y ds = 0.

Therefore (2) holds.
Finally, if f ∈ kerTY ∩Nr,2

m (D) then (due to Proposition 5.4) f ∈ kerRp,rY ∩Nr,2
m (D).

Therefore 0 = PRY f = f . 2

Theorem 5.6. Let r ≥ 0, m = p and f ∈W r,2(F|D). Then Problem 5.1 is solvable
if and only if

(1) f ∈ Sr,2P 1 (D) ∩ domRp,rY ;

(2)
∫
D

(g, f)xdx = 0 for every g ∈ Hr,2(D).

Proof. The necessity follows from Proposition 5.5. In order to prove the converse
statement we will use the following lemma.

Lemma 5.7. Hr,2(D) = kerTY ∩ Sr,2P 1 (D) (r ≥ 0).

Proof. Let f ∈ Hr,2(D). Then f ∈ C∞(F|D). But for every f ∈ kerP ∗∩C∞(F|D)∩
L2(F|D) and x ∈ Y \∂D we have:

TY f(x) =
∫
D

< tP ∗(y)ΦY (x, y), f(y) >y dy =

= lim
ε→0

∫
Dε

< tP ∗(y)ΦY (x, y), f(y) >y dy =
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= lim
ε→0

∫
∂Dε

p−1∑
j=0

< tB∗j (y)ΦY (x, y), tC∗j f(y) >y ds.(5.4)

Therefore, since the weak boundary values (tC∗j f)|∂D equal to zero (0 ≤ j ≤ p − 1),
the last limit in (5.4) is equal to zero.

Let us prove now the opposite inclusion. Since ΦY is a bilateral fundamental solution
of the operator P ∗P in Y then Φ̃Y (x, y) = ΦY (y, x) is a bilateral fundamental solution
of the operator t(P ∗P ) on Y . In particular, for every v ∈ D(E∗|D) we have

v(y) =
∫
D

< ΦY (x, y), t(P ∗P )(x)v(x) >x dx.

For every given section f ∈ L2(F|D) we can find a sequence {fN} ⊂ C(F|D) such that
limN→∞ fN = f in the L2(F|D)- norm. Assume moreover that f ∈ kerTY ∩W r,2(F|D).
Then, for every v ∈ D(E∗|D) we have∫

D

< tP ∗(y)v(y), f(y) >y dy = lim
N→∞

∫
D

< tP ∗(y)v(y), fN (y) >y dy =

= lim
N→∞

∫
Dy

< tP ∗(y)
∫
Dx

< ΦY (x, y), t(P ∗P )(x)v(x) >x dx, fN (y) >y dy =

= lim
N→∞

∫
D

< TY fN (x), t(P ∗P )(x)v(x) >x dx.

By Lemma 4.7, TY : L2(F|D) → W p,2(E|D) is continuous and therefore {TfN}
converges in the W p,2(E|D)-norm to TY f = 0. This shows that∫

D

< tP ∗(y)v(y), f(y) >y dy = 0 for every v ∈ D(F|D).

Hence P ∗f = P 1f = 0 if f ∈ kerTY ∩ Sr,2P 1 (D). Note that regularity theorem for
elliptic systems gives in particular kerTY ∩ Sr,2P 1 (D) ⊂ C∞(F|D).

To complete the proof, we only need to show that (in the weak sense) (tC∗j f)|∂D = 0
on ∂D (0 ≤ j ≤ p− 1) for f ∈ kerTY ∩ Sr,2P 1 (D). To this aim, we prove that

lim
ε→0

∫
∂Dε

< v(j), tC∗j f(y) >y ds = 0

for every v(j) ∈ C∞comp(F ∗j ).
Let v(j) ∈ C∞comp(F ∗j ). Then we fix a domain Ω with D b Ω b Y , and find a section

v ∈ D(E∗|Ω) such that tB∗j v = v(j) on ∂D, and tB∗i v = 0 on ∂D, if i 6= j (see [17],
Lemma 28.2). Again we use representation formula:

v(y) =
∫

Ω

< ΦY (x, y), t(P ∗P )(x)v(x) >x dx.
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Since P ∗f = 0 and f ∈ C∞(F|D), arguing as before we have

lim
ε→0

∫
∂Dε

< v(j), tC∗j f(y) >y ds = lim
ε→0

∫
∂Dε

p−1∑
i=0

< tB∗i v,
tC∗i f(y) >y ds =

= lim
ε→0

∫
Dε

< tP ∗v, f >y dy =
∫
D

< tP ∗v, f >y dy =

= lim
N→∞

∫
Ω

< TY fN (x), t(P ∗P )(x)v(x) >x dx.

Lemma 4.7 implies that limN→∞(TY fN )|Ω converges in W p,2(F|Ω) to (TY f)|Ω. How-
ever, due to Proposition 4.1 and Remark 4.8, TY f = 0 in D implies TY f = 0 in Y .
Therefore

lim
ε→0

∫
∂Dε

< v(j), tC∗j f(y) >y ds = 0.

The proof of the lemma is complete. 2

Now we turn to the proof of Theorem 5.6. Since, under the hypothesis of the
theorem, RY f ∈W p,2(F|D), by Proposition 5.2

RY f = lim
ν→∞

Mν
YRY f +RY PRY f = RY PRY f.(5.5)

In particular, (f − PRY f) ∈ kerRp,rY ∩ W r,2(F|D), and, due to Proposition 5.4,
(f − PRY f) ∈ kerTY ∩ Sr,2P 1 (D). On the other hand, using Lemma 5.7 and the
hypothesis of the theorem, we conclude that∫

D

(f − PRY f, f − PRY f)xdx = 0.

Therefore f = PRY f , i.e. Problem 5.1 is solvable. 2

As one can see from the proof of Theorem 5.6, if the equation Pu = f is solvable in
W p,2(E|D) then we obtain a formula for a solution of the equation:

u = RY f =
∞∑
ν=0

Mν
Y TY f.

In the case where P = ∂ and MY is the Martinelli- Bochner integral such a formula
was obtained by Romanov [11].

We conjecture that when the Poincarè lemma (local solvability) is valid for an el-
liptic complex, a solution in W p,2(E|D) can be found for every datum f in W p,2(F|D)
satisfying the integrability conditions. If this is the case, the formula above produces
rather explicitly a way to obtain a solution by successive approximations.

Remark 5.8. Proposition 5.2 and Theorem 4.13 imply that the solution u = RY f
of Problem 5.1 belongs to (Sp,2P (D))⊥ where (Sp,2P (D))⊥ is the orthogonal (with respect
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to HP
p (., .)) complement of Sp,2P (D) in W p,2(E|D), and is the unique solution belonging

to this subspace.
We note that the general termMµ

Y TY f of the seriesRY f is infinitesimal inW p,2(E|D)
for every f ∈ L2(F|D). This is a consequence of the theorem on iterations.

Proposition 5.9. For every f ∈ L2(F|D), limν→0M
ν
Y TY f = 0 in the W p,2(E|D)

norm, i.e. TY f ∈ (Sp,2P (D))⊥.

Proof. It follows from Proposition 4.9 that

HP
p (TY f, v) =

∫
D

(f, Pv)xdx = 0,

if v ∈ Sp,2P (D). 2

We also have

Proposition 5.10. Let f ∈ L2(F|D). Then a necessary and sufficient condition for
the convergence of the series RY in W p,2(E|D) is the convergence of the series

∞∑
µ=0

‖Mµ
Y TY f‖

2
Wp,2(E|D).(5.6)

Proof. Since the scalar product HP
p (., .) is equivalent to the usual one in W p,2(E|D)

the convergence of the series (5.6) is equivalent to that of the series

∞∑
µ=0

HP
p (Mµ

Y TY f,M
µ
Y TY f).

Then the statement follows because MY is non negative and self-adjoint with respect
to the scalar product HP

p (·, ·). 2

6. On the Poincarè Lemma for elliptic differential complexes

We investigate now conditions for the vanishing of the cohomology groups

H(W r,2(F|D)) = Sr,2P 1 (D)/Nr,2
p (D)

of the complex (5.1).
From Theorem 5.6 and Proposition 5.5 of the previous section we have

Corollary 6.1. H(W r,2(F|D)) = 0 (r ≥ 0) if and only if

(1) Sr,2P 1 (D) ⊂ domRp,rY ;

(2) Hr,2(D) = 0.
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Let us clarify the conditions in Corollary 6.1.

Proposition 6.2. The natural map i : kerTY ∩ Sr,2P 1 (D) → H(W r,2(F|D)) is injec-
tive.

Proof. This follows from statement (4) of Proposition 5.5. 2

Proposition 6.3. Sr,2P 1 (D) ⊂ domRp,rY if and only if the natural map i : Hr,2(D) →
H(W r,2(F|D)) is bijective.

Proof. Assume that Sr,2P 1 (D) ⊂ domrRY . Then formula (5.5) and Proposition 5.4
imply that, for every f ∈ Sr,2P 1 (D), the section (f−PRY f) belongs to kerTY ∩Sr,2P 1 (D).
Obviously, (f − PRY f) belongs to the same cohomology class as f . By Lemma 5.7,
Hr,2(D) = kerTY ∩Sr,2P 1 (D). Then the map i is surjective and, due to Proposition 6.2,
is also injective.

On the other hand, if the natural map i : Hr,2(D) → H(W r,2(F|D)) is surjective then,
again using Lemma 5.7, for every f ∈ Sr,2P 1 (D), there exist sections f̃ ∈ kerTY ∩Sr,2P 1 (D)
and u ∈ W p,2(E|D) such that f = f̃ + Pu. In particular, due to Proposition 5.4, we
obtain that RY f = RY (f̃ + Pu) = RY Pu. Now using Corollary 3.3 we conclude that
the series RY Pu converges in the W p,2(E|D)-norm. Hence RY (f̃ +Pu) also converges
in W p,2(E|D)-norm. Therefore, since PRY f = PRY Pu = Pu and Pu = f − f̃ ∈
W r,2(F|D), we obtain that f ∈ domRp,rY . 2

The triviality of the cohomology group H(W r,2(F|D)), implies, in particular, that
the range Im(P p,r) of the map P p,r : W p,2(E|D) →W r,2(F|D) is closed in W r,2(F|D).
In the following statement Im(P p,r) stands for the closure of the range Im(P p,r) in
W r,2(F|D).

Proposition 6.4. The range Im(P p,r) is closed if and only if Im(P p,r) ⊂ domRp,rY
(r ≥ 0).

Proof. Let f ∈ domRp,rY . Then f − PRY f belongs to kerRY by (refeq.4.5). Since
kerRY = kerTY by Proposition 5.4, we obtain that domRp,rY = kerTY ⊕ Im(P p,r). If
we assume that Im(P p,r) ⊂ domRp,rY we obtain a sum decomposition

Im(P p,r) = (kerTY ∩ Im(P p,r))⊕ Im(P p,r).(6.1)

On the other hand, if f ∈ (kerTY ∩ Im(P p,r) then there exists a sequence {uN} ⊂
W p,2(E|D) such that limN→∞ PuN = f in the L2(F|D)-norm. Hence, due to Proposi-
tion 4.9,

‖f‖2L2(F|D) = lim
N→∞

∫
D

(f, PuN )xdx = lim
N→∞

HP
p (TY f, uN ) = 0.

Therefore
(kerTY ∩ Im(P p,r)) = 0
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and, by (6.1), the range Im(P p,r) is closed.
Conversely, by (3) in Proposition 5.5 we have Im(P p,r) = Nr,2

p (D) ⊂ domRp,rY and
therefore the conclusion is obviously necessary. 2

Using the integrals TY and MY we obtain simpler conditions for the first cohomology
group of the complex (5.1) to be trivial in the case r = 0 and m = p. This is the
case where solutions can be obtained with maximal global regularity. This applies
for instance to the de Rham complex, but does not to the Dolbeault complex (see
Example 7.4).

To simplify notations we will write Im(P ) instead of Im(P p,0).

Proposition 6.5. H(L2(F|D)) = 0 if and only if

(1) the range Im(P ) of the map P : W p,2(E|D) → L2(F|D) is closed in L2(F|D);

(2) H0,2(D) = 0.

Proof. Necessity. LetH(L2(F|D)) = 0 then S0,2
P 1 (D) = Im(P ). Hence, since S0,2

P 1 (D)
is a closed subspace of L2(F|D), Im(P ) is closed. The necessity of condition (2) of the
theorem follows from Proposition 5.5.

Sufficiency. Let the range Im(P ) of the map P : W p,2(E|D) → L2(F|D) be closed in
L2(F|D). Then the continuous map

P : (Sp,2P (D))⊥ → Im(P )

is one-to-one. Now, since Im(P ) and (Sp,2P (D))⊥) are closed subspaces of L2(F|D)
and W p,2(E|D) respectively, the open map theorem implies that there exists a positive
constant c such that

‖v‖Wp,2(E|D) ≤ c‖Pv‖L2(F|D)

for every v ∈ (Sp,2P (D))⊥).
Therefore the Hermitian form

H̃P
p (u, v) =

∫
D

(Pu, Pv)xdx

is a scalar product on (Sp,2P (D))⊥; and the topology induced in (Sp,2P (D))⊥ by this
scalar product is equivalent to the original one.

Let f be a section in S0,2
P 1 (D). Then the integral∫

D

(f, Pu)xdx (v ∈ (Sp,2P (D))⊥))

defines a continuous linear functional on (Sp,2P (D))ø). Now, using Riesz representation
theorem, we conclude that there exists u ∈ (Sp,2P (D))⊥ such that∫

D

(f, Pv)xdx =
∫
D

(Pu, Pv)xdx(6.2)

for every v ∈ (Sp,2P (D))⊥. But then (6.2) holds for every v ∈W p,2(E|D).
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Furthermore, since for every w ∈ C∞0 (F ∗|D) the section (∗−1
F w) belongs to W p,2(E|D),

we have ∫
D

< tP ∗w, f >x dx =
∫
D

(f, P (∗−1
F w))xdx = 0,

i.e. P ∗(f − Pu) = 0 in D. Thus, since f ∈ S0,2
P 1 (D), we conclude that (f − Pu) ∈

kerP 1 ∩ kerP ∗ ∩ L2(F|D) ⊂ C∞(F|D).
Finally, if we prove that the weak boundary values (tC∗j (f − Pu))|∂D = 0 then

(f − Pu) ∈ H0,2(D) and, due to condition (2) of the theorem, Pu = f in D.
To this aim we fix a section v(j) ∈ C∞comp(F

∗
j ) and find a section v ∈ D(E∗|D) such

that tB∗j v = v(j) on ∂D, and tB∗i v = 0 on ∂D, if i 6= j (cf. [17], Lemma 28.2). It is
clear that (∗−1

E v) ∈W p,2(E|D). Therefore, using (6.2) we obtain that

lim
ε→0

∫
∂Dε

< v(j), tC∗j (f − Pu) >y ds =

= lim
ε→0

∫
∂Dε

p−1∑
i=0

< tB∗i v,
tC∗i (f − Pu) >y ds =

=
∫
D

< tP ∗v, (f − Pu) >y dy =
∫
D

((f − Pu), P (∗−1
E v))ydy = 0.

The proof of the theorem is complete. 2

Corollary 6.6. H(L2(F|D)) = 0 if and only if

(1) Im(P ) ⊂ domRp,0Y ;

(2) H0,2(D) = 0.

Proof. It follows form Propositions 6.4 and 6.5. 2

The following proposition clarifies the meaning of decomposition (6.1).

Proposition 6.7. TY = P ? where P ? : L2(F|D) →W p,2(E|D) is the adjoint (in the
sense of Hilbert spaces ) of the operator P with respect to the scalar product HP

p (., .)
in W p,2(E|D) and the standard one in L2(F|D).

Proof. In fact, we proved this in Proposition 4.9. 2

Theorem 6.8. The following conditions are equivalent:

(1) H(L2(F|D)) = 0;

(2) there exists a constant C > 0 such that for every g ∈ S0,2
P 1 (D)

‖g‖L2(F|D) ≤ C‖TY g‖Wp,2(E|D);
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(3) there exists a constant C > 0 such that for every g ∈ S0,2
P 1 (D)

‖g‖L2(F|D) ≤ C‖PTY g‖L2(F|Y ).

Proof. Let H(L2(F|D)) = 0. Then S0,2
P 1 (D) = Im(P ) = Im(P ). Hence, due to

Proposition 6.7, the ranges of P and TY are closed (see, for example, [5], Theorem
1.1.1), i.e. statement (2) holds.

If (2) holds then the range Im(TY ) is closed. Therefore, from Proposition 6.7 and
Theorem 1.1.1 of [5], the range Im(P ) is closed. Moreover (2) and Lemma 5.7 imply
that H0,2(D) = 0, i.e., due to Proposition 6.5, condition (1) is satisfied.

Finally, Lemmata 4.7 and 4.5 imply that S(TY g) = (TY g)+. In particular this means
that

HP
p (TY g, TY g) =

∫
Y

(PTY g, PTY g)xdx = ‖PTY g‖2L2(F|Y ).

Therefore Proposition 4.12 implies that (2) and (3) are equivalent. 2

7. Applications to a P -Neumann problem

In this section we show how Theorem 4.13 can be used to study a P - Neumann
problem associated to elliptic differential operator P ∈ dop(E → F ).

As in Section refs.1, {Bj}p−1
j=0 is a Dirichlet system of order (p−1) on ∂D and {Cj}p−1

j=0

the one which is associated to {Bj}p−1
j=0 as in Lemma 2.3.

Problem 7.1. Let r ≥ 0 and ψj ∈ W r−p+j+1/2,2(Fj|∂D) (0 ≤ j ≤ p − 1) be given
sections. We want to find ψ ∈W p,2(E|D) such that

P ∗Pψ = 0 in D
tC∗j Pψ = ψj on ∂D
(0 ≤ j ≤ p− 1), (Pψ) ∈W r,2(F|D).

The equation P ∗Pψ = 0 in D has to be understood in the sense of distributions,
while the boundary values are intended in the variational sense :∫

∂D

p−1∑
j=0

< (∗Fj )Bjv, ψj >y ds(y) =
∫
D

(Pψ, Pv)ydy for every v ∈ C∞(E|D).(7.1)

In particular we obtain

Proposition 7.2. A necessary condition in order that Problem 7.1 be solvable for
given ψj ∈W r−p+j+1/2,2(Fj|∂D) (0 ≤ j ≤ p− 1) is that

∫
∂D

p−1∑
j=0

< (∗Fj )Bjv, ψj >y ds(y) = 0 for every v ∈ Sp,2P (D).(7.2)
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Proof. Indeed, because C∞(E|D) is dense in W p,2(E|D), formula (7.1) extends by
continuity to v ∈W p,2(E|D). 2

Proposition 7.3. Let ψj = 0 (0 ≤ j ≤ p − 1). Then ψ ∈ W p,2(E|D) is a solution
of Problem 7.1 if and only if ψ ∈ Sp,2P (D).

Proof. Obviously, a section ψ ∈ Sp,2P (D) is a solution of Problem 7.1 with ψj = 0
(0 ≤ j ≤ p−1). Conversely, if ψ is a solution of Problem 7.1 with ψj = 0 (0 ≤ j ≤ p−1)
then TY Pψ = 0. Hence ψ = MY ψ = limν→∞Mνψ, i.e. ψ ∈ Sp,2P (D). 2

The operator P ∗P is a elliptic with C∞ coefficients, and the ranks of the symbols of
the boundary operators (tC∗j ) are maximal in a neighbourhood of ∂D. Nevertheless,
since, in general, the space Sp,2P (D) is not finite dimensional, Proposition 7.3 implies
that the boundary value Problem 7.1 may be not elliptic.

In the following theorem we set

T̃Y (⊕ψj) =
∫
∂D

p−1∑
j=0

< tB∗j (y)Φ(x, y), ψj(y) >y ds(y).

Theorem 7.4. Problem 7.1 is solvable if and only if the series
∑∞
µ=0M

µ
Y T̃Y (⊕ψj)

converges in the W p,2(E|D)-norm and P
∑∞
µ=0M

µ
Y T̃Y (⊕ψj) ∈W r,2(F|D).

Proof. Let Problem 7.1 be solvable and let ψ ∈ W p,2(E|D) be a solution. Then
T̃Y (⊕ψj)) = TY Pψ, and, due to Theorem 4.13, the series RY Pψ =

∑∞
µ=0M

µ
Y T̃Y (⊕ψj)

converges in the W p,2(E|D)-norm. Moreover, using Theorem 4.13, we conclude that
P

∑∞
µ=0M

µ
Y T̃Y (⊕ψj) = Pψ ∈W r,2(F|D).

Back, assume that the series
∑∞
µ=0M

µ
Y T̃Y (⊕ψj) converges in the W p,2(E|D)- norm,

and that P
∑∞
µ=0M

µ
Y T̃Y (⊕ψj) ∈ W r,2(F|D). Let us set ψ =

∑∞
µ=0M

µ
Y T̃Y (⊕ψj).

Then P ∗Pψ = 0 in D. Hence to prove that ψ is a solution of Problem 7.1 we need
only to prove only that tC∗j Pψ = ψj on ∂D (0 ≤ j ≤ p− 1).

We note now that

Mψ = M
∞∑
µ=0

Mµ
Y T̃Y (⊕ψj) =

∞∑
µ=0

Mµ
Y T̃Y (⊕ψj)− T̃Y (⊕ψj) = ψ − T̃Y (⊕ψj).

Hence we obtain, using (3.2) and Stokes’ formula :

T̃Y (⊕ψj) = TY Pψ = T̃Y (⊕tC∗Pψ) in Y.

Finally (4.2) implies that

(ψj − tC∗j Pψ)|∂D = (tC∗j PT̃Y (⊕(ψj − tC∗j Pψ))−)|∂D−

−(tC∗j PT̃Y (⊕(ψj − tC∗j Pψ))+)|∂D = 0.
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Theorem 7.4 is proved. 2

Proposition 7.5. Let ψj ∈W−p+j+1/2,2(Fj|∂D) (0 ≤ j ≤ p− 1). If Problem 7.1 is
solvable then the series

ψ =
∞∑
ν=0

(MY )ν T̃Y (⊕ψj),

converging in the W p,2(E|D)-norm, is the (unique) solution of Problem 7.1 belonging
to (Sp,2(D))⊥.

Proof. See the proof of Theorem 7.4. 2

In the case where P = ∂ (the Cauchy-Riemann system) in C n such a formula was
obtained by Kytmanov (see [7], p.177).

In the remaining part of this section we will show how the P -Neumann problem 7.1
connects to the solvability of the equation Pu = f and to the closedness of the image
of the operator P .

Let us first investigate criterions for f ∈ domRp,rY (see Theorem reft.4.6). To this
purpose we consider the following problem.

Problem 7.6. Given a section v ∈ (Sp,2(D))⊥∩W r+p,2(E|D), find a section ϕ ∈
W p,2(E|D) such that {

TY Pϕ = v,
(Pϕ) ∈W r,2(F|D).

Theorem 7.7. Let f ∈W r,2(F|D) (r ≥ 0). The following conditions are equivalent:

(1) f ∈ domRp,rY ;

(2) for every v ∈ Sp,2∆ (D) we have{ ∫ 1

−0

dλ(HP
p (EλTY f,v))

1−λ <∞,

P (
∫ 1

−0
dEλ(TY f)

1−λ ) ∈W r,2(F|D);

(3) The P -Neumann Problem 7.1 is solvable for {ψj = (tC∗j P (TY f)+)|∂D}(0≤j≤p−1);

(4) Problem 7.6 is solvable for v = TY f .

Proof. (1) ⇔ (2). The statement follows from the following chain of equalities:

∞∑
µ=0

Mµ
Y (TY f) = lim

ν→∞

ν−1∑
µ=0

∫ 1

−0

λµdEλ(TY f) =

= lim
ν→∞

∫ 1

−0

ν−1∑
µ=0

λµdEλ(TY f) = lim
ν→∞

∫ 1

−0

(1− λν)dEλ(TY f)
1− λ

.
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(1) ⇔ (3). Lemma 4.10 and Theorem 4.13 imply that

RY f =
∞∑
µ=0

Mµ
Y TY f = TY PTY f +

∞∑
µ=0

Mµ
Y TY P (S(TY f)) =

= TY PTY f +
∞∑
µ=0

Mµ
Y TY P ((TY f)+) = TY PTY f +

∞∑
µ=0

Mµ
Y T̃Y (⊕tC∗j P (TY f)+).

This means that the series
∑∞
µ=0M

µ
Y T̃Y (⊕tC∗j P (TY f)+) converges in the W p,2(E|D)-

norm, and P
∑∞
µ=0M

µ
Y T̃Y (⊕tC∗j P (TY f)+) ∈ W r,2(F|D) if and only if f ∈ domRp,rY .

Therefore the statement follows from Theorem 7.4.
(1) ⇔ (4). Let f ∈ domRp,rY then (5.5) implies that (f − PRY f) ∈ kerTY ∩

W r,2(F|D), that is ϕ = RY f , because kerTY = kerRp,rY by Proposition 5.4.
Conversely, if (4) holds then Theorem 4.13 implies that the series RY Pϕ = RY f con-

verges in the W p,2(E|D)-norm, and PRY f = PRY Pϕ = Pϕ ∈ W r,2(F|D). Therefore
f ∈ domRp,rY .

The proof of Theorem 7.7 is complete. 2

Remark 7.8. We emphasize that the Neumann Problem 7.1 is the P -Neumann
problem associated with the differential complex {Ei, P i} (see, for example, [16], p.
136) at step i = 0. However, as a rule, in order to solve the equation Pu = f , the
P -Neumann problem was studied in the case i = 1.

Proposition 7.9. Let u ∈ Sp,2(D)⊥ and ψj = (tC∗j PS(u))|∂D (0 ≤ j ≤ p − 1).
Then the necessary condition rm (7.2) for the solvability of Problem 7.1 holds, i.e. for
every v ∈ Sp,2P (D) we have∫

∂D

p−1∑
j=0

< (∗FjBjv, ψj >y ds(y) = 0.

Proof. Indeed, formula (refeq.3.5) implies that∫
∂D

p−1∑
j=0

< (∗FjBjv, ψj >y ds(y) =
∫
∂D

p−1∑
j=0

< (∗FjBjv,
tC∗j PS(u)) >y ds(y) =

= −
∫
Y \D

(PS(u), PS(v))ydy = −HP
p (u, v) = 0

for every v ∈ Sp,2P (D). 2

Because S(TY f) = (TY f)+, Propositions 5.9 and 7.9 imply that condition (7.2)
holds for ψj = (tC∗j P (TY f)+)∂D (0 ≤ j ≤ p− 1).

Now let us see the connection between the P -Neumann problem and the closedness
of the range of the operator P .

Proposition 7.10. Im(TY ) = Im(TY P ) = (Sp,2P (D))⊥.
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Proof. Proposition 5.9 and Lemma 4.7 imply that Im(TY ) ⊂ (Sp,2P (D))⊥. There-
fore, since (Sp,2P (D))⊥ is a closed subspace of W p,2(E|D), Im(TY P ) ⊂ Im(TY ) ⊂
(Sp,2P (D))⊥.

Conversely, formula (3.2) and Corollary 3.3 imply that

v =
∞∑
ν=0

Mν
Y TY Pv =

∞∑
ν=0

(Id− TY P )νTY Pv

for every v ∈ (Sp,2P (D))⊥). Therefore (Sp,2P (D))⊥ ⊂ Im(TY P ) ⊂ Im(TY ). 2

Proposition 7.11. The range Im(TY ) is closed if and only if the range Im(TY P )
is closed.

Proof. Let Im(TY P ) be closed. Then, due to Proposition 7.10,

(Sp,2P (D))⊥ = Im(TY P ) = Im(TY P ) ⊂ Im(TY ) ⊂ (Sp,2P (D))⊥.

Hence the inclusions are equivalent and the range Im(TY ) is closed.
Conversely, if the range Im(TY ) is closed then Proposition 6.7 and Theorem 1.1.1

of [5] imply that the range Im(P ) is closed. Therefore Im(TY P ) = Im(TY P ) because
TY is in this case a topological homomorphism. 2

Proposition 7.12. The range Im(P ) is closed if and only if the P -Neumann
Problem 7.1 is solvable for all ⊕ψj ∈ ⊕W−p+j+1/2,2(Fj|∂D) satisfying (7.2).

Proof. Let ⊕ψj ∈ ⊕W−p+j+1/2,2(Fj|∂D). Then T̃Y (⊕ψj) ∈ W p,2(E|D) (see [9],
2.3.2.4). Moreover, if ⊕ψj satisfies (7.2) then, due to (4.2), we have

HP
p (T̃Y (⊕ψi), v) =

∫
∂D

p−1∑
i=0

< ∗FiBiv,
tC∗i PT̃Y (⊕ψi)− − tC∗i PT̃Y (⊕ψi)+ >y ds =

∫
∂D

p−1∑
i=0

< ∗Fi
Biv, ψi >y ds = 0

for every v ∈ Sp,2P (D). That is, T̃Y (⊕ψj) ∈ (Sp,2P (D))⊥. On the other hand, if
Im(P ) is closed then, according to Propositions 6.7, 7.10, and 7.11, and Theorem
1.1.1 of [5] Im(TY P ) = (Sp,2P (D))⊥. In particular it means that there exists a section
ϕ ∈ W p,2(E|D) such that TY Pϕ = T̃Y (⊕ψj). Therefore, from Theorem 4.13 and
Corollary 3.3, the series

∞∑
ν=0

Mν
Y TY Pϕ =

∞∑
ν=0

Mν
Y T̃Y (⊕ψj)

converges in the W p,2(E|D)-norm. Now using Theorem 7.4 we conclude that Problem
7.1 is solvable.
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Conversely, let v ∈ (Sp,2P (D))⊥. Then (tC∗j PS(v))|∂D ∈ W−p+j+1/2,2(Fj|∂D), and,
due to Proposition 7.9, (⊕tC∗j PS(v))|∂D satisfies (7.2). Hence, if Problem 7.1 is
solvable for all ⊕ψj satisfying (7.2), there exists a section ψ ∈ Sp,2∆ (D) such that
(⊕tC∗j Pψ)|∂D = (⊕tC∗j PS(v))|∂D. In particular, from Lemma 4.10, we have

v = TY Pv + TY PS(v) = TY Pv + T̃Y (⊕tC∗j PS(v)) = TY P (v + ψ).

Therefore Im(TY p) = (Sp,2P (D))⊥, i.e. ImTY P is closed, and, due to Propositions
6.7, 7.11 and Theorem 1.1.1 of [5], Im(P ) is closed. 2

8. Examples

Using Proposition 7.12 we can obtain a result on the solvability of the P -Neumann
Problem 7.1 in the case where P is elliptic.

Corollary 8.1. Let P be an elliptic operator in X such that the operators P and
P ∗P have bilateral fundamental solutions on X. Then Problem 7.1 is solvable for
every ⊕ψj ∈ ⊕W−p+j+1/2,2(Fj|∂D) satisfying (7.2).

Proof. According to Corollary 2.6, for every f ∈ L2(F|D) there exist a W p,2(E|D)
solution of the equation Pu = f . In particular,Im((P ) is closed, and therefore, the
statement follows from Proposition 7.12. 2

We note that in Corollary 8.1 we obtain maximal Sobolev regularity for the solutions
of the boundary value Problem 7.1. However the nullspace of the problem may be not
finite dimensional (see Proposition 7.3) and hence this may be not an elliptic boundary
value problem.

Example 8.2. Let P = ∆ be Laplace operator in IRn. Then P ∗P = ∆2 and hence
the operators P and P ∗P have bilateral fundamental solutions in X.

Let D b IRn be a domain with C∞-smooth boundary ∂D. As a Dirichlet system
on ∂D we can take the system {B0 = 1, B1 = ∂

∂n}. Then, by simple calculations, the
system {C0 = − ∂

∂n , C1 = 1} is the system associated to {B0 = 1, B1 = ∂
∂n} in Lemma

2.3. Therefore Corollary 8.1 implies that the problem
∆2ψ = 0 in D,
− ∂
∂n∆ψ = ψ0 on ∂D,

∆ψ = ψ1 on ∂D ψ ∈W 2,2(D)

is solvable for all (complex valued) data ψ0 ∈W−3/2,2(∂D), ψ1 ∈W−1/2,2(∂D) satis-
fying∫

∂D

(ψ0(y)v(y)− ψ1(y)
∂v

∂n
(y))ds(y) = 0 for all harmonic W 2,2(D)− functions v.
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Example 8.3. Let P be the Cauchy - Riemann system on the plane C 1 ∼= IR2, i.e.
P = ∂

∂x1
+
√
−1 ∂

∂x2
. In the complex form with z = x1 +

√
−1x2, z = x1 −

√
−1x2,

∂
∂z = 1

2 ( ∂
∂x1

+
√
−1 ∂

∂x2
), ∂

∂z = 1
2 ( ∂
∂x1

−
√
−1 ∂

∂x2
), we have P = 2 ∂

∂z , P
∗ = −2 ∂

∂z . Then
P ∗P = −∆ is the Laplace operator in IR2 and hence the operators P and P ∗P have
bilateral fundamental solutions on X.

Let D b IR2 be a domain with C∞-smooth boundary ∂D. As a Dirichlet system on
∂D we can take the system {B0 = 1}. Then, setting{

ρ(x) = −dist(x, ∂D), x ∈ D,
ρ(x) = dist(x, ∂D), x 6∈ D,

the function ρ belongs to the class of functions defining the domain D (D = {x ∈
X : ρ(x) < 0}), |dρ| =

√∑2
j=1(

∂ρ
∂xj

)2 = 1 in a neighbourhood of ∂D and the system

{C0 = 2∂ρ∂z } is the system associated to {B0 = 1} in Lemma 2.3. Therefore Corollary
8.1 implies that the problem

−


Deltaψ = 0 in D,

4∂ρ∂z
∂ψ
∂z = ψ0 on ∂D,

ψ ∈W 1,2(D)

is solvable for all (complex valued) data ψ0 ∈W−1/2,2(∂D), satisfying∫
∂D

(ψ0(y)v(y))ds(y) = 0 for all holomorphic W 1,2(D)− functions v.

The problem above is nothing but the ∂ -Neumann problem for functions in C 1.
Consider now situation where the operator P is overdetermined (elliptic).

Example 8.4. Let P be the Cauchy - Riemann system in C n ∼= IR2n (n > 1),

i.e. P =

 ∂
∂x1

+
√
−1 ∂

∂xn+1

· · ·
∂
∂xn

+
√
−1 ∂

∂x2n

. In the complex form with zj = xj +
√
−1xn+j ,

zj = xj −
√
−1xn+j , ∂

∂zj
= 1

2 ( ∂
∂xj

+
√
−1 ∂

∂xn+j
) , ∂

∂zj
= 1

2 ( ∂
∂xj

−
√
−1 ∂

∂xn+j
), we have

P = 2

 ∂
∂z1
· · ·
∂
∂zn

 (= 2∂), P ∗ = −2

 ∂
∂z1
· · ·
∂
∂zn

 (= 2∂). Then P ∗P = −∆ is the Laplace

operator in IR2n and hence the operator P ∗P has a bilateral fundamental solution in
X. However, due to the removability theorem for compact singularities of holomorphic
functions in C n, the Cauchy-Riemann system in C n has no right fundamental solution.

It is known that if the domain D is not pseudo-convex then the range Im(P ) :
W 1,2(D) → [L2(D)]n may be not closed. But even in a strictly convex domain D
we can not achieve maximal global regularity for solutions of the equation ∂u = f ∈
[L2(D)]n.

Indeed, let D be the ball B(0, R) in C 2 with centre at 0 and radius 0 < R < ∞.

Then f =
(

0
1

R−z1

)
∈ [L2(D)]2 and the function u = z2

R−z1 ∈ L
2(D) is a solution of
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the equation ∂u = f in D. Because

∂u

∂z1
=

z2

(R− z1)2
6∈ L2(D)

we conclude that u 6∈W 1,2(D).
Assume that there exists a function v ∈W 1,2(D) satisfying ∂v = f . Then v = u+h

where h is a holomorphic L2-function in the ball D and ∂v
∂z1

∈ L2(D). Hence

‖ ∂v
∂z1

‖2L2(D) = limε→0‖
∂v

∂z1
‖2L2(Dε) = limε→0(‖

∂u

∂z1
‖2L2(Dε) + ‖ ∂h

∂z1
‖2L2(Dε)+

−1
4

∫
Dε

∂u

∂z1
(
∂h

∂z1
)dz ∧ dz − 1

4

∫
Dε

∂u

∂z1
(
∂h

∂z1
)dz ∧ dz) <∞.

On the other hand,

−1
4

∫
Dε

∂u

∂z1
(
∂h

∂z1
)dz ∧ dz =

=
1

2
√
−1

∫
|z1|≤R−ε

∫ (R−ε)2−|z1|2

r=0

∫
|z2|=r

∂u

∂z1
(
∂h

∂z1
)
√
−1dz2

z2
rdrdz1 ∧ dz1 = 0

because 1
z2

∂u
∂z1

, ( ∂h∂z1 ) are anti-holomorphic with respect to z2 and hence∫
|z2|=r

∂u

∂z1
(
∂h

∂z1
)
dz2

z2
= 0 (0 < r < R).

Therefore we obtain

‖ ∂v
∂z1

‖L2(D) = limε→0(‖
∂u

∂z1
‖2L2(Dε) + ‖ ∂h

∂z1
‖2L2(Dε)) <∞

contradicting ‖ ∂u∂z1 ‖
2
L2(D) = ∞.

Thus we proved that for every ball D = B(0, R) ⊂ C 2 there exists a closed differen-
tial (0, 1)-form f with coefficients in L2(D) for which there is no W 1,2(D)-solution of
the equation ∂u = f (cf. [6] for an analogous result for Hölder spaces).

Now using results of [5] (on triviality of the ”harmonic” spaces H̃0,2(D)) and Propo-
sitions 7.12 we conclude that the image Im(∂) : W 1,2(D) → [L2(D)]2 is not closed.

Let ρ be as in Example 8.3 then ρ belongs to the class of functions defining the
domain D (D = {x ∈ X : ρ(x) < 0}), |dρ| =

√∑2n
j=1(

∂ρ
∂xj

)2 = 1 in a neighbourhood of

∂D ∈ C∞ and the system {C0 = 2( ∂ρ∂z1 , . . . ,
∂ρ
∂zn

)} is the system associated to {B0 = 1}
in Lemma 2.3.

Therefore, even if D is a ball, the boundary value problem

−∆ψ = 0 in D,
4

∑n
j=1

∂ρ
∂zj

∂ψ
∂zj

= ψ0 on ∂D,
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is not solvable in W 1,2(D) for all (complex valued) data ψ0 ∈W−1/2,2(∂D) satisfying∫
∂D

(ψ0(y)v(y))ds(y) = 0 for all holomorphic W 1,2(D)− functions v.

The problem above is nothing but the ∂ -Neumann problem for functions in C n.
Results about the solvability of this problem could be found, for example, in [7].

It is easier to prove that we can not achieve the maximal global regularity in the
case where boundary of D is more ”flat”. For instance, if D is the bidisk in C 2

with centre at 0 and radius 0 < R < ∞, then arguing as before one sees that for

f =
(

0
1

(R−z1)δ

)
∈ [L2(D)]2 (1/2 < δ < 1) there is no W 1,2(D)-solution of the

equation ∂u = f in D.

Example 8.5. Let X = IRn and P =


∂2

∂x2
1

· · ·
∂2

∂x2
n

. Then P ∗P =
∑n
j=1

∂4

∂x4
j
. It is

clear that P ∗P has a bilateral fundamental solution on X but the operator P has only
a left one.

However, it is not difficult to see that in every domain D, where we can find a
solution with maximal (global) regularity of the equation grad(u) = f in D, we can
also solve with maximal (global) regularity the equation Pu = f . For instance, we
can do it in every convex domain with ∂D ∈ C2.

As a Dirichlet system on ∂D we can take the system {B0 = 1, B1 = ∂
∂n}. If the

function ρ is as in Example 8.3, then ρ belongs to the class of functions defining the
domain D (D = {x ∈ X : ρ(x) < 0}), |dρ| =

√∑n
j=1(

∂ρ
∂xj

)2 = 1 in a neighbourhood
of ∂D and the system of boundary differential operators

{C0 = −(
∂ρ

∂x1

∂

∂x1
, . . . ,

∂ρ

∂xn

∂

∂xn
), C1 = ((

∂ρ

∂x1
)2, . . . , (

∂ρ

∂xn
)2)}

is the system associated to {B0 = 1, B1 = ∂
∂n} in Lemma 2.3.

Therefore Proposition 7.12 implies that the Neumann problem
∑n
j=1

∂4

∂x4
j
ψ = 0 in D,

−
∑n
j=1

∂ρ
∂xj

∂3ψ
∂x3

j
= ψ0 on ∂D,∑n

j=1(
∂ρ
∂xj

)2 ∂
2ψ
∂x2

j
= ψ1 on ∂D, ψ ∈W 2,2(D)

is solvable for all (complex valued) data ψ0 ∈W−3/2,2(∂D), ψ1 ∈W−1/2,2(∂D) satis-
fying ∫

∂D

(ψ0(y)v(y)− ψ1(y)
∂v

∂n
(y))ds(y) = 0 for all S2,2

P (D)− functions v

in every convex domain D with a C∞-smooth boundary ∂D.
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Obviously, S2,2
P (D) consists of all polynomials of the form

∑
k 6=i

ak,ixkxi +
n∑
j=1

bjxj + c

where ak,i, bj , c ∈ C 1.

9. Applications to the Cauchy and Dirichlet problems

We have proved the solvability of the Dirichlet problem for an determined elliptic
operator P ∗P = ∆ ∈ do2p(E → E) in Lemma 4.2. Let us now obtain a formula for the
solution of this problem. In the following proposition M(⊕ψj) stands for the integral

MY (⊕ψj)(x) = −
∫
∂D

p−1∑
j=0

< Cj(y)tP ∗(y)ΦY (x, y), ψj >y ds.

Proposition 9.1. Let the operator P satisfy the Uniqueness Condition in the small
on X and ∂D be connected. Then, if ψj ∈Wm−j−1/2,2(Fj|∂D) (0 ≤ j ≤ p−1,m ≥ p),
the series

ψ =
∞∑
ν=0

(TY P )νMY (⊕ψj),

converging in the W p,2(E|D)-norm, is the (unique) Wm,2(E|D)-solution of the Dirich-
let problem for the operator P ∗P and the data ψj (0 ≤ j ≤ p− 1).

Proof. We proved in Lemma 4.2 that for sections ψj ∈ Wm−j−1/2,2(Fj|∂D) (0 ≤
j ≤ p − 1) there exists a unique solution ψ ∈ Wm,2(E|D) of the Dirichlet problem.
Theorem 4.13 and Corollary 3.3 imply that

ψ = lim
ν→∞

(TY P )νψ +
∞∑
ν=0

(TY P )νMψ =

= lim
ν→∞

(TY P )νψ +
∞∑
ν=0

(TY P )νMY (⊕ψj).

On the other hand, under the hypothesis of the proposition S̃p,2P (D) = W p,2
0 (E|D)

(see Remark 4.14), and therefore limν→∞(TY P )νψ = 0, i.e.

ψ =
∞∑
ν=0

(TY P )νMY (⊕ψj),

which was to be proved. 2

This formula may be useful in cases where the Green function is known for a large
domain Y (for instance where Y is a ball in IRn, ∆ is the usual Laplace operator and
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D b Y is a domain with connected boundary, for which the Green function is not
known).

We consider now the Cauchy problem for the operator P .

Problem 9.2. Let S be an open connected subset of ∂D and ψj ∈Wm−j−1/2,2(Fj|S)
(0 ≤ j ≤ p−1,m ≥ p) be given sections. It is required to find a section ψ ∈Wm,2(E|D)
such that  Pψ = 0 in D

Bjψ = ψj on ∂D
(0 ≤ j ≤ p− 1).

We obtain a solvability condition for the Cauchy problem in the degenerate case
where the Cauchy data are given on the whole boundary, i.e. S = ∂D.

Proposition 9.3. Let u ∈Wm,2(E|D). The following conditions are equivalent:

(1) u ∈ Sm,2P (D);

(2) MY u = u in D;

(3) TY Pu = 0 in D.

Proof. Formula (3.2) implies that (2) and (3) are equivalent. Let MY u = u in D
then, due to Theorem 4.13 u = (limν→∞Mν

Y ) ∈ Sp,2P (D). Since u ∈ Wm,2(E|D) we
conclude that u ∈ Sm,2P (D). 2

Proposition 9.4. Let u ∈ Sm,2∆ (D). The following conditions are equivalent:

(1) u ∈ Sm,2P (D);

(2) MY u = 0 in Y \D;

(3) TY Pu = 0 in Y \D.

Proof. Formula (3.2) implies that (2) and (3) are equivalent. Let TY Pu = 0 in
Y \D then, TPY u = 0 in D and the statement follows from Proposition 9.3. 2

Corollary 9.5. Let ψj ∈Wm−j−1/2,2(Fj|∂D) (0 ≤ j ≤ p− 1). Then Problem 9.2 is
solvable if and only if MY (⊕ψj) = 0 in Y \D.

Proof. If Problem 9.2 is solvable and ψ ∈ Sm,2P (D) is the solution then MY (⊕ψj) =
MY ψ. Using Theorem 2.4 we conclude that MY (⊕ψj) = 0 in Y \D.

Conversely, if MY (⊕ψj) = 0 in Y \D then (4.2) mplies that

(BjMY (⊕ψj)−)|∂D =

(BjMY (⊕ψj)−)|∂D − (BjMY (⊕ψj)+)|∂D = ψj (0 ≤ j ≤ p− 1).(9.1)

We set now ψ = MY (⊕ψj)−. The Theorem on boundedness for potential (co-
boundary) operators in Sobolev spaces (see [9], 2.3.2.5) implies that ψ ∈ Sm,2∆ (D). On
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the other hand (9.1) implies that MY ψ = MY (⊕ψj), i.e. MY ψ = 0 in Y \D. Therefore
the statement follows from Proposition 9.4. 2

For the Cauchy-Riemann system and the Martinely-Bochner integral Corollary 9.5
was obtained by Kytmanov (see [7], p. 170), and for matrix factorizations of the
Laplace operator in IRn it was proved by one of the authors (see [14]).

In [15] necessary and sufficient conditions for the solvability of the Cauchy Problem
9.2 were obtained in terms of the Green operator M in the case where the coefficients
of the operator P are real analytic or, if P is determined elliptic, where the Uniqueness
Condition in the small on X holds for the operator P (see Remark 4.14).
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