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Abstract. Let X be a smooth n -dimensional manifold and D be an open
connected set in X with smooth boundary ∂D. Perturbing the Cauchy problem

for an elliptic system Au = f in D with data on a closed set Γ ⊂ ∂D we obtain

a family of mixed problems depending on a small parameter ε > 0. Although
the mixed problems are subject to a non-coercive boundary condition on ∂D\Γ
in general, each of them is uniquely solvable in an appropriate Hilbert space
DT and the corresponding family {uε} of solutions approximates the solution

of the Cauchy problem in DT whenever the solution exists. We also prove

that the existence of a solution to the Cauchy problem in DT is equivalent to
the boundedness of the family {uε}. We thus derive a solvability condition

for the Cauchy problem and an effective method of constructing its solution.

Examples for Dirac operators in the Euclidean space Rn are considered. In the
latter case we obtain a family of mixed boundary problems for the Helmholtz

equation.
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Introduction

This paper is based on the following simple observation. Consider an operator
equation Tu = f with a bounded operator T : H → H̃ in Hilbert spaces. If there
is a u ∈ H satisfying Tu = f then f is orthogonal to the null-space of the adjoint
operator T ∗ in H̃. On the other hand, for f ∈ (kerT ∗)⊥ the equation Tu = f
is obviously equivalent to T ∗Tu = T ∗f . The latter need not have any solution,
however, the slightly perturbed equation T ∗Tu + εu = v is uniquely solvable for
any v ∈ H, provided that ε > 0. Note that the solution of the equation can be

1991 Mathematics Subject Classification. Primary 35B25; Secondary 35J60.
Key words and phrases. The Cauchy problem, a mixed problem, small parameter, the

Helmholtz equation.

1



2 A. SHLAPUNOV AND N. TARKHANOV

effectively constructed, for the operator T ∗T + ε is positive definite. We thus get a
family

uε = (T ∗T + ε)−1T ∗f

in H, whose limit is a good candidate for the solution of Tu = f that is orthogonal
to the null-space of T . Indeed, if v ∈ H satisfies Tv = 0 then by Lemma 12.1.25 of
[Tar95b] we get

(uε, v)H = (f, T (T ∗T + ε)−1v)H̃

= (f, (TT ∗ + ε)−1Tv)H̃
= 0,

as desired. If f = Tu for some u ∈ H, then uε = u − ε(T ∗T + ε)−1u is obviously
bounded in H.

Conversely, if the norm ‖uε‖H is bounded uniformly in ε� 1 then uε converges
for ε↘ 0 to the only solution u ∈ H of Tu = f that is orthogonal to kerT .

In this way we derive a solvability condition and an approximate solution to the
equation Tu = f in H. We refer the reader to Section 12.1.5 of [Tar95b] for an
extremal property of uε.

When applying the approach in the study of the Cauchy problem for solutions
of an elliptic equation Au = f , one needs to complete it by refined analysis. By
the above, the calculus of the Cauchy problems which are ill-posed by the very
nature can be elaborated in the framework of the calculus of operators T ∗T + εI
depending on a parameter ε > 0. In order to avoid sophisticated adjoint operators
one uses L2 -scalar products which necessarily leads to unbounded closed operators
with dense domains. Hence, it requires much more efforts to make use of the
construction described above.

The operator T is given the domain consisting of those functions u in D which
are square integrable along with Au and whose Cauchy data with respect to A
vanish on a closed set Γ ⊂ ∂D. Then the domain of the adjoint operator T ∗ is
proved to consist of square integrable functions g on D, such that the Cauchy data
of g with respect to A∗ vanish in the complement of Γ . It follows that the natural
domain of the Laplacian T ∗T is a subspace of square integrable functions u on D,
such that the Cauchy data of u with respect to A vanish on Γ and the Cauchy data
of Tu with respect to A∗ vanish on ∂D \ Γ . This gives rise to a mixed boundary
value problem for the elliptic operator A∗A in D similar to the classical Zaremba
problem [Zar10].

Our paper demonstrates rather strikingly that the calculus of Cauchy problems
for solutions of elliptic equations just amounts to the calculus of mixed bound-
ary value problems for elliptic equations with a parameter, cf. [Sim87]. While
this observation seems to be of purely mathematical interest, the explicit solutions
we construct by the classical Fourier method may be of practical importance in
applications.

1. Preliminaries

Let X be a C∞ manifold of dimension n with a smooth boundary ∂X. We
tacitly assume that it is embedded into a smooth closed manifold X̃ of the same
dimension.
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For any smooth C -vector bundles E and F over X, we write Diffm(X;E,F ) for
the space of all linear partial differential operators of order ≤ m between sections
of E and F .

We denote by E∗ the conjugate bundle of E. Any Hermitian metric (., .)x on
E gives rise to a sesquilinear bundle isomorphism ∗E : E → E∗ by the equality
〈∗Ev, u〉x = (u, v)x for all sections u and v of E.

Pick a volume form dx on X, thus identifying dual and conjugate bundles. For
A ∈ Diffm(X;E,F ), denote by A′ ∈ Diffm(X;F ∗, E∗) the transposed operator and
by A∗ ∈ Diffm(X;F,E) the formal adjoint operator. We have A∗ = ∗−1

E A′∗F , cf.
[Tar95b, 4.1.4] and elsewhere.

For an open set O ⊂ X, we write L2(O,E) for the Hilbert space of all measurable
sections of E over O with a finite norm (u, u)L2(O,E) =

∫
O

(u, u)xdx. We also denote
by Hs(O,E) the Sobolev space of distribution sections of E over O, whose weak
derivatives up to order s belong to L2(O,E).

Given any open set O in X◦, the interior of X, we let SA(O) stand for the
space of weak solutions to the equation Au = 0 in O. Obviously, the subspace of
Hs(O,E) consisting of all weak solutions to Au = 0 is closed.

Write σm(A) for the principal homogeneous symbol of the operator A, σm(A)
living on the (real) cotangent bundle T ∗X of X. From now on we assume that
σm(A) is injective away from the zero section of T ∗X. Hence it follows that the
Laplacian A∗A is an elliptic differential operator of order 2m on X.

If the dimensions of E and F are equal then A is elliptic, too. Otherwise we will
call it overdetermined elliptic operator.

We can assume without restriction of generality that A is included into a com-
patibility complex of differential operators Ai ∈ Diffmi(X;Ei, Ei+1) over X, where
i = 0, 1, . . . , N and A0 = A. This complex is elliptic in a natural way, see for
instance [Tar95a, 4.1.2]). If A is elliptic then the compatibility complex is trivial,
i.e., Ai = 0 for all i > 0.

Let D be a relatively compact domain in X◦ with a smooth boundary ∂D. For
u ∈ L2(D,E) we always regard Au as a distribution section of F over D.

A large class of operators A possess the following property which is usually
referred to as Unique Continuation Property,

(U)s : Given any domain D ⊂ X◦, if u ∈ SA(D) vanishes on a non-empty
open subset of D then u ≡ 0 in all of D.

This property implies in particular the existence of a left fundamental solution
for A in the interior of X.

Consider the Hermitian form

D(u, v) = (u, v)L2(D,E) + (Au,Av)L2(D,F )

on the space C∞(D,E) of all smooth sections of E over the closure of D. The func-

tional D(u) =
√
D(u, u) is usually called the Graph Norm related to the unbounded

operator A : L2(D,E)→ L2(D,F ). Write DA for the completion of C∞(D,E) with
respect to D(·). Then DA is a Hilbert space with the scalar product D(., .), and A
maps DA continuously to L2(D,F ).

Note that if A = ∇ is the gradient operator in Rn then DA = H1(D). Let us
clarify what kind elements are in this space in the general case.

To this end we fix a Dirichlet system Bj , j = 0, 1, . . . ,m− 1, of order m− 1 on
∂D. More precisely, each Bj is a differential operator of type E → Fj and order
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mj ≤ m− 1 in a neighbourhood U of ∂D, where mi 6= mj for i 6= j. Moreover, the
symbols σmj (Bj), if restricted to the conormal bundle of ∂D, have ranks equal to
the dimensions of Fj . Set

t(u) = ⊕m−1
j=0 Bju

for u ∈ Hm(D,E).
For s > 0 we denote by H−s(∂D,Fj) the dual of the space Hs(∂D,Fj) with

respect to the pairing in L2(∂D,Fj).

Lemma 1.1. For every u ∈ DA, we have u ∈ Hm
loc(D,E). Moreover t(u) has weak

boundary values on ∂D belonging to ⊕m−1
j=0 H

−mj−1/2(∂D,Fj).

Proof. Fix an element u ∈ DA. Since A is elliptic we deduce from Au ∈ L2(D,F )
that u ∈ Hm

loc(D,E).

As usual, we denote by H−m(D,E) the completion of C∞(D,E) with respect
to the norm

|u|−m = sup
v∈C∞(D,E)

t(v)=0

|(u, v)L2(D,E)|
‖v‖Hm(D,E)

.

Then we easily verify that A∗ extends to a map of L2(D,F ) to H−m(D,E), more
explicitly,

(A∗f, v) := (f,Av)L2(D,F )

for each f ∈ L2(D,F ) and v ∈
◦

Hm(D,E).
By the very definition, the distribution A∗f is always orthogonal under the

pairing in L2(D,E) to the null-space of the Dirichlet problem for A∗A. Therefore,
for every f ∈ L2(D,F ) there exists a section Gf ∈ Hm(D,E) satisfying A∗AGf =
A∗f in D and t(Gf) = 0 on ∂D, see for instance [SST03]. Any u ∈ DA can be thus
presented in the form

u = GAu+ (u−GAu).

By the construction, we get GAu ∈
◦

Hm(D,E) and u − GAu ∈ DA ∩ SA∗A(D).
As u−GAu ∈ L2(D,E) is of finite order growth near ∂D, we conclude by Lemma
9.4.4 of [Tar95b] that t(u − GAu) has weak boundary values on ∂D belonging to
⊕m−1
j=0 H

−mj−1/2(∂D,Fj).

As t(GAu) ∈ ⊕m−1
j=0 H

m−mj−1/2(∂D,Fj) vanishes on the boundary even in the
usual sense for Sobolev spaces, the proof is complete. �

Let {Cj}m−1
j=0 be the adjoint Dirichlet system for {Bj}m−1

j=0 with respect to the

Green formula for A (see for instance [Tar95b, Remark 9.2.6]). For g ∈ Hm(D,F ),
we set

n(g) = ⊕m−1
j=0 Cjg.

Suppose Γ is a closed subset of ∂D. The cases Γ = ∅ and Γ = ∂D are permitted,
too. We write Γ ◦ for the interior of Γ in the relative topology of ∂D.

Given any u ∈ L2(D,E) with Au ∈ L2(D,F ), we say that t(u) = 0 on the set Γ
if

(1.1)

∫
D

((Au, g)x − (u,A∗g)x) dx = 0

for all sections g ∈ C∞(D,F ) satisfying n(g) = 0 on ∂D \ Γ ◦.

Lemma 1.2. If u ∈ DA and t(u) = 0 on Γ then u ∈ Hm
loc(D ∪ Γ ◦, E).
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In particular, t(u) has zero boundary values on Γ ◦ in the usual sense of Sobolev
spaces.

Proof. The case Γ = ∅ has been already treated in Lemma 1.1. Assume that Γ is
non-empty.

Choose a smooth real-valued function % on X with the property that

(1.2) D = {x ∈ X : %(x) < 0}
and ∇%(x) 6= 0 for all x ∈ ∂D. Set Dε = {x ∈ X : %(x) < ε}, then D−ε b D b Dε

for all sufficiently small ε > 0, and the boundary of D±ε is as smooth as the
boundary of D.

We first show that the weak boundary values of t(u) vanish on Γ in the sense
that

lim
ε→0+

∫
∂D−ε

m−1∑
j=0

(Bju, gj)xds = 0

for all gj ∈ C∞(U,Fj), j = 0, 1, . . . ,m− 1, satisfying (supp gj) ∩ ∂D ⊂ Γ . To this

end, choose a function g ∈ C∞(D,F ), such that n(g) = ⊕m−1
j=0 gj on ∂D, cf. Lemma

9.3.5 in [Tar95b]. Since u ∈ L2(D,E) and Au ∈ L2(D,F ), we obtain by the Green
formula

lim
ε→0+

∫
∂D−ε

m−1∑
j=0

(Bju, gj)xds = lim
ε→0+

∫
D−ε

((Au, g)x − (u,A∗g)x) dx

=

∫
D

((Au, g)x − (u,A∗g)x) dx

= 0

because t(u) = 0 on Γ in the sense of (1.1) and g ∈ C∞(D,F ) satisfies n(g) = 0 on
∂D \ Γ ◦.

We thus have A∗Au ∈ H−m(D,E) and the weak boundary values of t(u) vanish
on Γ . As A∗A is an elliptic operator of order 2m and u 7→ t(u) is a Dirichlet system
of order m− 1, we conclude using the local regularity theorem for solutions of the
Dirichlet problem for A∗A that u ∈ Hm

loc(D ∪ Γ ◦) (see for instance Theorem 9.3.17
of [Tar95b]), as desired. �

The proof actually shows that for sections u ∈ L2(D,E) with Au ∈ L2(D,F )
the equality (1.1) just amounts to saying that the weak boundary values of t(u)
vanish on Γ ◦.

Let DT stand for the completion of the space of all sections u in C∞(D,E),
satisfying t(u) = 0 on Γ , with respect to the norm u 7→ D(u). By the very
definition, DT is a closed subspace in DA, and it is a Hilbert space itself with the
induced Hilbert structure.

It is well known that if Γ is the whole boundary then DT =
◦

Hm(D,E), the
closure of C∞comp(D,E) in Hm(D,E).

Lemma 1.3. If u ∈ DT then t(u) = 0 on Γ in the sense of (1.1).

Proof. If u ∈ DT then there exists a sequence {uk}k∈N in C∞(D,E) satisfying
t(uk) = 0 on Γ , such that

lim
k→∞

D(uk − u) = 0.
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Hence∫
D

((Au, g)x − (u,A∗g)x) dx = lim
k→∞

∫
D

((Auk, g)x − (uk, A
∗g)x) dx

= lim
k→∞

∫
∂D

m−1∑
j=0

(Bjuk, Cjg)xds

= 0

for all g ∈ C∞(D,F ) satisfying n(g) = 0 on ∂D \ Γ ◦, because t(uk) = 0 on Γ .
Therefore, t(u) = 0 on ∂Γ . �

We are now in a position to characterise the space DT in a much more convenient
way.

Theorem 1.4. As defined above, DT is a closed subspace of DA consisting of all
u ∈ DA satisfying t(u) = 0 on Γ .

Proof. Write H for the subspace of DA consisting of all u ∈ DA satisfying t(u) = 0
on Γ . It is easy to see that H is a closed subspace of DA. Lemma 1.3 states that
DT is a subspace of H. Since DT is complete by the very definition, we shall have
established the theorem if we prove that the orthogonal complement D⊥T of DT in
H is zero.

To this end, pick a section u ∈ H satisfying D(u, v) = 0 for all v ∈ C∞(D,E),
such that t(v) = 0 on Γ . If moreover v fulfills n(Av) = 0 on ∂D \ Γ ◦ then we
readily get

(1.3) (u, (A∗A+ I)v)L2(D,E) = 0,

which is due to (1.1).
We now observe that every w ∈ C∞(D,E) can be approximated in the L2(D,E) -

norm by sections of the form (A∗A + 1)v, where v ∈ C∞(D,E) satisfies t(v) = 0
on Γ and n(Av) = 0 on ∂D \ Γ ◦. This latter is a consequence of the fact that the
unbounded operator T ∗T + 1 in L2(D,E) with domain DT∗T is positive, and so
invertible, see § 3 below. We thus deduce from (1.3) that u = 0. It follows that
D⊥T = {0}, as desired. �

2. The Cauchy problem

A rough formulation of the Cauchy problem for the operator A in the domain D
reads as follows: Given any sections f of F over D and u0 of ⊕m−1

j=0 Fj over Γ , find

a section u of E over D, such that Au = f in D and t(u) has suitable limit values
on Γ coinciding with u0.

Note that some regularity of u up to Γ is needed for t(u) to possess limit values
on Γ . Moreover, we are going to use Hilbert space methods for the study of the
Cauchy problem. Hence the space DA seems to be a natural choice for posing the
problem.

What is still lacking is a proper function space B(Γ ) for the Cauchy data u0 on
Γ . It is not difficult to introduce such a space in the case where Γ is the entire
boundary, namely

B(∂D) = DA/
◦

Hm(D,E).



MIXED PROBLEMS WITH A PARAMETER 7

By Lemma 1.1, this quotient space can be specified within ⊕m−1
j=0 H

−mj−1/2(∂D,Fj)
under t, although the norm of the former is essentially stronger than the norm of
the latter.

Theorem 1.4 suggests us to set

B(Γ ) =
DA
DT

in general. Using the approach of [Tar95b, Ch. 1] one can specify B(Γ ) within
⊕m−1
j=0 H

−mj−1/2(Γ , Fj) under t. Of course, it is difficult to explicitly describe the

elements of B(Γ ). However, for applications it suffices to know that there is a
natural embedding

⊕m−1
j=0 H

m−mj−1/2(Γ , Fj) ↪→ B(Γ ).

Using the spaces B(Γ ) allows one to reduce the Cauchy problem with non-
zero Cauchy data on Γ to the Cauchy problem with homogeneous boundary data.
Indeed, given f ∈ L2(D,F ) and u0 ∈ B(Γ ), we look for a section u ∈ DA satisfying
Au = f in D and t(u) = u0 on Γ . By the very definition of the space B(Γ ) there is a
U0 ∈ DA with the property that τ(U0) = u0 on Γ . This latter equality just amounts
to saying that U0−u0 ∈ DT . Set u = U0 +U , then u ∈ DA is equivalent to U ∈ DA.
Furthermore, t(u) = u0 on Γ is equivalent to t(U) = 0. Since AU = f − AU0 and
AU0 ∈ L2(D,F ), substituting u = U0 + U into the problem leads to the Cauchy
problem with u0 = 0.

Problem 2.1. Let f ∈ L2(D,F ) be an arbitrary section. Find u ∈ DT such that
Au = f in D.

If Γ ◦ 6= ∅ and the Unique Continuation Property (U)s holds for A then Problem
2.1 has at most one solution, cf. Theorem 10.3.5 of [Tar95b]. Otherwise we can not
guarantee that the null-space SA(D)∩DT of this problem is trivial. It is well known
that the Cauchy problem for elliptic equations is ill-posed in general. Moreover, if
A is overdetermined then additional necessary conditions arise for the problem to
be solvable. In fact, these conditions reflect the fact that the image of DT by A
may be not dense in L2(D,F ).

Let us formulate this more precisely. To this end, we invoke as usual the bound-
ary conditions which are adjoint for t with respect to the Green formula in D.
Similarly to (1.1), for g ∈ L2(D,F ) with A∗g ∈ L2(D,E), we say that n(g) = 0 on
the set ∂D \ Γ ◦ if

(2.1)

∫
D

((Au, g)x − (u,A∗g)x) dx = 0

for all sections u ∈ C∞(D,E) satisfying t(u) = 0 on Γ .
Recall that A1 ∈ Diffm1(X;F,E2) stands for a compatibility operator for A over

X, i.e., A1 is in a sense “smallest” differential operator with the property that
A1A ≡ 0 on X. We make use of the Green formula for A1 in the same way as above
to introduce the relations “n(v) = 0 on ∂D \ Γ ◦”, for all sections v ∈ L2(D,E2)
with A1∗v ∈ L2(D,F ), and “t(f) = 0 on Γ”, for all sections f ∈ L2(D,F ) with
A1f ∈ L2(D,E2).

The boundary equations n(v) = 0 for sections of E2 and t(f) = 0 for sections of
F are no longer induced by any Dirichlet system on ∂D as those at steps 1 and 0,
respectively.
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Lemma 2.1. Assume that f ∈ L2(D,F ) belongs to the closure of ADT in L2(D,F ).
Then

1) A1f = 0 in D in the sense of distributions;
2) t(f) = 0 on Γ ;
3) (f, g)L2(D,F ) = 0 for all g ∈ L2(D,F ) satisfying A∗g = 0 in D and n(g) = 0

on ∂D \ Γ ◦.

Proof.

1) Let f belong to the closure of ADT in L2(D,F ). Then there is a sequence
{uk}k∈N in DT , such that {Auk}k∈N converges to f in L2(D,F ). Without loss of
generality we may assume that each uk is of class C∞(D,E), for such functions are
dense in DT . As A1A ≡ 0, we get

(f,A1∗v)L2(D,F ) = lim
k→∞

(Auk, A
1∗v)L2(D,F )

= lim
k→∞

(uk, (A
1A)∗v)L2(D,E)

= lim
k→∞

0

= 0

for all v ∈ C∞(D,E2) satisfying n(A1∗v) = 0 on ∂D \ Γ ◦. In particular, this
equality is fulfilled for all sections v ∈ C∞(D,E2) of compact supports in D, which
implies A1f = 0 in D.

2) Suppose v ∈ C∞(D,E2) is any section satisfying n(v) = 0 on ∂D \ Γ ◦. Then
n(A1∗v) = 0 holds on ∂D \ Γ ◦, too, which is a consequence of A∗A1∗ = 0 and
Stokes’ formula. By 1), we get

− (f,A1∗v)L2(D,F ) =

∫
D

(
(A1f, v)x − (f,A1∗v)x

)
dx

= 0,

the first equality being a consequence of the fact that A1f = 0 in D. Hence it
follows that t(f) = 0 on Γ .

3) Finally,

(f, g)L2(D,F ) = lim
k→∞

(Auk, g)L2(D,F )

= lim
k→∞

∫
D

((Auk, g)x − (uk, A
∗g)x) dx

= lim
k→∞

0

= 0

provided that g ∈ L2(D,F ) satisfies A∗g = 0 in D and n(g) = 0 on ∂D \ Γ ◦. This
proves 3). �

The condition 3) is not only necessary but also sufficient in order that f would
belong to the closure of ADT in L2(D,F ).

Lemma 2.2. If f satisfies the condition 3) of Lemma 2.1 then f lies in the closure
of ADT in L2(D,F ).

Proof. Write V for the space of all g ∈ L2(D,F ) satisfying A∗g = 0 in D and
n(g) = 0 on ∂D \ Γ ◦. We shall have established the lemma if we show that V
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coincides with the orthogonal complement of the image ADT in L2(D,F ). By
definition, g ∈ (ADT )⊥ if

(2.2) (g,Au)L2(D,F ) = 0

for all u ∈ DT . Since DT contains all smooth functions of compact support in D, we
conclude that (ADT )⊥ ⊂ SA∗(D). Then equality (2.2) imlplies that (ADT )⊥ ⊂ V
because

(g,Au)L2(D,F ) = −
∫
D

((A∗g, u)x − (g,Au)x) dx

for all g ∈ V .
On the other hand, the inclusion V ⊂ (ADT )⊥ follows from (1.1) because each

u ∈ DT can be approximated in the normD(·) by sections uk ∈ C∞(D,E) satisfying
t(uk) = 0 on Γ . �

Denote by H1(D,Γ ) the space of all g ∈ L2(D,F ) satisfying A∗g = A1g = 0 in
D and n(g) = 0 on ∂D \ Γ ◦. Following [SST03] we call H1(D,Γ ) the harmonic
space in the Cauchy problem with data on Γ . This is an analogue of the well-known
harmonic spaces in the Neumann problem for the Laplace operator, cf. [Tar95a,
4.1].

Lemma 2.3. When combined with

4) (f, g)L2(D,F ) = 0 for all g ∈ H1(D,Γ ),

the condition 1) of Lemma 2.1 implies that f belongs to the closure of ADT in
L2(D,F ).

Proof. Let the conditions 1) and 4) are fulfilled for f ∈ L2(D,F ). The proof of
Lemma 2.2 shows that

(2.3) f = f1 + f2,

where f1 belongs to the closure of ADT in L2(D,F ) and f2 ∈ V . As A1f = 0 in D,
we deduce by Lemma 2.1 that A1f2 = 0 in D. This means f2 ∈ H1(D,Γ ). Finally,
4) implies

0 = (f, f2)L2(D,F )

= (f2, f2)L2(D,F )

whence f2 = 0, and so f belongs to the closure of ADT in L2(D,F ). �

Obviously, if f belongs to the closure of ADT in L2(D,F ) then it satisfies 4)
by Lemma 2.1, 3). It follows that the condition 3) of Lemma 2.1 is equivalent to
1) + 4).

Lemma 2.4. When combined with

5) (f, g)L2(D,F ) = 0 for all g ∈ H1(D,Γ ) satisfying t(g) = 0 on Γ ,

the conditions 1) and 2) of Lemma 2.1 imply that f belongs to the closure of ADT
in L2(D,F ).

Proof. Let the conditions 1), 2) and 5) hold true for f ∈ L2(D,F ). Taking into
account Lemma 2.1 and decomposition (2.3) we readily conclude that A1f2 = 0 in
D and t(f2) = 0 on Γ . Finally, 5) implies

0 = (f, f2)L2(D,F )

= (f2, f2)L2(D,F )
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whence f2 = 0. Thus, f = f1 belongs to the closure of ADT in L2(D,F ), as
desired. �

Remark 2.1. Of course, if A is elliptic then A1 = 0 and the conditions 1) and
2) are always fulfilled. As for the condition 3), one easily proves that each g ∈
L2(D,F ) satisfying A∗g = 0 in D and n(g) = 0 on ∂D \ Γ ◦ vanishes identically
in all of D, provided that A∗ is elliptic, Γ 6= ∂D and A∗ possesses the Unique
Continuation Property (U)s in a neighbourhood of D (see, for instance, [Tar95b,
Theorem 10.3.5]). If A is overdetermined elliptic then the domain D should possess
some convexity property relative to A, in order that H1(D,Γ ) or {g ∈ H1(D,Γ ) :
t(g) = 0 on Γ} might be trivial. In the case Γ = ∅ we refer the reader to [Tar95a,
4.1.3] for more details.

We have thus described the closure of ADT in L2(D,F ). It is a more difficult
task to describe the image ADT itself. The following lemma is the first step in this
direction.

Lemma 2.5. Let f ∈ L2(D,F ) belong to the closure of ADT in L2(D,F ). Then
a section u ∈ DT is a solution to Problem 2.1 if and only if

(2.4) (Au,Av)L2(D,F ) = (f,Av)L2(D,F )

for all v ∈ DT .

Proof. If Problem 2.1 is solvable and u is one of its solutions then (2.4) is obviously
satisfied.

Conversely, if (2.4) holds for an element u ∈ DT then A∗(Au − f) = 0 in D
because the space DT contains all smooth functions of compact support in D. It
follows that∫

D

((A∗(Au− f), v)x − (Au− f,Av)x) dx = −(Au− f,Av)L2(D,F )

= 0

for all v ∈ C∞(D,E) satisfying t(v) = 0 on Γ , which is due to (2.4). Hence
n(Au − f) = 0 on ∂D \ Γ ◦. Finally, since both Au and f belong to the closure of
ADT in L2(D,F ), Lemma 2.1, 3) shows that

(Au− f,Au− f)L2(D,F ) = 0,

i.e., Au = f in D. �

In conclusion of this section let us clarify the meaning of (2.4). Namely, this
equality amounts to saying that a solution u ∈ DT of the Cauchy problem Au = f
is actually a solution to the mixed problem

(2.5)

 A∗Au = A∗f in D;
t(u) = 0 on Γ ,

n(Au) = n(f) on ∂D \ Γ ◦.

Indeed, the proof of Lemma 2.5 shows that A∗Au = A∗f in D in the sense of
distributions and n(Au) = n(f) in the sense that n(Au − f) = 0 on ∂D \ Γ ◦. In
particular, if n(f) is well defined on ∂D \ Γ ◦ then also n(Au) is well defined on
∂D \ Γ ◦.

Of course, the mixed problem (2.5) considered in appropriate spaces gives noth-
ing but (2.4).
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In the next sections we will systematically use the generalised setting (2.4) of
Problem 2.1 in order to derive its solvability conditions.

3. A perturbation

Equation (2.4) surprisingly shows that Problem 2.1 may be well posed in many
cases. Namely, this is the case if the Hermitian form (A·, A·)L2(D,F ) is actually
a scalar product on DT inducing the same topology as the original scalar product
D(·, ·). For example, not only the gradient operator∇ in Rn meets this latter condi-
tion but also many other overdetermined elliptic operators A with finite-dimensional
kernel SA(D). Of course, (A·, A·)L2(D,F ) is always a scalar product on DT if Γ 6= ∅
and A possesses the property (U)s. However, the completion of DT with respect
to (A·, A·)L2(D,F ) may lead to a space with elements of arbitrary order of growth
near ∂D.

This observation suggests us to perturb the Hermitian form (A·, A·)L2(D,F ) thus
obtaining a “good” scalar product on DT . For this purpose let us introduce a family
of Hermitian forms

(u, v)ε = (Au,Av)L2(D,F ) + ε (u, v)L2(D,E)

on DT , parametrised by ε > 0. For each fixed ε > 0, the corresponding norm
‖u‖ε =

√
(u, u)ε is equivalent to the graph norm D(u) on DT . More precisely, we

get

(3.1) min{1,
√
ε}D(u) ≤ ‖u‖ε ≤ max{1,

√
ε}D(u)

for all u ∈ DA.
Taking into account Lemma 2.5 we now consider the following perturbed Cauchy

problem:

Problem 3.1. Given any f ∈ L2(D,F ) and h ∈ L2(D,E), find an element uε ∈ DT
satisfying

(3.2) (Auε, Av)L2(D,F ) + ε (uε, v)L2(D,E) = (f,Av)L2(D,F ) + ε (h, v)L2(D,E

for all v ∈ DT .

Note that the equation (3.2) leads to a perturbation of mixed problem (2.5),
more precisely,

(3.3)

 A∗Auε + ε uε = A∗f + ε h in D;
t(uε) = 0 on Γ ,

n(Auε) = n(f) on ∂D \ Γ ◦.

Indeed, since the space DT contains all smooth functions with compact support
in D, (3.2) implies A∗Auε+ε uε = A∗f+ε h in D in the sense of distributions. The
boundary condition t(uε) = 0 on Γ follows from Lemma 1.3. Finally, n(Auε) = n(f)
holds in the sense that n(Auε − f) on ∂D \ Γ ◦ because

A∗(Auε − f) = ε(h− uε)
∈ L2(D,E)
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in D and ∫
D

((A∗(Auε − f), v)x − (Auε − f,Av)x) dx

= ε (h− uε, v)L2(D,E) − (Auε − f,Av)L2(D,F )

= 0

for all v ∈ C∞(D,E) satisfying t(v) = 0 on Γ , the latter equality being due to
(3.2). If the restriction of n(f) to ∂D \ Γ ◦ makes sense, then the restriction of
n(Au) does so.

If considered in appropriate function spaces, the mixed problem (3.3) gives cer-
tainly nothing but (3.2).

In general, mixed problems (2.5) and (3.3) have non-coercive boundary condi-
tions on ∂D \Γ ◦. Hence they fail to be well-posed in the relevant weighted Sobolev
spaces, cf. [HS01]. The principal difference between Problems 2.1 and 3.1 is that
the last one is well-posed in DT .

Lemma 3.1. For every ε > 0, f ∈ L2(D,F ) and h ∈ L2(D,E) there exists a
unique solution uε(f, h) ∈ DT to Problem 3.1. Moreover, it satisfies

‖uε(f, h)‖ε ≤ ‖f‖L2(D,F ) +
√
ε ‖h‖L2(D,E).

Proof. Really, the estimates (3.1) imply that the vector space DT endowed with
the scalar product (·, ·)ε) is a Hilbert space. The Schwarz inequality yields∣∣(f,Av)L2(D,F ) + ε (h, v)L2(D,E)

∣∣
≤ ‖f‖L2(D,F )‖Av‖L2(D,F ) + ε ‖h‖L2(D,F ) ‖v‖L2(D,E)

≤ ‖f‖L2(D,F )‖v‖ε +
√
ε ‖h‖L2(D,F )

√
ε‖v‖2L2(D,E)

≤ cε(f, h) ‖v‖ε
with

cε(f, h) = ‖f‖L2(D,F ) +
√
ε ‖h‖L2(D,E).

Hence the map

v 7→ (f,Av)L2(D,F ) + ε (h, v)L2(D,E)

defines a continuous linear functional Ff,h on DT , whose norm is majorised by
‖Ff,h‖ ≤ cε(f, h).

We now use the Riesz theorem to conclude that there exists a unique element
uε(f, h) ∈ DT with

Ff,h(v) = (uε(f, h), v)ε

for every v ∈ DT . Clearly, uε(f, h) is a solution to Problem 3.1. Finally, by the
Riesz theorem we get

‖uε(f, h)‖ε ≤ cε(f, h),

as desired. �

The equations (3.3) show that Lemma 3.1 gives information on the solvability
of a mixed problem for the elliptic operator A∗A+ ε with very special data on D,
Γ and ∂D \ Γ ◦. Let us clarify what kind solvability theorems can be obtained for
arbitrary data.
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For a triple w ∈ L2(D,E) and

(3.4)
u0 ∈ ⊕m−1

j=0 H
2m−mj−1/2(Γ , Fj),

u1 ∈ ⊕m−1
j=0 H

m−mj−1/2(∂D \ Γ ◦, Fj),

we investigate the problem of finding a section u of the bundle E over D which
satisfies

(3.5)

 A∗Au+ ε u = w in D;
t(u) = u0 on Γ ,

n(Au) = u1 on ∂D \ Γ ◦,

the equations in D and on the boundary of D being understood in a proper sense.
From what has already been proved it is clear what we mean by this proper sense,
namely

(Au, g)L2(D,F ) − (u,A∗g)L2(D,E) = (u0, n(g))⊕L2(Γ ,Fj),

(u, v)ε = (w, v)L2(D,E) − (u1, t(v))⊕L2(∂D\Γ◦,Fj)

(3.6)

for all g ∈ C∞(D,F ) satisfying n(g) = 0 on ∂D \ Γ ◦, and for all v ∈ C∞(D,E)
satisfying t(v) = 0 on Γ , respectively.

Theorem 3.2. Let (A∗A)2 possess the Unique Continuation Property (U)s. Then,
for every triple (w, u0, u1) there exists a unique solution u ∈ DA ∩H2m

loc (D ∪Γ ◦, E)
to Problem 3.5. Moreover, there is a constant C(ε) > 0 which does not depend on
(w, u0, u1), such that
(3.7)

‖u‖2ε ≤ C(ε)
(
‖w‖2L2(D,E) + ‖u0‖2⊕H2m−mj−1/2(Γ ,Fj)

+ ‖u1‖2⊕Hm−mj−1/2(∂D\Γ◦,Fj)

)
.

Proof. Choose arbitrary u0 and u1 as in (3.4). Obviously, there are sections

U0 ∈ ⊕m−1
j=0 H

2m−mj−1/2(∂D,Fj),

U1 ∈ ⊕m−1
j=0 H

m−mj−1/2(∂D,Fj),

such that U0 = u0 on Γ , U1 = u1 on ∂D \ Γ ◦ and

‖U0‖2⊕H2m−mj−1/2(∂D,Fj)
+ ‖U1‖2⊕Hm−mj−1/2(∂D,Fj)

≤ 2
(
‖u0‖2⊕H2m−mj−1/2(Γ ,Fj)

+ ‖u1‖2⊕Hm−mj−1/2(∂D\Γ◦,Fj)

)
.

(3.8)

As the pair {t, n ◦ A} is a Dirichlet system of order 2m − 1 on ∂D, solving the
Dirichlet problem for (A∗A)2 yields a section U ′ ∈ H2m(D,E) with the following
properties

(3.9)

 (A∗A)2 U ′ = 0 in D;
t(U ′) = U0 on ∂D,

n(AU ′) = U1 on ∂D.

Moreover, there exists a positive constant C > 0 which is independent of U , such
that

(3.10) ‖U ′‖2H2m(D,E) ≤ C
(
‖U0‖2⊕H2m−mj−1/2(∂D,Fj)

+ ‖U1‖2⊕Hm−mj−1/2(∂D,Fj)

)
,

see for instance [Tar95b].
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According to Lemma 3.1 there exists a solution U ′′ ∈ DT to Problem 3.1 with
f = 0 and

h =
1

ε
(w −A∗AU ′)− U ′

∈ L2(D,E).

Set u = U ′ + U ′′. Then, integrating by parts and using Lemma 3.1 we easily
obtain

(u, v)ε = ((A∗A+ ε)U ′, v)L2(D,E) − (n(AU ′), t(v))⊕L2(∂D,Fj)

+ (w, v)L2(D,E) − ((A∗A+ ε)U ′, v)L2(D,E)

= (w, v)L2(D,E) − (u1, t(v))⊕L2(∂D\Γ◦,Fj)

for every v ∈ C∞(D,E) satisfying t(v) = 0 on Γ , i.e., the second equality of (3.6)
holds true.

On the other hand, for every g ∈ C∞(D,F ) satisfying n(g) = 0 on ∂D \ Γ ◦, we
get

(Au, g)L2(D,F ) − (u,A∗g)L2(D,E)

= (AU ′, g)L2(D,F ) − (U ′, A∗g)L2(D,E) + (AU ′′, g)L2(D,F ) − (U ′′, A∗g)L2(D,E)

= (AU ′, g)L2(D,F ) − (U ′, A∗g)L2(D,E)

because U ′′ ∈ DT . Once again integrating by parts we obtain

(AU ′, g)L2(D,F ) − (U ′, A∗g)L2(D,E) = (t(U ′), n(g))⊕L2(∂D,Fj)

= (u0, n(g))⊕L2(Γ ,Fj),

i.e., the first equality of (3.6) is fulfilled.
By the elliptic regularity of the Dirichlet problem for the operator A∗A + ε we

deduce that u ∈ H2m
loc (D ∪ Γ ◦, E).

If all of w and u0, u1 vanish then (3.6) and Theorem 1.4 imply that the corre-
sponding solution u lies in DT . On the other hand, the second equality of (3.6)
means that u is orthogonal to DT with respect to (·, ·)ε, i.e., u ≡ 0 which proves
the uniqueness.

Finally, according to Lemma 3.1 we get

‖u‖ε ≤ ‖U ′‖ε + ‖U ′′‖ε

≤ c ‖U ′‖H2m(D,E) +
1√
ε

(
‖w‖L2(D,E) + ‖A∗AU ′‖L2(D,E)

)
+
√
ε‖U ′‖L2(D,E).

Combining this estimate with (3.8) and (3.10) we arrive at (3.7), as desired. �

One sees that the regularity up to ∂D of the solution u in Theorem 3.2 fails
to correspond to the smoothness of the data w and u0, u1. To justify this we
recall that the boundary conditions n ◦ A on ∂D \ Γ ◦ are not coercive in general.
Were n ◦ A coercive we would have u ∈ H2m

loc (D \ ∂Γ , E). However, we could not
guarantee even in this case that u ∈ Hs(D,E) for some s > m unless certain
additional conditions were imposed on the triple (w, u0, u1) on ∂Γ . This is typical
for the mixed problems, cf. [Esk73], [HS01] and elsewhere.



MIXED PROBLEMS WITH A PARAMETER 15

4. The main theorem

Set uε(f) = uε(f, 0). The inequalities (3.1) and Lemma 3.1 give us a rough
estimate for the family {uε(f)}ε>0, namely

D(uε(f)) ≤ 1√
ε
‖f‖L2(D,F ).

Thus, it might be unbounded while ε→ 0+.
Let us see how the behaviour of the family {uε(f)}ε>0 reflects on the solvability

of Problem 2.1.

Theorem 4.1. The family {uε(f)}ε>0 is bounded in DT if and only if there exists
u ∈ DT satisfying (2.4).

Proof. We first prove the following lemma.

Lemma 4.2. Let there be a set ∆ ⊂ (0,+∞), such that

1) zero is an accumulation point of ∆;
2) the family {uδ(f)}δ∈∆ is bounded in DT .

Then there exists u ∈ DT satisfying (2.4).

Proof. Suppose zero is an accumulation point of ∆ and the family {uδ(f)}δ∈∆ is
bounded in DT . By (3.2), we have

(Auδ(f), Av)L2(D,F ) + δ (uδ(f), v)L2(D,E) = (f,Av)L2(D,F )

for all v ∈ DT . Passing to the limit, when ∆ 3 δ → 0, in the last equality and using
the fact that {uδ(f)}δ∈∆ is bounded, we obtain

(4.1) lim
δ→0+

(Auδ(f), Av)L2(D,F ) = (f,Av)L2(D,F )

for all v ∈ DT .
It is well known that every bounded set in a Hilbert space is weakly compact.

Hence there is a subsequence {uδj (f)} ⊂ DT weakly convergent in DT to an element
u ∈ DT . Here, {δj} converges to 0 when j →∞.

Note that (3.2) implies

(uε(f), v)L2(D,E) = 0

for all v ∈ DT ∩ SA(D), i.e., both {uδj (f)} and u are L2(D,E) -orthogonal to

DT ∩ SA(D). Let us show that {uδj (f)} converges weakly to u in L2(D,E) when
j →∞.

Given any v ∈ L2(D,E), the map u 7→ (u, v)L2(D,E) defines a continuous linear
functional Fv on DT with ‖Fv‖ ≤ ‖v‖L2(D,E). We now invoke the Riesz repre-
sentation theorem to conclude that there exists a unique element ṽ ∈ DT with
D(u, ṽ) = Fv(u) for every u ∈ DT . Hence

lim
j→∞

(uδj (f), v)L2(D,E) = lim
j→∞

D(uδj (f), ṽ)

= D(u, ṽ)

= (u, v)L2(D,E).

This exactly means that {uδj (f)} converges weakly in L2(D,E).
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Now we easily calculate

lim
∆3δ→0+

(Auδ(f), Av)L2(D,F ) = lim
∆3δ→0+

(
D(uδ(f), v)− (uδ(f), v)L2(D,E)

)
= D(u, v)− (u, v)L2(D,E)

= (Au,Av)L2(D,F )

(4.2)

for all v ∈ DT . Combining (4.1) and (4.2) we see that (2.4) holds true for u. �

Note that if (2.4) is solvable then there exists a solution u which is L2(D,E) -
orthogonal to DT ∩ SA(D).

We will have a stronger statement than Theorem 4.1 if we prove the following
lemma.

Lemma 4.3. If there exists u ∈ DT satisfying (2.4) then the family {uε(f)}ε>0 is
bounded in DT and

lim
ε→0+

‖A(uε − u)‖L2(D,F ) = 0.

Moreover, {uε(f)}ε>0 converges weakly to u ∈ DT as ε → 0+, if u is L2(D,E) -
orthogonal to DT ∩ SA(D).

Proof. Let there exist u ∈ DT satisfying (2.4). Set Rε = uε(f)−u. Then (2.4) and
(3.2) imply

(4.3) (ARε, Av)L2(D,F ) + ε (Rε, v)L2(D,E) = −ε (u, v)L2(D,E)

for all v ∈ DT , i.e., Rε = uε(0,−u) is the solution to Problem 3.1 with f = 0 and
h = −u.

According to (3.1) and Lemma 3.1 we have

D(Rε) ≤ 1√
ε
‖Rε‖ε

≤ 1√
ε

√
ε ‖u‖L2(D,E)

= ‖u‖L2(D,E).

Therefore, the family {Rε}ε>0 is bounded in DT , and so the family {uε(f)}ε>0 is
bounded, too. Now (4.3) implies

lim
ε→0+

‖A(uε(f)− u)‖2L2(D,F ) = lim
ε→0+

‖ARε‖2L2(D,F )

= − lim
ε→0+

ε
(
‖Rε‖2L2(D,E) + (u,Rε)L2(D,E)

)
= 0.

Finally, let us prove that {uε(f)}ε>0 converges weakly to u in DT as ε → 0+,
provided that u is L2(D,E) -orthogonal to DT ∩SA(D). We argue by contradiction.
Indeed, if {uε(f)}ε>0 does not converge weakly to u in DT then there are v ∈ DT ,
γ > 0 and a sequence {εj} tending to 0+ as j →∞, such that

(4.4) |D(uεj − u, v)| ≥ γ

for every j ∈ N. But the sequence {uεj} is bounded in the Hilbert space DT , and
so it possesses a subsequence which converges weakly in DT . By abuse of notation
we denote it again by {uεj}. As we have already seen in the proof of Lemma 4.2,
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the weak limit of {uεj} is u. This contradicts (4.4), and thus the assertion of the
lemma is proved. �

The proof of Theorem 4.1 is complete. �

Note that if Problem 2.1 is solvable then there exists a unique solution u which
is L2(D,E) -orthogonal to DT ∩ SA(D).

Corollary 4.4. Suppose f belongs to the closure of ADT in L2(D,F ). Then the
family {uε(f)}ε>0 is bounded in DT if and only if Problem 2.1 is solvable. Moreover,

lim
ε→0+

‖Auε(f)− f‖L2(D,F ) = 0

and even {uε(f)}ε>0 converges weakly, when ε → 0+, to the solution u ∈ DT of
Problem 2.1 which is L2(D,E) -orthogonal to DT ∩ SA(D).

Proof. This follows from Theorem 4.1 and Lemmas 4.3 and 2.5. �

Is it true that {uε(f)}ε>0 converges to u in the topology of Hm
loc(D ∪ Γ ◦, E) if

u ∈ DT is the solution to Problem 2.1 which is L2(D,E) -orthogonal to DT∩SA(D)?
To answer this question we observe, by Lemma 4.3, that the family {uε(f)−u}ε>0

is bounded in DT and

lim
ε→0+

‖A(uε(f)− u)‖L2(D,F ) = 0,

t(uε(f)− u) = 0

on Γ for every ε > 0. Then, applying [Tar97, Theorem 7.2.6] we see that {uε(f)}ε>0

converges to u in Hm
loc(D ∪ Γ ◦, E).

5. The well-posed case

It is well known that a linear operator T : H → H̃ in normed spaces has a
continuous inverse if and only if ‖u‖H ≤ c ‖Tu‖H̃ for every u ∈ H, the constant
c > 0 being independent of u. Hence, the (Cauchy) Problem 2.1 is well-posed if
and only if there exists a constant c > 0 such that

(5.1) ‖u‖L2(D,E) ≤ c‖Au‖L2(D,F )

for all u ∈ DT .

Theorem 5.1. Let the (Cauchy) Problem 2.1 be well posed. Then for every f ∈
L2(D,F ) there exists a limit

u = lim
ε→0+

uε(f)

in DT . Moreover, u is the solution to Problem 2.1 if f belongs to the closure of
ADT in L2(D,F ).

Proof. Indeed, it follows from (5.1) that the Hermitian form

h(u, v) := (Au,Av)L2(D,F )

defines a scalar product on DT inducing the same topology as the original one. We
now use the Riesz representation theorem to see that for every f ∈ L2(D,F ) there
is a unique element u ∈ DT satisfying (2.4).

Moreover, (5.1) yields

D(uε(f)− u) ≤
√
c+ 1 ‖uε(f)− u‖ε.
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Then using (4.3) and Lemma 3.1 we see that

D(uε(f)− u) ≤
√
c+ 1 ‖uε(0,−u)‖ε

≤
√
c+ 1

√
ε ‖u‖L2(D,E).

Therefore, we get

lim
ε→0+

D(uε(f)− u) = 0,

and so Corollary 4.4 shows that u is a solution to Problem 2.1 provided f belongs
to the closure of ADT in L2(D,F ). �

Apparently, if A is a differential operator with finite-dimensional kernel SA(D)
then the (Cauchy) Problem 2.1 is well posed for A.

Example 5.1. Let X = R, A = d/dx, D = (a, b) with −∞ < a < b < ∞, and
Γ = {a}. Then DA = H1(D). The Cauchy problem{

u′(x) = f(x) for x ∈ (a, b),
u(a) = u0,

with u0 ∈ R, is known to be well posed in Sobolev spaces as well as in spaces of
smooth functions on [a, b]. Its solution can be easily found by the formula

u(x) = u0 +

∫ x

a

f(y) dy.

Let us look at the corresponding family of mixed problems. In this case we have
A∗ = −d/dx and ∂D \ Γ ◦ = {b}, hence the mixed problems are u′′ε (x)− ε uε(x) = f ′(x) for x ∈ (a, b),

uε(a) = u0,
u′ε(b) = f(b),

where u0 ∈ R is arbitrary. One easily calculates that

uε(x) = u0 +

x∫
a

f(y) cosh(
√
ε(x−y)) dy+

sinh(
√
ε(x− a))

cosh(
√
ε(b− a))

b∫
a

f(y) sinh(
√
ε(b−y)) dy

and

lim
ε→0+

uε = u

even in the norm of C1[a, b], if f ∈ C[a, b].

6. Finding the solution

Let us discuss the very important question of how to find the solution of Problem
3.1, and hence a solution to Problem 2.1. Of course, if an explicit orthonormal basis
{ei}i∈N in the space DT with the scalar product (·, ·)ε is available, then one easily
obtains

(6.1) uε(f, h) =

∞∑
j=1

(uε(f, h), ei)ε ei.

According to (3.2) we have

(6.2) (uε(f, h), ei)ε = (f,Aei)L2(D,F ) + ε (h, ei)L2(D,E),
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hence (6.1) and (6.2) give us a complete description of the solution uε(f, h) to
Problem 3.1. Unfortunately, it is not an easy task to construct an explicit basis
{ei}i∈N.

Example 6.1. Let Γ = ∂D∩S where S is a sufficiently smooth hypersurface near
∂D. Choose a defining function δ(x) for S. Then we can start with a linearly inde-
pendent system of the form {(δ(x))m−1Pi(x)} in DT , where Pi(x) are polynomials
of increasing degree taking their values in Ex. Orthogonalising it by the standard
Gram-Schmidt procedure we arrive at an orthonormal system in DT . In order to
obtain a basis we have certainly to guarantee that the system {(δ(x))m−1Pi(x)} be
dense in DT . However, for applications it suffices to have merely a finite number
of basis elements.

Let us describe an alternative way of finding the solution. Assume that the oper-
ator A∗A+ ε possesses the Unique Continuation property (U)s in a neighbourhood
of D. Then it has a two-sided fundamental solution there (see for instance [Tar95a]).
Fix such a fundamental solution Φε(x, y) for A∗A+ ε. For each s ≥ 0, it induces a
continuous linear map Φε : Hs(D,E) → Hs+2m(D,E) by u 7→ r+ Φε(e+u) where
e+ means the extension by zero to all of X and r+ the restriction to D. This map
actually extends to a continuous map Φε : Hs(D,E)→ Hs+2m(D,E) for all s ∈ R,
being a right inverse of A∗A + ε. Every element u ∈ DA may be thus written in
the form

(6.3) u = U + Φε((A
∗A+ ε)u),

where U ∈ DA ∩ SA∗A+ε(D). Indeed, fix u ∈ DA. Since Au ∈ L2(D,F ) we deduce
that A∗Au ∈ H−m(D,E). It follows that

Φε((A
∗A+ ε)u) ∈ Hm(D,E)

⊂ DA.

Setting U = u−Φε((A
∗A+ ε)u) yields readily (6.3) with U ∈ DA ∩SA∗A+ε(D), as

desired.
In practice one usually has only a complete linearly independent system {Ui}i∈N

of solutions to (A∗A+ ε)U = 0 on neighborhoods of D, or even on all of X◦.

Lemma 6.1. Assume that A∗A + ε possesses the Unique Continuation Property
(U)s. If M ⊂ SA∗A+ε(D) is a dense set in Cm−1(D,E) ∩ SA∗A+ε(D) then it is
dense in DA ∩ SA∗A+ε(D).

Proof. When endowed with the scalar product (·, ·)ε, DA ∩SA∗A+ε(D) is a Hilbert
space. Hence it suffices to prove that the orthogonal complement of M in this space
is zero.

To this end, pick u ∈ DA ∩ SA∗A+ε(D). Since u belongs to L2(D,E) it has a
finite order of growth near ∂D, cf. [Tar95b]. It follows that the expressions t(u)
and n(Au) have weak boundary values u0 and u1 in the space of distributions on
∂D.

Let v0 ∈ ⊕m−1
j=0 C

∞(∂D,Fj). As t is a Dirichlet system of order m − 1 on ∂D,

there is a section v ∈ C∞(D,E) satisfying t(v) = v0. Then

< u1, v0 >=: lim
δ→0−

∫
∂Dδ

(n(Au), v)x dsδ(x)
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and the definition does not depend on the particular choice of v. Since the Dirichlet
problem for A∗A+ε in D is uniquely solvable over the whole scale of Sobolev spaces,
we can take v ∈ C∞(D,E) ∩ SA∗A+ε(D).

If u is orthogonal to M ⊂ SA∗A+ε(D) with respect to the scalar product (·, ·)ε
then

0 = (u, v)ε

= lim
δ→0−

∫
Dδ

(Au,Av)x dx+ ε (u, v)L2(D,E)

= lim
δ→0−

(∫
∂Dδ

(n(Au), t(v))x dsδ(x) +

∫
Dδ

(A∗Au, v)x dx
)

+ ε (u, v)L2(D,E)

= lim
δ→0−

∫
∂Dδ

(n(Au), t(v))x dsδ(x)

for all v ∈M . As M is dense in Cm−1(D,E)∩SA∗A+ε(D) it follows that n(Au) = 0
on ∂D.

On the other hand, since u ∈ DA it can be approximated in the norm D(·) by a
sequence {uk} ⊂ C∞(D,E). Then

(u, u)ε = lim
k→∞

(u, uk)ε

= lim
k→∞

lim
δ→0−

∫
∂Dδ

(n(Au), uk)x dsδ(x)

= 0

whence u ≡ 0 in D. �

For M = SA∗A+ε(X
◦), the hypothesis of Lemma 6.1 is not too restrictive. It

is fulfilled, e.g., if the complement of D has no compact components in X◦, see
[Tar95a]. In particular, this is the case if ∂D is connected.

Applying to {Ui}i∈N the Gram-Schmidt orthogonalisation procedure with respect
to the scalar product (·, ·)ε, we obtain an orthonormal basis {bi = bi(ε)}i∈N in
DA ∩ SA∗A+ε(D).

The equality (6.3) suggest us to look for solutions to mixed Problem 3.1 of the
form

(6.4) uε(f, h) = Φε(A
∗f + εh) +

∞∑
i=1

ci(ε)bi(ε)

where the series on the right-hand side converges in DA. The point is to find
the coefficients ci(ε) through f and h. For this purpose, we denote by ΠΓ ,ε the
orthogonal projection

DA ∩ SA∗A+ε(D)→ DT ∩ SA∗A+ε(D)

with respect to the scalar product (·, ·)ε.

Lemma 6.2. Each solution uε(f, h) ∈ DT of Problem 3.1 may be written as the
series (6.4) where

ci(ε) = (f,AΠΓ ,εbi)L2(D,F ) + ε (h,ΠΓ ,εbi)L2(D,E) − (Φε(A
∗f + εh), bi)ε.

Proof. Indeed, let uε ∈ DT be a solution of Problem 3.1. As we have seen in §3,

(A∗A+ ε)uε = A∗f + εh
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in D. Using (6.3) we easily arrive at (6.4) with some uniquely defined coefficients
ci(ε).

Write Π̃Γ ,ε for the orthogonal projection DA → DT with respect to (·, ·)ε. Since

Π̃Γ ,ε is self-adjoint in DA, we get

(uε, bi)ε = (Π̃Γ ,εuε, bi)ε

= (uε, Π̃Γ ,εbi)ε(6.5)

= (f,AΠ̃Γ ,εbi)L2(D,F ) + ε (h, Π̃Γ ,εbi)L2(D,E),

the last equality being a consequence of (3.2).
Now (6.4) implies

(uε, bi)ε = (Φε(A
∗f + εh), bi)ε + ci(ε).

Combining this with (6.5) yields

ci(ε) = (f,AΠ̃Γ ,εbi)L2(D,F ) + ε (h, Π̃Γ ,εbi)L2(D,E) − (Φε(A
∗f + εh), bi)ε.

Finally, for every v ∈ C∞comp(D,E) we get

(Π̃Γ ,εbi, (A
∗A+ ε)v)L2(D,E) = (AΠ̃Γ ,εbi, Av)L2(D,F ) + ε (Π̃Γ ,εbi, v)L2(D,E)

= (bi, Π̃Γ ,εv)ε

= (bi, v)ε

= ((A∗A+ ε)bi, v)L2(D,E)

= 0.

This means that Π̃Γ ,εbi belongs to DT ∩ SA∗A+ε(D) whence Π̃Γ ,εbi = ΠΓ ,εbi,
showing the lemma. �

We have thus derived expressions for the coefficients ci(ε) through f and h.
However, it is not an easy task to explicitly construct the family of projections
{ΠΓ ,ε}.

Lemma 6.3. For every u ∈ DA ∩ SA∗A+ε(D), the projection ΠΓ ,εu just amounts
to the solution of Problem 3.1 with f = Au and h = u .

Proof. By the very definition, ΠΓ ,εu ∈ DT ∩ SA∗A+ε(D) and

(u−ΠΓ ,εu, v)ε = 0

for all v ∈ DT satisfying (A∗A+ ε)v = 0 in D.
Further, the solution uε = uε(Au, u) of Problem 3.1 with f = Au and h = u

belongs to DT ∩ SA∗A+ε(D) because A∗f + εh = (A∗A+ ε)u = 0. Moreover, (3.3)
gives

(u− uε, v)ε = 0

for all v ∈ DT .
We wish to show that ΠΓ ,εu = uε, which is equivalent to ‖ΠΓ ,εu− uε‖ε = 0. To

this end, write

(ΠΓ ,εu− uε,ΠΓ ,εu− uε)ε = − ((u−ΠΓ ,εu)− (u− uε),ΠΓ ,εu− uε)ε
= − (u−ΠΓ ,εu,ΠΓ ,εu− uε)ε − (u− uε,ΠΓ ,εu− uε)ε.

By the above, both summands on the right-hand side vanish because ΠΓ ,εu − uε
belongs to DT ∩ SA∗A+ε(D). �
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Of course, the lemma does not allow one to effectively determine the Fourier
coefficients ci. On the one hand, to find ci we only need to know ΠΓ ,εbi. On the
other hand, this requires, by Lemma 6.3, a solution of Problem 3.1 with very special
data f and h.

Let us now describe how to find solutions to Problem 3.1 for “good” data. For
this purpose we introduce for s ≥ 2m the Hermitian form

h(u, v) = (t(u), t(v))⊕Hs−mj−1/2(Γ ,Fj)
+ (n(Au), n(Av))⊕Hs−m−mj−1/2(∂D\Γ◦,Fj)

on the space H of all u ∈ DA ∩ SA∗A+ε(D) with the property that

t(u) ∈ ⊕m−1
j=0 H

s−mj−1/2(Γ , Fj),

n(Au) ∈ ⊕m−1
j=0 H

s−m−mj−1/2(∂D \ Γ ◦, Fj),

the expressions t(u) and n(Au) being understood in the sense of weak boundary
values.

Lemma 6.4. Suppose s ≥ 2m. When endowed with the scalar product h(·, ·), H is
a Hilbert space.

Proof. Indeed, (3.7) implies that h(·, ·) is a scalar product on H. Moreover, if {uk}
is a Cauchy sequence in H then it a Cauchy sequence in DA∩SA∗A+ε(D). Since this
latter is a Hilbert space, {uk} has a limit u in this space. Moreover, both {t(uk)}
and {n(Auk)} converge to t(u) and n(Au) in the space of distributions on ∂D,
or, more precisely, in ⊕m−1

j=0 H
−mj−1/2(∂D,Fj) and ⊕m−1

j=0 H
−m−mj−1/2(∂D,Fj),

respectively. By assumption, {t(uk)} and {n(Auk)} are Cauchy sequences in the
Hilbert spaces ⊕m−1

j=0 H
s−mj−1/2(Γ , Fj) and ⊕m−1

j=0 H
s−m−mj−1/2(∂D \ Γ ◦, Fj), re-

spectively. Hence, they converge to elements u0 and u1 in these spaces. Finally,
the uniqueness of a limit yields t(u) = u0 on Γ and n(Au) = u1 on ∂D \ Γ ◦, i.e.,
u ∈ H, which completes the proof. �

Let {Ui}i∈N be a complete linearly independent system in H. Applying the
Gram-Schmidt orthogonalisation to {Ui}i∈N we get an orthonormal basis {Bi}i∈N
in H.

Theorem 6.5. Let s ≥ 2m. Then, for every w ∈ Hs−2m(D,E) and

u0 ∈ ⊕m−1
j=0 H

s−mj−1/2(Γ , Fj),

u1 ∈ ⊕m−1
j=0 H

s−m−mj−1/2(∂D \ Γ ◦, Fj),

the series

u = Φε(w) +

∞∑
i=1

kiBi

converges in DA and satisfies (3.5), provided that

ki = h(u− Φε(w), Bi).

Proof. This is a direct consequence of Theorem 3.2. Recall that the boundary
equations t(u) = u0 on Γ and n(Au) = u1 on ∂D \ Γ ◦ are interpreted in the sense
of (3.6). �

From this theorem we deduce, in particular, that

ΠΓ ,εbi =

∞∑
q=1

kiBi,
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with the coefficients

ki = (n(Abi)), n(ABi))⊕Hs−m−mj−1/2(∂D\Γ◦,Fj).

Knowing ΠΓ ,εbi we can find, by Lemma 6.2, the solution of Problem 3.1 for any
data f ∈ L2(D,F ) and h ∈ L2(D,F ). Of course, if both f and h are smooth
enough, namely f ∈ Hs−m(D,F ) and h ∈ Hs−2m(D,E) with s ≥ 2m, then we can
determine the solution of Problem 3.1 directly by Theorem 6.5.

One question still unanswered is whether a complete system {Ui}i∈N in H may
be chosen to consists of solutions to (A∗A + ε)u = 0 on neighbourhoods of D.
Analysis similar to that in the proof of Lemma 6.1 shows that this is always the
case if ∂D is smooth enough, e.g., of class C2m−1.

7. Dirac operators

Let X = Rn, where n ≥ 2, and E = Rn × Ck, F = Rn × Cl. The sections of E
are functions of n real variables with values in Ck, and similarly for F .

Let A be a Dirac operator, i.e., a homogeneous first order differential operator
with constant coefficients in Rn,

A =

n∑
j=1

Aj
∂

∂xj
,

such that

(7.1) (σ(A)(ξ))∗σ(A)(ξ) = |ξ|2Ek

for all ξ ∈ Rn. Here, Aj are (l × k) -matrices of complex numbers and Ek is the
identity (k × k) -matrix.

The Dirac operators satisfy A∗A = −Ek ∆, where ∆ is the usual Laplace oper-
ator in Rn.

The perturbed mixed problem (3.3) reads as (−∆ + ε)uε = A∗f in D;
t(uε) = 0 on Γ ,

n(Auε) = n(f) on ∂D \ Γ ◦,

where

n(f) = (σ(A)(∇%))∗f

and % is a defining function of D in the sense of (1.2). Thus, this is a family of
mixed problems for the Helmholtz equation.

We are going to study the (Cauchy) Problem 2.1 on the unit ball D = B in Rn.
To this end, we pass to spherical coordinates x = r S(ϕ) where ϕ are coordinates on
the unit sphere ∂D = S in Rn. The Laplace operator ∆ in the spherical coordinates
takes the form

(7.2) ∆ =
1

r2

((
r
∂

∂r

)2

+ (n− 2)
(
r
∂

∂r

)
−∆S

)
,

where ∆S is the Laplace-Beltrami operator on the unit sphere.
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To solve the homogeneous equation (−∆ + ε)uε = 0 we make use of the Fourier
method of separation of variables. Writing uε(r, ϕ) = g(r, ε)h(ϕ) we get two sepa-
rate equations for g and h, namely((

r
∂

∂r

)2

+ (n− 2)
(
r
∂

∂r

)
− εr2

)
g = c g

∆Sh = c h,

c being an arbitrary constant.
The second equation has non-zero solutions if and only if c is an eigenvalue of

∆S. These are well known to be c = i(n + i − 2), for i = 0, 1, . . . (see for instance
[TS72]). The corresponding eigenfunctions of ∆S are spherical harmonics hi(ϕ) of
degree i, i.e.,

(7.3) ∆Shi = i(n+ i− 2)hi.

Consider now the following ordinary differential equation with respect to the
variable r > 0

(7.4)
((
r
∂

∂r

)2

+ (n− 2)
(
r
∂

∂r

)
−
(
i(n+ i− 2) + εr2

) )
g(r, ε) = 0.

This is a version of the Bessel equation, and the space of its solutions is two-
dimensional.

For example, if ε = 0 then g(r, 0) = ari + br2−i−n with arbitrary constants a
and b is a general solution to (7.4). In this situation any function rihi(ϕ) is a
homogeneous harmonic polynomial. In the general case the space of solutions to
(7.4) contains a one-dimensional subspace of functions bounded at the point r = 0,
cf. [TS72].

For i = 0, 1, . . ., fix a non-zero solution gi(r, ε) of (7.4) which is bounded at r = 0.
Then

(7.5) (−∆ + ε) (gi(r, ε)hi(ϕ)) = 0

on all of Rn. Indeed, by (7.2), (7.3) and (7.4) we conclude that this equality holds
in Rn \ {0}. We now use the fact that gi(r, ε)hi(ϕ) is bounded at the origin to see
that (7.5) holds.

It is known that there are exactly

J(i) =
(n+ 2i− 2)(n+ i− 3)!

i!(n− 2)!

linearly independent spherical harmonics of degree i. In [Shl96] a system

{H(j)
i (ϕ)} i=0,1,...

j=1,...,k J(i)

of Ck -valued functions is constructed, such that

1) the components of H
(j)
i (ϕ) are spherical harmonics of degree i;

2) {H(j)
i (ϕ)} is an orthonormal basis in L2(S, E);

3) {A (riH
(j)
i (ϕ))} is an orthogonal system in L2(B, F ).

More precisely, this system {H(j)
i (ϕ)} consists of eigenfunctions of the operator

n ◦A,

(7.6) (σ(A)(rS(ϕ)))∗A
(
riH

(j)
i (ϕ)

)
= λ

(j)
i

(
riH

(j)
i (ϕ)

)
,

where λ
(j)
i ≥ 0.



MIXED PROBLEMS WITH A PARAMETER 25

Lemma 7.1. The system

{b(j)i (r, ϕ, ε) := gi(r, ε)H
(j)
i (ϕ)} i=0,1,...

j=1,...,k J(i)

is orthogonal with respect to both Hermitian forms (·, ·)L2(B,E) and (A·, A·)L2(B,F ).

Proof. Indeed, as {H(j)
i } is an orthonormal basis in the space L2(S, E) on the unit

sphere, the system {b(j)i } is orthogonal in L2(B, E) because

(b
(j)
i , b(q)p )L2(B,E) = (H

(j)
i , H(q)

p )L2(S,E)

∫ 1

0

rn−1gi(r, ε)gp(r, ε) dr

= 0

for i 6= p or j 6= q.
Further, integrating by parts we get

(7.7) (Ab
(j)
i , Ab(q)p )L2(B,F ) = −(b

(j)
i ,∆b(q)p )L2(B,E) + gi(1, ε) (H

(j)
i , n(Ab(q)p ))L2(S,E).

On the other hand, (7.5) implies

(7.8) − (b
(j)
i ,∆b(q)p )L2(B,E) + ε (b

(j)
i , b(q)p )L2(B,E) = 0

for i 6= p or j 6= q.
Let us write the expression n ◦A in spherical coordinates. Denote by S′(ϕ) the

Jacobi matrix of S(ϕ). Set

(S′(ϕ))
−1

:=
(

(S′(ϕ))
T
S′(ϕ)

)−1

(S′(ϕ))
T
.

Since the rank of S′(ϕ) is equal to n−1, the inverse matrix of (S′(ϕ))
T
S′(ϕ) exists

and is smooth. Moreover, (S′(ϕ))
−1

is a left inverse for S′(ϕ). An easy calculation
shows that

∂

∂xj
= Sj(ϕ)

∂

∂r
+

1

r

n−1∑
i=1

(S′(ϕ))
−1
i,j

∂

∂ϕi

where (S′(ϕ))
−1
i,j is the (i, j) -entry of (S′(ϕ))

−1
.

Now (7.1) implies

(7.9) n ◦A =

n∑
k=1

A∗k rSk(ϕ)

n∑
j=1

Aj
∂

∂xj
= r

∂

∂r
+R(ϕ, ∂ϕ)

where

R(ϕ, ∂ϕ) =

n∑
k=1

A∗k Sk(ϕ)

n∑
j=1

Aj

n−1∑
i=1

(S′(ϕ))
−1
i,j

∂

∂ϕi
.

Using (7.6) and (7.9) we conclude that

λ
(j)
i (riH

(j)
i (ϕ)) = n(A(riH

(j)
i (ϕ)))

= i riH
(j)
i (ϕ) + riR(ϕ, ∂ϕ)H

(j)
i (ϕ).

Hence

R(ϕ, ∂ϕ)H
(j)
i (ϕ) =

(
λ

(j)
i − i

)
H

(j)
i (ϕ),
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and so (7.9) yields

n(Ab
(j)
i ) = r g′iH

(j)
i + giR(ϕ, ∂ϕ)H

(j)
i(7.10)

=
(
rg′i + (λ

(j)
i − i)gi

)
H

(j)
i .

Therefore,

(7.11) (H
(j)
i , n(Ab(q)p ))L2(S,E) = 0

for i 6= p or j 6= q.

Combining (7.7) (7.8) and (7.11) we see that the system {b(j)i } is orthogonal with
respect to (A·, A·)L2(B,F ). �

Remark 7.1. Note that g′i(1, ε)+(λ
(j)
i −i)gi(1, ε) 6= 0 for all ε > 0. Indeed, otherwise

n(Ab
(j)
i ) = 0 on S and (7.7), (7.8) would imply b

(j)
i ≡ 0, which is wrong.

Theorem 7.2. For every δ > 0, the system

{b(j)i (r, ϕ, ε)} i=0,1,...
j=1,...,k J(i)

is an orthogonal basis in the space DA ∩S−∆+εEk(B) with the scalar product (·, ·)δ.

Proof. The orthogonality follows immediately from Lemma 7.1. As for the com-

pleteness of the system {b(j)i } in DA ∩ S−∆+εEk(B), we observe that the estimates
(3.1) guarantee that every scalar product (·, ·)δ with δ > 0 induces in DA the same
topology as D(·, ·). Hence it is sufficient to prove the completeness for δ = 1. Fi-

nally, since the system of harmonics {H(j)
i } is dense in Cm−1(S, E) we see that

{b(j)i } is dense in Cm−1(S, E) ∩ S−∆+εEk(B). Then the completeness is a conse-
quence of Lemma 6.1. �

As a fundamental solution Φε(x, y) of the operator −∆ + ε in R3 we may choose
one of the standard kernels

Φε(x, y) = e±
√
ε|x−y|.

In R2 we can take as Φε(x, y) a Hankel function, see for instance [TS72].

Example 7.1. Let A = ∇ be the gradient operator in Rn. For every domain
D ⊂⊂ Rn, we have DA = H1(D). Since the estimate (5.1) holds true for ∇ (see
[Mik76]), the (Cauchy) Problem 2.1 is well posed in DT . In this case k = 1, l = n,
A∗ = −div is a multiple of the divergence operator in Rn and

n ◦A = |x| ∂
∂n

= r
∂

∂r

where ∂/∂n is the derivative along the outward unit normal vector to ∂D. In
particular, this means that every homogeneous harmonic polynomial rihi is an
eigenfunction of n ◦ A corresponding to the eigenvalue λi = i. For example, in R2

we can take

b
(1)
0 =

1√
2π

g0(r, ε),

b
(1)
i =

1√
π
gi(r, ε) cos(iϕ),

b
(2)
i =

1√
π
gi(r, ε) sin(iϕ),
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where gi are Hankel’s functions. In the case s = 5/2 and Γ = {r = 1, ϕ ∈ [0, π]}
the Gram-Schmidt orthogonalisation in H gives

B
(1)
0 =

g0(r, ε)
√
π
√
|g0(1, ε)|2 + |g′0(1, ε)|2

,

B
(1)
1 =

2 g1(r, ε) cosϕ
√
π
√
|g1(1, ε)|2 + |g′1(1, ε)|2

,

B
(2)
1 =

2ag0(r, ε) +
√
πg1(r, ε) sinϕ√
b

,

with

a = g0(1, ε)g1(1, ε)− g′0(1, ε)g′1(1, ε),

b =
3

2
π2 + 4a(1 + |g0(1, ε)|2 + |g′0(1, ε)|2),

and so on.

Example 7.2. Let A := ∂1 +
√
−1∂2 be (2 -multiple of) the Cauchy-Riemann

operator in C. Then the (Cauchy) Problem 2.1 is ill-posed in DT . In this case
k = l = 1, A∗ = −∂1 +

√
−1∂2 and

n ◦A = z̄ ∂̄ = r
∂

∂r
+
√
−1

∂

∂ϕ

hold. The system {b(j)i } may be chosen as follows

b
(1)
0 =

1√
2π

g0(r, ε),

b
(1)
i =

1√
π
gi(r, ε)e

√
−1 iϕ,

b
(2)
i =

1√
π
gi(r, ε)e

−
√
−1 iϕ,

with λ
(1)
0 = 0, λ

(1)
i = 0 and λ

(2)
i = 2i.
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